summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/nvgpu/common/linux/nvgpu_mem.c
blob: 58488067918c70d633d8f1e43b9f93b218cf3423 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
/*
 * Copyright (c) 2017, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <nvgpu/dma.h>
#include <nvgpu/nvgpu_mem.h>
#include <nvgpu/page_allocator.h>
#include <nvgpu/log.h>
#include <nvgpu/bug.h>

#include <nvgpu/linux/dma.h>

#include "gk20a/gk20a.h"
#include "gk20a/mm_gk20a.h"

u32 __nvgpu_aperture_mask(struct gk20a *g, enum nvgpu_aperture aperture,
		u32 sysmem_mask, u32 vidmem_mask)
{
	switch (aperture) {
	case APERTURE_SYSMEM:
		/* sysmem for dgpus; some igpus consider system memory vidmem */
		return g->mm.vidmem_is_vidmem ? sysmem_mask : vidmem_mask;
	case APERTURE_VIDMEM:
		/* for dgpus only */
		return vidmem_mask;
	case APERTURE_INVALID:
		WARN_ON("Bad aperture");
	}
	return 0;
}

u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem,
		u32 sysmem_mask, u32 vidmem_mask)
{
	return __nvgpu_aperture_mask(g, mem->aperture,
			sysmem_mask, vidmem_mask);
}

int nvgpu_mem_begin(struct gk20a *g, struct nvgpu_mem *mem)
{
	void *cpu_va;

	if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
		return 0;

	/*
	 * A CPU mapping is implicitly made for all SYSMEM DMA allocations that
	 * don't have NVGPU_DMA_NO_KERNEL_MAPPING. Thus we don't need to make
	 * another CPU mapping.
	 */
	if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
		return 0;

	if (WARN_ON(mem->cpu_va)) {
		nvgpu_warn(g, "nested");
		return -EBUSY;
	}

	cpu_va = vmap(mem->priv.pages,
			PAGE_ALIGN(mem->size) >> PAGE_SHIFT,
			0, pgprot_writecombine(PAGE_KERNEL));

	if (WARN_ON(!cpu_va))
		return -ENOMEM;

	mem->cpu_va = cpu_va;
	return 0;
}

void nvgpu_mem_end(struct gk20a *g, struct nvgpu_mem *mem)
{
	if (mem->aperture != APERTURE_SYSMEM || g->mm.force_pramin)
		return;

	/*
	 * Similar to nvgpu_mem_begin() we don't need to unmap the CPU mapping
	 * already made by the DMA API.
	 */
	if (!(mem->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
		return;

	vunmap(mem->cpu_va);
	mem->cpu_va = NULL;
}

u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w)
{
	u32 data = 0;

	if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
		u32 *ptr = mem->cpu_va;

		WARN_ON(!ptr);
		data = ptr[w];
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
		gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
#endif
	} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
		u32 value;
		u32 *p = &value;

		nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
				sizeof(u32), pramin_access_batch_rd_n, &p);

		data = value;

	} else {
		WARN_ON("Accessing unallocated nvgpu_mem");
	}

	return data;
}

u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset)
{
	WARN_ON(offset & 3);
	return nvgpu_mem_rd32(g, mem, offset / sizeof(u32));
}

void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem,
		u32 offset, void *dest, u32 size)
{
	WARN_ON(offset & 3);
	WARN_ON(size & 3);

	if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
		u8 *src = (u8 *)mem->cpu_va + offset;

		WARN_ON(!mem->cpu_va);
		memcpy(dest, src, size);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
		if (size)
			gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
					src, *dest, size);
#endif
	} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
		u32 *dest_u32 = dest;

		nvgpu_pramin_access_batched(g, mem, offset, size,
				pramin_access_batch_rd_n, &dest_u32);
	} else {
		WARN_ON("Accessing unallocated nvgpu_mem");
	}
}

void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data)
{
	if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
		u32 *ptr = mem->cpu_va;

		WARN_ON(!ptr);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
		gk20a_dbg(gpu_dbg_mem, " %p = 0x%x", ptr + w, data);
#endif
		ptr[w] = data;
	} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
		u32 value = data;
		u32 *p = &value;

		nvgpu_pramin_access_batched(g, mem, w * sizeof(u32),
				sizeof(u32), pramin_access_batch_wr_n, &p);
		if (!mem->skip_wmb)
			wmb();
	} else {
		WARN_ON("Accessing unallocated nvgpu_mem");
	}
}

void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data)
{
	WARN_ON(offset & 3);
	nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data);
}

void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
		void *src, u32 size)
{
	WARN_ON(offset & 3);
	WARN_ON(size & 3);

	if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
		u8 *dest = (u8 *)mem->cpu_va + offset;

