/* * Copyright (c) 2017-2022, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gk20a/mm_gk20a.h" #include "platform_gk20a.h" #include "os_linux.h" #include "dmabuf.h" #include "dmabuf_vidmem.h" static u32 nvgpu_vm_translate_linux_flags(struct gk20a *g, u32 flags) { u32 core_flags = 0; if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) core_flags |= NVGPU_VM_MAP_FIXED_OFFSET; if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_CACHEABLE) core_flags |= NVGPU_VM_MAP_CACHEABLE; if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_IO_COHERENT) core_flags |= NVGPU_VM_MAP_IO_COHERENT; if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_UNMAPPED_PTE) core_flags |= NVGPU_VM_MAP_UNMAPPED_PTE; if (!nvgpu_is_enabled(g, NVGPU_DISABLE_L3_SUPPORT)) { if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_L3_ALLOC) core_flags |= NVGPU_VM_MAP_L3_ALLOC; } if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_DIRECT_KIND_CTRL) core_flags |= NVGPU_VM_MAP_DIRECT_KIND_CTRL; if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_PLATFORM_ATOMIC) core_flags |= NVGPU_VM_MAP_PLATFORM_ATOMIC; if (flags & NVGPU_AS_MAP_BUFFER_FLAGS_MAPPABLE_COMPBITS) nvgpu_warn(g, "Ignoring deprecated flag: " "NVGPU_AS_MAP_BUFFER_FLAGS_MAPPABLE_COMPBITS"); return core_flags; } static struct nvgpu_mapped_buf *__nvgpu_vm_find_mapped_buf_reverse( struct vm_gk20a *vm, struct dma_buf *dmabuf, u32 kind) { struct nvgpu_rbtree_node *node = NULL; struct nvgpu_rbtree_node *root = vm->mapped_buffers; struct list_head* nvmap_priv; // Try fast lookup first if (!IS_ERR(nvmap_priv = nvmap_get_priv_list(dmabuf))) { struct nvgpu_mapped_buf *mapped_buffer; struct nvgpu_mapped_buf_priv *priv; list_for_each_entry(priv, nvmap_priv, nvmap_priv_entry) { mapped_buffer = container_of(priv, struct nvgpu_mapped_buf, os_priv); if (mapped_buffer->os_priv.dmabuf == dmabuf && mapped_buffer->kind == kind) return mapped_buffer; } } // Full traversal (not an nvmap buffer?) printk(KERN_INFO "nvmap: Fast reverse lookup failed!"); nvgpu_rbtree_enum_start(0, &node, root); while (node) { struct nvgpu_mapped_buf *mapped_buffer = mapped_buffer_from_rbtree_node(node); if (mapped_buffer->os_priv.dmabuf == dmabuf && mapped_buffer->kind == kind) return mapped_buffer; nvgpu_rbtree_enum_next(&node, node); } return NULL; } int nvgpu_vm_find_buf(struct vm_gk20a *vm, u64 gpu_va, struct dma_buf **dmabuf, u64 *offset) { struct nvgpu_mapped_buf *mapped_buffer; struct gk20a *g = gk20a_from_vm(vm); nvgpu_log_fn(g, "gpu_va=0x%llx", gpu_va); nvgpu_mutex_acquire(&vm->update_gmmu_lock); mapped_buffer = __nvgpu_vm_find_mapped_buf_range(vm, gpu_va); if (!mapped_buffer) { nvgpu_mutex_release(&vm->update_gmmu_lock); return -EINVAL; } *dmabuf = mapped_buffer->os_priv.dmabuf; *offset = gpu_va - mapped_buffer->addr; nvgpu_mutex_release(&vm->update_gmmu_lock); return 0; } u64 nvgpu_os_buf_get_size(struct nvgpu_os_buffer *os_buf) { return os_buf->dmabuf->size; } /* * vm->update_gmmu_lock must be held. This checks to see if we already have * mapped the passed buffer into this VM. If so, just return the existing * mapping address. */ struct nvgpu_mapped_buf *nvgpu_vm_find_mapping(struct vm_gk20a *vm, struct nvgpu_os_buffer *os_buf, u64 map_addr, u32 flags, int kind) { struct gk20a *g = gk20a_from_vm(vm); struct nvgpu_mapped_buf *mapped_buffer = NULL; if (flags & NVGPU_VM_MAP_FIXED_OFFSET) { mapped_buffer = __nvgpu_vm_find_mapped_buf(vm, map_addr); if (!mapped_buffer) return