summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/nvgpu/common/linux/kmem.c
blob: a2e49e7a752ddaee6e02e36ca9f6a226a4c71483 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/*
 * Copyright (c) 2017, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/debugfs.h>
#include <linux/spinlock.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#include <linux/stacktrace.h>

#include <nvgpu/kmem.h>
#include <nvgpu/atomic.h>

#include "gk20a/gk20a.h"

#include "kmem_priv.h"

/*
 * Statically declared because this needs to be shared across all nvgpu driver
 * instances. This makes sure that all kmem caches are _definitely_ uniquely
 * named.
 */
static atomic_t kmem_cache_id;

#ifdef CONFIG_NVGPU_TRACK_MEM_USAGE

static void lock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
{
	mutex_lock(&tracker->lock);
}

static void unlock_tracker(struct nvgpu_mem_alloc_tracker *tracker)
{
	mutex_unlock(&tracker->lock);
}

static void kmem_print_mem_alloc(struct gk20a *g,
				 struct nvgpu_mem_alloc *alloc,
				 struct seq_file *s)
{
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
	int i;

	__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld\n",
		alloc->addr, alloc->size);
	for (i = 0; i < alloc->stack_length; i++)
		__pstat(s, "  %3d [<%p>] %pS\n", i,
			(void *)alloc->stack[i],
			(void *)alloc->stack[i]);
	__pstat(s, "\n");
#else
	__pstat(s, "nvgpu-alloc: addr=0x%llx size=%ld src=%pF\n",
		alloc->addr, alloc->size, alloc->ip);
#endif
}

static int nvgpu_add_alloc(struct nvgpu_mem_alloc_tracker *tracker,
			   struct nvgpu_mem_alloc *alloc)
{
	struct rb_node **new = &tracker->allocs.rb_node;
	struct rb_node *parent = NULL;

	while (*new) {
		struct nvgpu_mem_alloc *tmp = rb_entry(*new,
						       struct nvgpu_mem_alloc,
						       allocs_entry);

		parent = *new;

		if (alloc->addr < tmp->addr)
			new = &(*new)->rb_left;
		else if (alloc->addr > tmp->addr)
			new = &(*new)->rb_right;
		else
			return -EINVAL;
	}

	/* Put the new node there */
	rb_link_node(&alloc->allocs_entry, parent, new);
	rb_insert_color(&alloc->allocs_entry, &tracker->allocs);

	return 0;
}

static struct nvgpu_mem_alloc *nvgpu_rem_alloc(
	struct nvgpu_mem_alloc_tracker *tracker, u64 alloc_addr)
{
	struct rb_node *node = tracker->allocs.rb_node;
	struct nvgpu_mem_alloc *alloc;

	while (node) {
		alloc = container_of(node,
				     struct nvgpu_mem_alloc, allocs_entry);

		if (alloc_addr < alloc->addr)
			node = node->rb_left;
		else if (alloc_addr > alloc->addr)
			node = node->rb_right;
		else
			break;
	}

	if (!node)
		return NULL;

	rb_erase(node, &tracker->allocs);

	return alloc;
}

static int __nvgpu_save_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
				   unsigned long size, unsigned long real_size,
				   u64 addr, unsigned long ip)
{
	int ret;
	struct nvgpu_mem_alloc *alloc;
#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
	struct stack_trace stack_trace;
#endif

	alloc = kzalloc(sizeof(*alloc), GFP_KERNEL);
	if (!alloc)
		return -ENOMEM;

	alloc->owner = tracker;
	alloc->size = size;
	alloc->real_size = real_size;
	alloc->addr = addr;
	alloc->ip = (void *)(uintptr_t)ip;

#ifdef __NVGPU_SAVE_KALLOC_STACK_TRACES
	stack_trace.max_entries = MAX_STACK_TRACE;
	stack_trace.nr_entries = 0;
	stack_trace.entries = alloc->stack;
	/*
	 * This 4 here skips the 2 function calls that happen for all traced
	 * allocs due to nvgpu:
	 *
	 *   __nvgpu_save_kmem_alloc+0x7c/0x128
	 *   __nvgpu_track_kzalloc+0xcc/0xf8
	 *
	 * And the function calls that get made by the stack trace code itself.
	 * If the trace savings code changes this will likely have to change
	 * as well.
	 */
	stack_trace.skip = 4;
	save_stack_trace(&stack_trace);
	alloc->stack_length = stack_trace.nr_entries;
#endif

	lock_tracker(tracker);
	tracker->bytes_alloced += size;
	tracker->bytes_alloced_real += real_size;
	tracker->nr_allocs++;

