/* * GV11B MMU * * Copyright (c) 2016-2018, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "gk20a/gk20a.h" #include "gk20a/mm_gk20a.h" #include "gp10b/mm_gp10b.h" #include "gp10b/mc_gp10b.h" #include "mm_gv11b.h" #include "fb_gv11b.h" #include #include #include #define NVGPU_L3_ALLOC_BIT BIT(36) bool gv11b_mm_is_bar1_supported(struct gk20a *g) { return false; } void gv11b_init_inst_block(struct nvgpu_mem *inst_block, struct vm_gk20a *vm, u32 big_page_size) { struct gk20a *g = gk20a_from_vm(vm); gk20a_dbg_info("inst block phys = 0x%llx, kv = 0x%p", nvgpu_inst_block_addr(g, inst_block), inst_block->cpu_va); g->ops.mm.init_pdb(g, inst_block, vm); if (big_page_size && g->ops.mm.set_big_page_size) g->ops.mm.set_big_page_size(g, inst_block, big_page_size); } bool gv11b_mm_mmu_fault_pending(struct gk20a *g) { return gv11b_fb_mmu_fault_pending(g); } void gv11b_mm_fault_info_mem_destroy(struct gk20a *g) { nvgpu_log_fn(g, " "); nvgpu_mutex_acquire(&g->mm.hub_isr_mutex); gv11b_fb_disable_hub_intr(g, STALL_REG_INDEX, HUB_INTR_TYPE_OTHER | HUB_INTR_TYPE_NONREPLAY | HUB_INTR_TYPE_REPLAY); nvgpu_kfree(g, g->mm.fault_info[FAULT_TYPE_OTHER_AND_NONREPLAY]); g->mm.fault_info[FAULT_TYPE_OTHER_AND_NONREPLAY] = NULL; g->mm.fault_info[FAULT_TYPE_REPLAY] = NULL; nvgpu_mutex_release(&g->mm.hub_isr_mutex); nvgpu_mutex_destroy(&g->mm.hub_isr_mutex); } static int gv11b_mm_mmu_fault_info_buf_init(struct gk20a *g, u32 *hub_intr_types) { struct mmu_fault_info *fault_info_mem; if (g->mm.fault_info[FAULT_TYPE_OTHER_AND_NONREPLAY] != NULL && g->mm.fault_info[FAULT_TYPE_REPLAY] != NULL) { *hub_intr_types |= HUB_INTR_TYPE_OTHER; return 0; } fault_info_mem = nvgpu_kzalloc(g, sizeof(struct mmu_fault_info) * FAULT_TYPE_NUM); if (!fault_info_mem) { nvgpu_log_info(g, "failed to alloc shadow fault info"); return -ENOMEM; } /* shadow buffer for copying mmu fault info */ g->mm.fault_info[FAULT_TYPE_OTHER_AND_NONREPLAY] = &fault_info_mem[FAULT_TYPE_OTHER_AND_NONREPLAY]; g->mm.fault_info[FAULT_TYPE_REPLAY] = &fault_info_mem[FAULT_TYPE_REPLAY]; *hub_intr_types |= HUB_INTR_TYPE_OTHER; return 0; } static void gv11b_mm_mmu_hw_fault_buf_init(struct gk20a *g, u32 *hub_intr_types) { struct vm_gk20a *vm = g->mm.bar2.vm; int err = 0; size_t fb_size; /* Max entries take care of 1 entry used for full detection */ fb_size = (g->ops.fifo.get_num_fifos(g) + 1) * gmmu_fault_buf_size_v(); if (!nvgpu_mem_is_valid( &g->mm.hw_fault_buf[FAULT_TYPE_OTHER_AND_NONREPLAY])) { err = nvgpu_dma_alloc_map_sys(vm, fb_size, &g->mm.hw_fault_buf[FAULT_TYPE_OTHER_AND_NONREPLAY]); if (err) { nvgpu_err(g, "Error in hw mmu fault buf [0] alloc in bar2 vm "); /* Fault will be snapped in pri reg but