/* * Semaphore Sync Framework Integration * * Copyright (c) 2017-2018, NVIDIA Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include "../linux/channel.h" #include "../drivers/staging/android/sync.h" #include "sync_sema_android.h" static const struct sync_timeline_ops gk20a_sync_timeline_ops; struct gk20a_sync_timeline { struct sync_timeline obj; u32 max; u32 min; }; /** * The sync framework dups pts when merging fences. We share a single * refcounted gk20a_sync_pt for each duped pt. */ struct gk20a_sync_pt { struct gk20a *g; struct nvgpu_ref refcount; u32 thresh; struct nvgpu_semaphore *sema; struct gk20a_sync_timeline *obj; /* * Use a spin lock here since it will have better performance * than a mutex - there should be very little contention on this * lock. */ struct nvgpu_spinlock lock; }; struct gk20a_sync_pt_inst { struct sync_pt pt; struct gk20a_sync_pt *shared; }; /** * Compares sync pt values a and b, both of which will trigger either before * or after ref (i.e. a and b trigger before ref, or a and b trigger after * ref). Supplying ref allows us to handle wrapping correctly. * * Returns -1 if a < b (a triggers before b) * 0 if a = b (a and b trigger at the same time) * 1 if a > b (b triggers before a) */ static int __gk20a_sync_pt_compare_ref( u32 ref, u32 a, u32 b) { /* * We normalize both a and b by subtracting ref from them. * Denote the normalized values by a_n and b_n. Note that because * of wrapping, a_n and/or b_n may be negative. * * The normalized values a_n and b_n satisfy: * - a positive value triggers before a negative value * - a smaller positive value triggers before a greater positive value * - a smaller negative value (greater in absolute value) triggers * before a greater negative value (smaller in absolute value). * * Thus we can just stick to unsigned arithmetic and compare * (u32)a_n to (u32)b_n. * * Just to reiterate the possible cases: * * 1A) ...ref..a....b.... * 1B) ...ref..b....a.... * 2A) ...b....ref..a.... b_n < 0 * 2B) ...a....ref..b.... a_n > 0 * 3A) ...a....b....ref.. a_n < 0, b_n < 0 * 3A) ...b....a....ref.. a_n < 0, b_n < 0 */ u32 a_n = a - ref; u32 b_n = b - ref; if (a_n < b_n) return -1; else if (a_n > b_n) return 1; else return 0; } static struct gk20a_sync_pt *to_gk20a_sync_pt(struct sync_pt *pt) { struct gk20a_sync_pt_inst *pti = container_of(pt, struct gk20a_sync_pt_inst, pt); return pti->shared; } static struct gk20a_sync_timeline *to_gk20a_timeline(struct sync_timeline *obj) { if (WARN_ON(obj->ops != &gk20a_sync_timeline_ops)) return NULL; return (struct gk20a_sync_timeline *)obj; } static void gk20a_sync_pt_free_shared(struct nvgpu_ref *ref) { struct gk20a_sync_pt *pt = container_of(ref, struct gk20a_sync_pt, refcount); struct gk20a *g = pt->g; if (pt->sema) nvgpu_semaphore_put(pt->sema); nvgpu_kfree(g, pt); } static struct gk20a_sync_pt *gk20a_sync_pt_create_shared( struct gk20a *g, struct gk20a_sync_timeline *obj, struct nvgpu_semaphore *sema) { struct gk20a_sync_pt *shared; shared = nvgpu_kzalloc(g, sizeof(*shared)); if (!shared) return NULL; nvgpu_ref_init(&shared->refcount); shared->g = g; shared->obj = obj; shared->sema = sema; shared->thresh = ++obj->max; /* sync framework has a lock */ nvgpu_spinlock_init(&shared->lock); nvgpu_semaphore_get(sema); return shared; } static struct sync_pt *gk20a_sync_pt_create_inst( struct gk20a *g, struct gk20a_sync_timeline *obj, struct nvgpu_semaphore *sema) { struct gk20a_sync_pt_inst *pti; pti = (struct gk20a_sync_pt_inst *) sync_pt_create(&obj->obj, sizeof(*pti)); if (!pti) return NULL; pti->shared = gk20a_sync_pt_create_shared(g, obj, sema); if (!pti->shared) { sync_pt_free(&pti->pt); return NULL; } return &pti->pt; } static void gk20a_sync_pt_free_inst(struct sync_pt *sync_pt) { struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt); if (pt) nvgpu_ref_put(&pt->refcount, gk20a_sync_pt_free_shared); } static struct sync_pt *gk20a_sync_pt_dup_inst(struct sync_pt *sync_pt) { struct gk20a_sync_pt_inst *pti; struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt); pti = (struct gk20a_sync_pt_inst *) sync_pt_create(&pt->obj->obj, sizeof(*pti)); if (!pti) return NULL; pti->shared = pt; nvgpu_ref_get(&pt->refcount); return &pti->pt; } /* * This function must be able to run on the same sync_pt concurrently. This * requires a lock to protect access to the sync_pt's internal data structures * which are modified as a side effect of calling this function. */ static int gk20a_sync_pt_has_signaled(struct sync_pt *sync_pt) { struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt); struct