	/* Keep track of this for building a histogram later on. */
	if (tracker->max_alloc < size)
		tracker->max_alloc = size;
	if (tracker->min_alloc > size)
		tracker->min_alloc = size;

	ret = nvgpu_add_alloc(tracker, alloc);
	if (ret) {
		WARN(1, "Duplicate alloc??? 0x%llx\n", addr);
		kfree(alloc);
		unlock_tracker(tracker);
		return ret;
	}
	unlock_tracker(tracker);

	return 0;
}

static int __nvgpu_free_kmem_alloc(struct nvgpu_mem_alloc_tracker *tracker,
				   u64 addr)
{
	struct nvgpu_mem_alloc *alloc;

	lock_tracker(tracker);
	alloc = nvgpu_rem_alloc(tracker, addr);
	if (WARN(!alloc, "Possible double-free detected: 0x%llx!", addr)) {
		unlock_tracker(tracker);
		return -EINVAL;
	}

	tracker->nr_frees++;
	tracker->bytes_freed += alloc->size;
	tracker->bytes_freed_real += alloc->real_size;
	unlock_tracker(tracker);

	return 0;
}

static void __nvgpu_check_valloc_size(unsigned long size)
{
	WARN(size < PAGE_SIZE, "Alloc smaller than page size! (%lu)!\n", size);
}

static void __nvgpu_check_kalloc_size(size_t size)
{
	WARN(size > PAGE_SIZE, "Alloc larger than page size! (%zu)!\n", size);
}

void *__nvgpu_track_vmalloc(struct gk20a *g, unsigned long size,
			    unsigned long ip)
{
	void *alloc = vmalloc(size);

	if (!alloc)
		return NULL;

	kmem_dbg("vmalloc: size=%-6ld addr=0x%p", size, alloc);
	__nvgpu_check_valloc_size(size);

	/*
	 * Ignore the return message. If this fails let's not cause any issues
	 * for the rest of the driver.
	 */
	__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_vzalloc(struct gk20a *g, unsigned long size,
			    unsigned long ip)
{
	void *alloc = vzalloc(size);

	if (!alloc)
		return NULL;

	kmem_dbg("vzalloc: size=%-6ld addr=0x%p", size, alloc);
	__nvgpu_check_valloc_size(size);

	/*
	 * Ignore the return message. If this fails let's not cause any issues
	 * for the rest of the driver.
	 */
	__nvgpu_save_kmem_alloc(g->vmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_kmalloc(struct gk20a *g, size_t size, unsigned long ip)
{
	void *alloc = kmalloc(size, GFP_KERNEL);

	if (!alloc)
		return NULL;

	kmem_dbg("kmalloc: size=%-6ld addr=0x%p gfp=0x%08x",
		 size, alloc, GFP_KERNEL);
	__nvgpu_check_kalloc_size(size);

	__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_kzalloc(struct gk20a *g, size_t size, unsigned long ip)
{
	void *alloc = kzalloc(size, GFP_KERNEL);

	if (!alloc)
		return NULL;

	kmem_dbg("kzalloc: size=%-6ld addr=0x%p gfp=0x%08x",
		 size, alloc, GFP_KERNEL);
	__nvgpu_check_kalloc_size(size);

	__nvgpu_save_kmem_alloc(g->kmallocs, size, roundup_pow_of_two(size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void *__nvgpu_track_kcalloc(struct gk20a *g, size_t n, size_t size,
			    unsigned long ip)
{
	void *alloc = kcalloc(n, size, GFP_KERNEL);

	if (!alloc)
		return NULL;

	kmem_dbg("kcalloc: size=%-6ld addr=0x%p gfp=0x%08x",
		 n * size, alloc, GFP_KERNEL);
	__nvgpu_check_kalloc_size(n * size);

	__nvgpu_save_kmem_alloc(g->kmallocs, n * size,
				roundup_pow_of_two(n * size),
				(u64)(uintptr_t)alloc, ip);

	return alloc;
}

void __nvgpu_track_vfree(struct gk20a *g, void *addr)
{
	/*
	 * Often it is accepted practice to pass NULL pointers into free
	 * functions to save code.
	 */
	if (!addr)
		return;

	vfree(addr);

	kmem_dbg("vfree: addr=0x%p", addr);