NULL; if (mapped_buffer->os_priv.dmabuf != os_buf->dmabuf || mapped_buffer->kind != (u32)kind) return NULL; } else { mapped_buffer = __nvgpu_vm_find_mapped_buf_reverse(vm, os_buf->dmabuf, kind); if (!mapped_buffer) return NULL; } if (mapped_buffer->flags != flags) return NULL; /* * If we find the mapping here then that means we have mapped it already * and the prior pin and get must be undone. */ gk20a_mm_unpin(os_buf->dev, os_buf->dmabuf, os_buf->attachment, mapped_buffer->os_priv.sgt); list_del(&mapped_buffer->os_priv.nvmap_priv_entry); dma_buf_put(os_buf->dmabuf); nvgpu_log(g, gpu_dbg_map, "gv: 0x%04x_%08x + 0x%-7zu " "[dma: 0x%010llx, pa: 0x%010llx] " "pgsz=%-3dKb as=%-2d " "flags=0x%x apt=%s (reused)", u64_hi32(mapped_buffer->addr), u64_lo32(mapped_buffer->addr), os_buf->dmabuf->size, (u64)sg_dma_address(mapped_buffer->os_priv.sgt->sgl), (u64)sg_phys(mapped_buffer->os_priv.sgt->sgl), vm->gmmu_page_sizes[mapped_buffer->pgsz_idx] >> 10, vm_aspace_id(vm), mapped_buffer->flags, nvgpu_aperture_str(g, gk20a_dmabuf_aperture(g, os_buf->dmabuf))); return mapped_buffer; } int nvgpu_vm_map_linux(struct vm_gk20a *vm, struct dma_buf *dmabuf, u64 map_addr, u32 flags, u32 page_size, s16 compr_kind, s16 incompr_kind, int rw_flag, u64 buffer_offset, u64 mapping_size, struct vm_gk20a_mapping_batch *batch, u64 *gpu_va) { struct gk20a *g = gk20a_from_vm(vm); struct device *dev = dev_from_gk20a(g); struct nvgpu_os_buffer os_buf; struct sg_table *sgt; struct nvgpu_sgt *nvgpu_sgt = NULL; struct nvgpu_mapped_buf *mapped_buffer = NULL; struct dma_buf_attachment *attachment; struct list_head *nvmap_priv; int err = 0; sgt = gk20a_mm_pin(dev, dmabuf, &attachment); if (IS_ERR(sgt)) { nvgpu_warn(g, "Failed to pin dma_buf!"); return PTR_ERR(sgt); } os_buf.dmabuf = dmabuf; os_buf.attachment = attachment; os_buf.dev = dev; if (gk20a_dmabuf_aperture(g, dmabuf) == APERTURE_INVALID) { err = -EINVAL; goto clean_up; } nvgpu_sgt = nvgpu_linux_sgt_create(g, sgt); if (!nvgpu_sgt) { err = -ENOMEM; goto clean_up; } mapped_buffer = nvgpu_vm_map(vm, &os_buf, nvgpu_sgt, map_addr, mapping_size, buffer_offset, rw_flag, flags, compr_kind, incompr_kind, batch, gk20a_dmabuf_aperture(g, dmabuf)); nvgpu_sgt_free(g, nvgpu_sgt); if (IS_ERR(mapped_buffer)) { err = PTR_ERR(mapped_buffer); goto clean_up; } mapped_buffer->os_priv.dmabuf = dmabuf; mapped_buffer->os_priv.attachment = attachment; mapped_buffer->os_priv.sgt = sgt; init_completion(&mapped_buffer->os_priv.swap_io_done); nvmap_priv = nvmap_get_priv_list(dmabuf); if (!IS_ERR(nvmap_priv)) list_add(&mapped_buffer->os_priv.nvmap_priv_entry, nvmap_priv); else // So we can always safely call list_del() INIT_LIST_HEAD(&mapped_buffer->os_priv.nvmap_priv_entry); mapped_buffer->os_priv.swap_sector = 0; *gpu_va = mapped_buffer->addr; return 0; clean_up: gk20a_mm_unpin(dev, dmabuf, attachment, sgt); return err; } int nvgpu_vm_map_buffer(struct vm_gk20a *vm, int dmabuf_fd, u64 *map_addr, u32 flags, /*NVGPU_AS_MAP_BUFFER_FLAGS_*/ u32 page_size, s16 compr_kind, s16 incompr_kind, u64 buffer_offset, u64 mapping_size, struct vm_gk20a_mapping_batch *batch) { struct gk20a *g = gk20a_from_vm(vm); struct dma_buf *dmabuf; u64 ret_va; int err = 0; /* get ref to the mem handle (released on unmap_locked) */ dmabuf = dma_buf_get(dmabuf_fd); if (IS_ERR(dmabuf)) { nvgpu_warn(g, "%s: fd %d is not a dmabuf", __func__, dmabuf_fd); return PTR_ERR(dmabuf); } /* * For regular maps we do not accept either an input address or a * buffer_offset. */ if (!