gk20a_sync_timeline *obj = pt->obj; bool signaled = true; nvgpu_spinlock_acquire(&pt->lock); if (!pt->sema) goto done; /* Acquired == not realeased yet == active == not signaled. */ signaled = !nvgpu_semaphore_is_acquired(pt->sema); if (signaled) { /* Update min if necessary. */ if (__gk20a_sync_pt_compare_ref(obj->max, pt->thresh, obj->min) == 1) obj->min = pt->thresh; /* Release the semaphore to the pool. */ nvgpu_semaphore_put(pt->sema); pt->sema = NULL; } done: nvgpu_spinlock_release(&pt->lock); return signaled; } static int gk20a_sync_pt_compare(struct sync_pt *a, struct sync_pt *b) { bool a_expired; bool b_expired; struct gk20a_sync_pt *pt_a = to_gk20a_sync_pt(a); struct gk20a_sync_pt *pt_b = to_gk20a_sync_pt(b); if (WARN_ON(pt_a->obj != pt_b->obj)) return 0; /* Early out */ if (a == b) return 0; a_expired = gk20a_sync_pt_has_signaled(a); b_expired = gk20a_sync_pt_has_signaled(b); if (a_expired && !b_expired) { /* Easy, a was earlier */ return -1; } else if (!a_expired && b_expired) { /* Easy, b was earlier */ return 1; } /* Both a and b are expired (trigger before min) or not * expired (trigger after min), so we can use min * as a reference value for __gk20a_sync_pt_compare_ref. */ return __gk20a_sync_pt_compare_ref(pt_a->obj->min, pt_a->thresh, pt_b->thresh); } static u32 gk20a_sync_timeline_current(struct gk20a_sync_timeline *obj) { return obj->min; } static void gk20a_sync_timeline_value_str(struct sync_timeline *timeline, char *str, int size) { struct gk20a_sync_timeline *obj = (struct gk20a_sync_timeline *)timeline; snprintf(str, size, "%d", gk20a_sync_timeline_current(obj)); } static void gk20a_sync_pt_value_str_for_sema(struct gk20a_sync_pt *pt, char *str, int size) { struct nvgpu_semaphore *s = pt->sema; snprintf(str, size, "S: pool=%llu [v=%u,r_v=%u]", s->location.pool->page_idx, nvgpu_semaphore_get_value(s), nvgpu_semaphore_read(s)); } static void gk20a_sync_pt_value_str(struct sync_pt *sync_pt, char *str, int size) { struct gk20a_sync_pt *pt = to_gk20a_sync_pt(sync_pt); if (pt->sema) { gk20a_sync_pt_value_str_for_sema(pt, str, size); return; } snprintf(str, size, "%d", pt->thresh); } static const struct sync_timeline_ops gk20a_sync_timeline_ops = { .driver_name = "nvgpu_semaphore", .dup = gk20a_sync_pt_dup_inst, .has_signaled = gk20a_sync_pt_has_signaled, .compare = gk20a_sync_pt_compare, .free_pt = gk20a_sync_pt_free_inst, .timeline_value_str = gk20a_sync_timeline_value_str, .pt_value_str = gk20a_sync_pt_value_str, }; /* Public API */ struct sync_fence *gk20a_sync_fence_fdget(int fd) { struct sync_fence *fence = sync_fence_fdget(fd); int i; if (!fence) return NULL; for (i = 0; i < fence->num_fences; i++) { struct sync_pt *spt = sync_pt_from_fence(fence->cbs[i].sync_pt); struct sync_timeline *t; if (spt == NULL) { sync_fence_put(fence); return NULL; } t = sync_pt_parent(spt); if (t->ops != &gk20a_sync_timeline_ops) { sync_fence_put(fence); return NULL; } } return fence; } struct nvgpu_semaphore *gk20a_sync_pt_sema(struct sync_pt *spt) { struct gk20a_sync_pt *pt = to_gk20a_sync_pt(spt); struct nvgpu_semaphore *sema; nvgpu_spinlock_acquire(&pt->lock); sema = pt->sema; if (sema) nvgpu_semaphore_get(sema); nvgpu_spinlock_release(&pt->lock); return sema; } void gk20a_sync_timeline_signal(struct sync_timeline *timeline) { sync_timeline_signal(timeline, 0); } void gk20a_sync_timeline_destroy(struct sync_timeline *timeline) { sync_timeline_destroy(timeline); } struct sync_timeline *gk20a_sync_timeline_create( const char *name) { struct gk20a_sync_timeline *obj; obj = (struct gk20a_sync_timeline *) sync_timeline_create(&gk20a_sync_timeline_ops, sizeof(struct gk20a_sync_timeline), name); if (!obj) return NULL; obj->max = 0; obj->min = 0; return &obj->obj; } struct sync_fence *gk20a_sync_fence_create( struct channel_gk20a *c, struct nvgpu_semaphore *sema, const char *fmt, ...) { char name[30]; va_list args; struct sync_pt *pt; struct sync_fence *fence; struct gk20a *g = c->g; struct nvgpu_channel_linux *os_channel_priv = c->os_priv; struct nvgpu_os_fence_framework *fence_framework = NULL; struct gk20a_sync_timeline *timeline = NULL; fence_framework = &os_channel_priv->fence_framework; timeline = to_gk20a_timeline(fence_framework->timeline); pt = gk20a_sync_pt_create_inst(g, timeline, sema); if (pt == NULL) return NULL; va_start(args, fmt); vsnprintf(name, sizeof(name), fmt, args); va_end(args); fence = sync_fence_create(name, pt); if (fence == NULL) { sync_pt_free(pt); return NULL; } return fence; }