	__nvgpu_free_kmem_alloc(g->vmallocs, (u64)(uintptr_t)addr);
}

void __nvgpu_track_kfree(struct gk20a *g, void *addr)
{
	if (!addr)
		return;

	kfree(addr);

	kmem_dbg("kfree: addr=0x%p", addr);

	__nvgpu_free_kmem_alloc(g->kmallocs, (u64)(uintptr_t)addr);
}

/**
 * to_human_readable_bytes - Determine  suffix for passed size.
 *
 * @bytes - Number of bytes to generate a suffix for.
 * @hr_bytes [out] - The human readable number of bytes.
 * @hr_suffix [out] - The suffix for the HR number of bytes.
 *
 * Computes a human readable decomposition of the passed number of bytes. The
 * suffix for the bytes is passed back through the @hr_suffix pointer. The right
 * number of bytes is then passed back in @hr_bytes. This returns the following
 * ranges:
 *
 *   0 - 1023 B
 *   1 - 1023 KB
 *   1 - 1023 MB
 *   1 - 1023 GB
 *   1 - 1023 TB
 *   1 - ...  PB
 */
static void __to_human_readable_bytes(u64 bytes, u64 *hr_bytes,
				      const char **hr_suffix)
{
	static const char *suffixes[] =
		{ "B", "KB", "MB", "GB", "TB", "PB" };

	u64 suffix_ind = 0;

	while (suffix_ind < ARRAY_SIZE(suffixes) && bytes >= 1024) {
		bytes >>= 10;
		suffix_ind++;
	}

	/*
	 * Handle case where bytes > 1023PB.
	 */
	suffix_ind = suffix_ind < ARRAY_SIZE(suffixes) ?
		suffix_ind : ARRAY_SIZE(suffixes) - 1;

	*hr_bytes = bytes;
	*hr_suffix = suffixes[suffix_ind];
}

/**
 * print_hr_bytes - Print human readable bytes
 *
 * @s - A seq_file to print to. May be NULL.
 * @msg - A message to print before the bytes.
 * @bytes - Number of bytes.
 *
 * Print @msg followed by the human readable decomposition of the passed number
 * of bytes.
 *
 * If @s is NULL then this prints will be made to the kernel log.
 */
static void print_hr_bytes(struct seq_file *s, const char *msg, u64 bytes)
{
	u64 hr_bytes;
	const char *hr_suffix;

	__to_human_readable_bytes(bytes, &hr_bytes, &hr_suffix);
	__pstat(s, "%s%lld %s\n", msg, hr_bytes, hr_suffix);
}

/**
 * print_histogram - Build a histogram of the memory usage.
 *
 * @tracker The tracking to pull data from.
 * @s       A seq_file to dump info into.
 */
static void print_histogram(struct nvgpu_mem_alloc_tracker *tracker,
			    struct seq_file *s)
{
	int i;
	u64 pot_min, pot_max;
	u64 nr_buckets;
	unsigned int *buckets;
	unsigned int total_allocs;
	struct rb_node *node;
	static const char histogram_line[] =
		"++++++++++++++++++++++++++++++++++++++++";

	/*
	 * pot_min is essentially a round down to the nearest power of 2. This
	 * is the start of the histogram. pot_max is just a round up to the
	 * nearest power of two. Each histogram bucket is one power of two so
	 * the histogram buckets are exponential.
	 */
	pot_min = (u64)rounddown_pow_of_two(tracker->min_alloc);
	pot_max = (u64)roundup_pow_of_two(tracker->max_alloc);

	nr_buckets = __ffs(pot_max) - __ffs(pot_min);

	buckets = kzalloc(sizeof(*buckets) * nr_buckets, GFP_KERNEL);
	if (!buckets) {
		__pstat(s, "OOM: could not allocate bucket storage!?\n");
		return;
	}

	/*
	 * Iterate across all of the allocs and determine what bucket they
	 * should go in. Round the size down to the nearest power of two to
	 * find the right bucket.
	 */
	for (node = rb_first(&tracker->allocs);
	     node != NULL;
	     node = rb_next(node)) {
		int b;
		u64 bucket_min;
		struct nvgpu_mem_alloc *alloc;

		alloc = container_of(node, struct nvgpu_mem_alloc,
				     allocs_entry);
		bucket_min = (u64)rounddown_pow_of_two(alloc->size);
		if (bucket_min < tracker->min_alloc)
			bucket_min = tracker->min_alloc;

		b = __ffs(bucket_min) - __ffs(pot_min);