(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET) && (buffer_offset || *map_addr)) { nvgpu_err(g, "Regular map with addr/buf offset is not supported!"); dma_buf_put(dmabuf); return -EINVAL; } /* * Map size is always buffer size for non fixed mappings. As such map * size should be left as zero by userspace for non-fixed maps. */ if (mapping_size && !(flags & NVGPU_AS_MAP_BUFFER_FLAGS_FIXED_OFFSET)) { nvgpu_err(g, "map_size && non-fixed-mapping!"); dma_buf_put(dmabuf); return -EINVAL; } /* verify that we're not overflowing the buffer, i.e. * (buffer_offset + mapping_size) > dmabuf->size. * * Since buffer_offset + mapping_size could overflow, first check * that mapping size < dmabuf_size, at which point we can subtract * mapping_size from both sides for the final comparison. */ if ((mapping_size > dmabuf->size) || (buffer_offset > (dmabuf->size - mapping_size))) { nvgpu_err(g, "buf size %llx < (offset(%llx) + map_size(%llx))", (u64)dmabuf->size, buffer_offset, mapping_size); dma_buf_put(dmabuf); return -EINVAL; } err = gk20a_dmabuf_alloc_drvdata(dmabuf, dev_from_vm(vm)); if (err) { dma_buf_put(dmabuf); return err; } err = nvgpu_vm_map_linux(vm, dmabuf, *map_addr, nvgpu_vm_translate_linux_flags(g, flags), page_size, compr_kind, incompr_kind, gk20a_mem_flag_none, buffer_offset, mapping_size, batch, &ret_va); if (!err) *map_addr = ret_va; else dma_buf_put(dmabuf); return err; } /* * This is the function call-back for freeing OS specific components of an * nvgpu_mapped_buf. This should most likely never be called outside of the * core MM framework! * * Note: the VM lock will be held. */ void nvgpu_vm_unmap_system(struct nvgpu_mapped_buf *mapped_buffer) { struct vm_gk20a *vm = mapped_buffer->vm; gk20a_mm_unpin(dev_from_vm(vm), mapped_buffer->os_priv.dmabuf, mapped_buffer->os_priv.attachment, mapped_buffer->os_priv.sgt); list_del(&mapped_buffer->os_priv.nvmap_priv_entry); dma_buf_put(mapped_buffer->os_priv.dmabuf); } /** * Given an nvgpu_mapped_buf m, map m->os_priv.sgt into m->addr * Very similar to nvgpu_vm_map_buffer, except that this assumes all necessary * PTEs and PDEs have been created. This merely updates the physical address(es) * in the associated PTEs, leaving all other attributes unchanged. * * NOP if sgt is already mapped for addr. * * vm->gmmu_update_lock must be held. * * Caller is responsible for flushing the TLB and L2 caches. */ void nvgpu_vm_remap(struct nvgpu_mapped_buf *m) { // TODO: Input validation struct scatterlist *sg; unsigned int i = 0; u64 curr_vaddr = m->addr; // For each element of the scatterlist // (based off for_each_sgtable_dma_sg() macro in newer kernels) for_each_sg(m->os_priv.sgt->sgl, sg, m->os_priv.sgt->nents, i) { unsigned int sg_off = 0; // Keep mapping data at the next unmapped virtual address // until each scatterlist element is entirely mapped while (sg_off < sg_dma_len(sg)) { int amt_mapped = __nvgpu_update_paddr(gk20a_from_vm(m->vm), m->vm, curr_vaddr, sg_dma_address(sg) + sg_off); if (amt_mapped < 0) { printk(KERN_ERR "nvgpu: Error %d from __nvgpu_update_paddr() in nvgpu_vm_remap()! Had mapped %llu of %llu bytes.\n", amt_mapped, curr_vaddr - m->addr, m->size); return; } curr_vaddr += amt_mapped; sg_off += amt_mapped; } } if (curr_vaddr != m->addr + m->size) { printk(KERN_ERR "nvgpu: Mapped %llu bytes when %llu bytes expected! Expect page table corruption!\n", curr_vaddr - m->addr, m->size); } }