		WARN_ON(!mem->cpu_va);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
		if (size)
			gk20a_dbg(gpu_dbg_mem, " %p = 0x%x ... [%d bytes]",
					dest, *src, size);
#endif
		memcpy(dest, src, size);
	} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
		u32 *src_u32 = src;

		nvgpu_pramin_access_batched(g, mem, offset, size,
				pramin_access_batch_wr_n, &src_u32);
		if (!mem->skip_wmb)
			wmb();
	} else {
		WARN_ON("Accessing unallocated nvgpu_mem");
	}
}

void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset,
		u32 c, u32 size)
{
	WARN_ON(offset & 3);
	WARN_ON(size & 3);
	WARN_ON(c & ~0xff);

	c &= 0xff;

	if (mem->aperture == APERTURE_SYSMEM && !g->mm.force_pramin) {
		u8 *dest = (u8 *)mem->cpu_va + offset;

		WARN_ON(!mem->cpu_va);
#ifdef CONFIG_TEGRA_SIMULATION_PLATFORM
		if (size)
			gk20a_dbg(gpu_dbg_mem, " %p = 0x%x [times %d]",
				dest, c, size);
#endif
		memset(dest, c, size);
	} else if (mem->aperture == APERTURE_VIDMEM || g->mm.force_pramin) {
		u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24);
		u32 *p = &repeat_value;

		nvgpu_pramin_access_batched(g, mem, offset, size,
				pramin_access_batch_set, &p);
		if (!mem->skip_wmb)
			wmb();
	} else {
		WARN_ON("Accessing unallocated nvgpu_mem");
	}
}

/*
 * Be careful how you use this! You are responsible for correctly freeing this
 * memory.
 */
int nvgpu_mem_create_from_mem(struct gk20a *g,
			      struct nvgpu_mem *dest, struct nvgpu_mem *src,
			      int start_page, int nr_pages)
{
	int ret;
	u64 start = start_page * PAGE_SIZE;
	u64 size = nr_pages * PAGE_SIZE;
	dma_addr_t new_iova;

	if (src->aperture != APERTURE_SYSMEM)
		return -EINVAL;

	/* Some silly things a caller might do... */
	if (size > src->size)
		return -EINVAL;
	if ((start + size) > src->size)
		return -EINVAL;

	dest->mem_flags = src->mem_flags | NVGPU_MEM_FLAG_SHADOW_COPY;
	dest->aperture  = src->aperture;
	dest->skip_wmb  = src->skip_wmb;
	dest->size      = size;

	/*
	 * Re-use the CPU mapping only if the mapping was made by the DMA API.
	 */
	if (!(src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING))
		dest->cpu_va = src->cpu_va + (PAGE_SIZE * start_page);

	dest->priv.pages = src->priv.pages + start_page;
	dest->priv.flags = src->priv.flags;

	new_iova = sg_dma_address(src->priv.sgt->sgl) ?
		sg_dma_address(src->priv.sgt->sgl) + start : 0;

	/*
	 * Make a new SG table that is based only on the subset of pages that
	 * is passed to us. This table gets freed by the dma free routines.
	 */
	if (src->priv.flags & NVGPU_DMA_NO_KERNEL_MAPPING)
		ret = nvgpu_get_sgtable_from_pages(g, &dest->priv.sgt,
						   src->priv.pages + start_page,
						   new_iova, size);
	else
		ret = nvgpu_get_sgtable(g, &dest->priv.sgt, dest->cpu_va,
					new_iova, size);

	return ret;
}

int __nvgpu_mem_create_from_pages(struct gk20a *g, struct nvgpu_mem *dest,
				  struct page **pages, int nr_pages)
{
	struct sg_table *sgt;
	struct page **our_pages =
		nvgpu_kmalloc(g, sizeof(struct page *) * nr_pages);

	if (!our_pages)
		return -ENOMEM;

	memcpy(our_pages, pages, sizeof(struct page *) * nr_pages);

	if (nvgpu_get_sgtable_from_pages(g, &sgt, pages, 0,
					 nr_pages * PAGE_SIZE)) {
		nvgpu_kfree(g, our_pages);
		return -ENOMEM;
	}

	/*
	 * If we are making an SGT from physical pages we can be reasonably
	 * certain that this should bypass the SMMU - thus we set the DMA (aka
	 * IOVA) address to 0. This tells the GMMU mapping code to not make a
	 * mapping directed to the SMMU.
	 */
	sg_dma_address(sgt->sgl) = 0;

	dest->mem_flags  = __NVGPU_MEM_FLAG_NO_DMA;
	dest->aperture   = APERTURE_SYSMEM;
	dest->skip_wmb   = 0;
	dest->size       = PAGE_SIZE * nr_pages;

	dest->priv.flags = 0;
	dest->priv.pages = our_pages;
	dest->priv.sgt   = sgt;

	return 0;
}