		/*
		 * Handle the one case were there's an alloc exactly as big as
		 * the maximum bucket size of the largest bucket. Most of the
		 * buckets have an inclusive minimum and exclusive maximum. But
		 * the largest bucket needs to have an _inclusive_ maximum as
		 * well.
		 */
		if (b == (int)nr_buckets)
			b--;

		buckets[b]++;
	}

	total_allocs = 0;
	for (i = 0; i < (int)nr_buckets; i++)
		total_allocs += buckets[i];

	__pstat(s, "Alloc histogram:\n");

	/*
	 * Actually compute the histogram lines.
	 */
	for (i = 0; i < (int)nr_buckets; i++) {
		char this_line[sizeof(histogram_line) + 1];
		u64 line_length;
		u64 hr_bytes;
		const char *hr_suffix;

		memset(this_line, 0, sizeof(this_line));

		/*
		 * Compute the normalized line length. Cant use floating point
		 * so we will just multiply everything by 1000 and use fixed
		 * point.
		 */
		line_length = (1000 * buckets[i]) / total_allocs;
		line_length *= sizeof(histogram_line);
		line_length /= 1000;

		memset(this_line, '+', line_length);

		__to_human_readable_bytes(1 << (__ffs(pot_min) + i),
					  &hr_bytes, &hr_suffix);
		__pstat(s, "  [%-4lld %-4lld] %-2s %5u | %s\n",
			hr_bytes, hr_bytes << 1,
			hr_suffix, buckets[i], this_line);
	}
}

/**
 * nvgpu_kmem_print_stats - Print kmem tracking stats.
 *
 * @tracker The tracking to pull data from.
 * @s       A seq_file to dump info into.
 *
 * Print stats from a tracker. If @s is non-null then seq_printf() will be
 * used with @s. Otherwise the stats are pr_info()ed.
 */
void nvgpu_kmem_print_stats(struct nvgpu_mem_alloc_tracker *tracker,
			    struct seq_file *s)
{
	lock_tracker(tracker);

	__pstat(s, "Mem tracker: %s\n\n", tracker->name);

	__pstat(s, "Basic Stats:\n");
	__pstat(s,        "  Number of allocs        %lld\n",
		tracker->nr_allocs);
	__pstat(s,        "  Number of frees         %lld\n",
		tracker->nr_frees);
	print_hr_bytes(s, "  Smallest alloc          ", tracker->min_alloc);
	print_hr_bytes(s, "  Largest alloc           ", tracker->max_alloc);
	print_hr_bytes(s, "  Bytes allocated         ", tracker->bytes_alloced);
	print_hr_bytes(s, "  Bytes freed             ", tracker->bytes_freed);
	print_hr_bytes(s, "  Bytes allocated (real)  ",
		       tracker->bytes_alloced_real);
	print_hr_bytes(s, "  Bytes freed (real)      ",
		       tracker->bytes_freed_real);
	__pstat(s, "\n");

	print_histogram(tracker, s);

	unlock_tracker(tracker);
}

#if defined(CONFIG_DEBUG_FS)
static int __kmem_tracking_show(struct seq_file *s, void *unused)
{
	struct nvgpu_mem_alloc_tracker *tracker = s->private;

	nvgpu_kmem_print_stats(tracker, s);

	return 0;
}

static int __kmem_tracking_open(struct inode *inode, struct file *file)
{
	return single_open(file, __kmem_tracking_show, inode->i_private);
}

static const struct file_operations __kmem_tracking_fops = {
	.open = __kmem_tracking_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

static int __kmem_traces_dump_tracker(struct gk20a *g,
				      struct nvgpu_mem_alloc_tracker *tracker,
				      struct seq_file *s)
{
	struct rb_node *node;

	for (node = rb_first(&tracker->allocs);
	     node != NULL;
	     node = rb_next(node)) {
		struct nvgpu_mem_alloc *alloc;

		alloc = container_of(node, struct nvgpu_mem_alloc,
				     allocs_entry);

		kmem_print_mem_alloc(g, alloc, s);
	}

	return 0;
}

static int __kmem_traces_show(struct seq_file *s, void *unused)
{
	struct gk20a *g = s->private;

	lock_tracker(g->vmallocs);
	seq_puts(s, "Oustanding vmallocs:\n");
	__kmem_traces_dump_tracker(g, g->vmallocs, s);
	seq_puts(s, "\n");
	unlock_tracker(g->vmallocs);

	lock_tracker(g->kmallocs);
	seq_puts(s, "Oustanding kmallocs:\n");
	__kmem_traces_dump_tracker(g, g->kmallocs, s);
	unlock_tracker(g->kmallocs);

	return 0;
}

static int __kmem_traces_open(struct inode *inode, struct file *file)
{
	return single_open(file, __kmem_traces_show, inode->i_private);
}

static const struct file_operations __kmem_traces_fops = {
	.open = __kmem_traces_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

void nvgpu_kmem_debugfs_init(struct device *dev)
{
	struct gk20a_platform *plat = dev_get_drvdata(dev);
	struct gk20a *g = get_gk20a(dev);
	struct dentry *gpu_root = plat->debugfs;
	struct dentry *node;

	g->debugfs_kmem = debugfs_create_dir("kmem_tracking", gpu_root);
	if (IS_ERR_OR_NULL(g->debugfs_kmem))
		return;

	node = debugfs_create_file(g->vmallocs->name, S_IRUGO,
				   g->debugfs_kmem,
				   g->vmallocs, &__kmem_tracking_fops);
	node = debugfs_create_file(g->kmallocs->name, S_IRUGO,
				   g->debugfs_kmem,
				   g->kmallocs, &__kmem_tracking_fops);
	node = debugfs_create_file("traces", S_IRUGO,
				   g->debugfs_kmem,
				   g, &__kmem_traces_fops);
}
#else
void nvgpu_kmem_debugfs_init(struct device *dev)
{
}
#endif

static int __do_check_for_outstanding_allocs(
	struct gk20a *g,
	struct nvgpu_mem_alloc_tracker *tracker,
	const char *type, bool silent)
{
	struct rb_node *node;
	int count = 0;

	for (node = rb_first(&tracker->allocs);
	     node != NULL;
	     node = rb_next(node)) {
		struct nvgpu_mem_alloc *alloc;

		alloc = container_of(node, struct nvgpu_mem_alloc,
				     allocs_entry);

		if (!silent)
			kmem_print_mem_alloc(g, alloc, NULL);

		count++;
	}

	return count;
}

/**
 * check_for_outstanding_allocs - Count and display outstanding allocs
 *
 * @g      - The GPU.
 * @silent - If set don't print anything about the allocs.
 *
 * Dump (or just count) the number of allocations left outstanding.
 */
static int check_for_outstanding_allocs(struct gk20a *g, bool silent)
{
	int count = 0;

	count += __do_check_for_outstanding_allocs(g, g->kmallocs, "kmalloc",
						   silent);
	count += __do_check_for_outstanding_allocs(g, g->vmallocs, "vmalloc",
						   silent);

	return count;
}

static void do_nvgpu_kmem_cleanup(struct nvgpu_mem_alloc_tracker *tracker,
				  void (*force_free_func)(const void *))
{
	struct rb_node *node;

	while ((node = rb_first(&tracker->allocs)) != NULL) {
		struct nvgpu_mem_alloc *alloc;

		alloc = container_of(node, struct nvgpu_mem_alloc,
				     allocs_entry);
		if (force_free_func)
			force_free_func((void *)alloc->addr);

		kfree(alloc);
	}
}

/**
 * nvgpu_kmem_cleanup - Cleanup the kmem tracking
 *
 * @g          - The GPU.
 * @force_free - If set will also free leaked objects if possible.
 *
 * Cleanup all of the allocs made by nvgpu_kmem tracking code. If @force_free
 * is non-zero then the allocation made by nvgpu is also freed. This is risky,
 * though, as it is possible that the memory is still in use by other parts of
 * the GPU driver not aware that this has happened.
 *
 * In theory it should be fine if the GPU driver has been deinitialized and
 * there are no bugs in that code. However, if there are any bugs in that code
 * then they could likely manifest as odd crashes indeterminate amounts of time
 * in the future. So use @force_free at your own risk.
 */
static void nvgpu_kmem_cleanup(struct gk20a *g, bool force_free)
{
	do_nvgpu_kmem_cleanup(g->kmallocs, force_free ? kfree : NULL);
	do_nvgpu_kmem_cleanup(g->vmallocs, force_free ? vfree : NULL);
}

void nvgpu_kmem_fini(struct gk20a *g, int flags)
{
	int count;
	bool silent, force_free;

	if (!flags)
		return;

	silent = !(flags & NVGPU_KMEM_FINI_DUMP_ALLOCS);
	force_free = !!(flags & NVGPU_KMEM_FINI_FORCE_CLEANUP);

	count = check_for_outstanding_allocs(g, silent);
	nvgpu_kmem_cleanup(g, force_free);

	/*
	 * If we leak objects we can either BUG() out or just WARN(). In general
	 * it doesn't make sense to BUG() on here since leaking a few objects
	 * won't crash the kernel but it can be helpful for development.
	 *
	 * If neither flag is set then we just silently do nothing.
	 */
	if (count > 0) {
		if (flags & NVGPU_KMEM_FINI_WARN) {
			WARN(1, "Letting %d allocs leak!!\n", count);
		} else if (flags & NVGPU_KMEM_FINI_BUG) {
			nvgpu_err(g, "Letting %d allocs leak!!\n", count);
			BUG();
		}
	}
}

int nvgpu_kmem_init(struct gk20a *g)
{
	int err;

	g->vmallocs = kzalloc(sizeof(*g->vmallocs), GFP_KERNEL);
	g->kmallocs = kzalloc(sizeof(*g->kmallocs), GFP_KERNEL);

	if (!g->vmallocs || !g->kmallocs) {
		err = -ENOMEM;
		goto fail;
	}

	g->vmallocs->name = "vmalloc";
	g->kmallocs->name = "kmalloc";

	g->vmallocs->allocs = RB_ROOT;
	g->kmallocs->allocs = RB_ROOT;

	mutex_init(&g->vmallocs->lock);
	mutex_init(&g->kmallocs->lock);

	g->vmallocs->min_alloc = PAGE_SIZE;
	g->kmallocs->min_alloc = KMALLOC_MIN_SIZE;

	/*
	 * This needs to go after all the other initialization since they use
	 * the nvgpu_kzalloc() API.
	 */
	g->vmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
						sizeof(struct nvgpu_mem_alloc));
	g->kmallocs->allocs_cache = nvgpu_kmem_cache_create(g,
						sizeof(struct nvgpu_mem_alloc));

	if (!g->vmallocs->allocs_cache || !g->kmallocs->allocs_cache) {
		err = -ENOMEM;
		if (g->vmallocs->allocs_cache)
			nvgpu_kmem_cache_destroy(g->vmallocs->allocs_cache);
		if (g->kmallocs->allocs_cache)
			nvgpu_kmem_cache_destroy(g->kmallocs->allocs_cache);
		goto fail;
	}

	return 0;

fail:
	if (g->vmallocs)
		kfree(g->vmallocs);
	if (g->kmallocs)
		kfree(g->kmallocs);
	return err;
}

#else /* !CONFIG_NVGPU_TRACK_MEM_USAGE */

int nvgpu_kmem_init(struct gk20a *g)
{
	return 0;
}

void nvgpu_kmem_fini(struct gk20a *g, int flags)
{
}
#endif /* CONFIG_NVGPU_TRACK_MEM_USAGE */

struct nvgpu_kmem_cache *nvgpu_kmem_cache_create(struct gk20a *g, size_t size)
{
	struct nvgpu_kmem_cache *cache =
		nvgpu_kzalloc(g, sizeof(struct nvgpu_kmem_cache));

	if (!cache)
		return NULL;

	cache->g = g;

	snprintf(cache->name, sizeof(cache->name),
		 "nvgpu-cache-0x%p-%d-%d", g, (int)size,
		 atomic_inc_return(&kmem_cache_id));
	cache->cache = kmem_cache_create(cache->name,
					 size, size, 0, NULL);
	if (!cache->cache) {
		nvgpu_kfree(g, cache);
		return NULL;
	}

	return cache;
}

void nvgpu_kmem_cache_destroy(struct nvgpu_kmem_cache *cache)
{
	struct gk20a *g = cache->g;

	kmem_cache_destroy(cache->cache);
	nvgpu_kfree(g, cache);
}

void *nvgpu_kmem_cache_alloc(struct nvgpu_kmem_cache *cache)
{
	return kmem_cache_alloc(cache->cache, GFP_KERNEL);
}

void nvgpu_kmem_cache_free(struct nvgpu_kmem_cache *cache, void *ptr)
{
	kmem_cache_free(cache->cache, ptr);
}