not in buffer */ return; } } *hub_intr_types |= HUB_INTR_TYPE_NONREPLAY; if (!nvgpu_mem_is_valid( &g->mm.hw_fault_buf[FAULT_TYPE_REPLAY])) { err = nvgpu_dma_alloc_map_sys(vm, fb_size, &g->mm.hw_fault_buf[FAULT_TYPE_REPLAY]); if (err) { nvgpu_err(g, "Error in hw mmu fault buf [1] alloc in bar2 vm "); /* Fault will be snapped in pri reg but not in buffer */ return; } } *hub_intr_types |= HUB_INTR_TYPE_REPLAY; } static void gv11b_mm_mmu_hw_fault_buf_deinit(struct gk20a *g) { struct vm_gk20a *vm = g->mm.bar2.vm; nvgpu_log_fn(g, " "); gv11b_fb_disable_hub_intr(g, STALL_REG_INDEX, HUB_INTR_TYPE_NONREPLAY | HUB_INTR_TYPE_REPLAY); g->mm.hub_intr_types &= (~(HUB_INTR_TYPE_NONREPLAY | HUB_INTR_TYPE_REPLAY)); if ((gv11b_fb_is_fault_buf_enabled(g, NONREPLAY_REG_INDEX))) { gv11b_fb_fault_buf_set_state_hw(g, NONREPLAY_REG_INDEX, FAULT_BUF_DISABLED); } if ((gv11b_fb_is_fault_buf_enabled(g, REPLAY_REG_INDEX))) { gv11b_fb_fault_buf_set_state_hw(g, REPLAY_REG_INDEX, FAULT_BUF_DISABLED); } if (nvgpu_mem_is_valid( &g->mm.hw_fault_buf[FAULT_TYPE_OTHER_AND_NONREPLAY])) nvgpu_dma_unmap_free(vm, &g->mm.hw_fault_buf[FAULT_TYPE_OTHER_AND_NONREPLAY]); if (nvgpu_mem_is_valid(&g->mm.hw_fault_buf[FAULT_TYPE_REPLAY])) nvgpu_dma_unmap_free(vm, &g->mm.hw_fault_buf[FAULT_TYPE_REPLAY]); } void gv11b_mm_remove_bar2_vm(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; nvgpu_log_fn(g, " "); gv11b_mm_mmu_hw_fault_buf_deinit(g); nvgpu_free_inst_block(g, &mm->bar2.inst_block); nvgpu_vm_put(mm->bar2.vm); } static void gv11b_mm_mmu_fault_setup_hw(struct gk20a *g) { if (nvgpu_mem_is_valid( &g->mm.hw_fault_buf[FAULT_TYPE_OTHER_AND_NONREPLAY])) gv11b_fb_fault_buf_configure_hw(g, NONREPLAY_REG_INDEX); if (nvgpu_mem_is_valid(&g->mm.hw_fault_buf[FAULT_TYPE_REPLAY])) gv11b_fb_fault_buf_configure_hw(g, REPLAY_REG_INDEX); } static int gv11b_mm_mmu_fault_setup_sw(struct gk20a *g) { int err; nvgpu_log_fn(g, " "); nvgpu_mutex_init(&g->mm.hub_isr_mutex); g->mm.hub_intr_types = HUB_INTR_TYPE_ECC_UNCORRECTED; err = gv11b_mm_mmu_fault_info_buf_init(g, &g->mm.hub_intr_types); if (!err) gv11b_mm_mmu_hw_fault_buf_init(g, &g->mm.hub_intr_types); return err; } int gv11b_init_mm_setup_hw(struct gk20a *g) { int err = 0; nvgpu_log_fn(g, " "); g->ops.fb.set_mmu_page_size(g); g->ops.fb.init_hw(g); err = g->ops.mm.init_bar2_mm_hw_setup(g); if (err) return err; if (gk20a_mm_fb_flush(g) || gk20a_mm_fb_flush(g)) return -EBUSY; err = gv11b_mm_mmu_fault_setup_sw(g); if (!err) gv11b_mm_mmu_fault_setup_hw(g); nvgpu_log_fn(g, "end"); return err; } void gv11b_mm_l2_flush(struct gk20a *g, bool invalidate) { nvgpu_log(g, gpu_dbg_fn, "gv11b_mm_l2_flush"); g->ops.mm.fb_flush(g); gk20a_mm_l2_flush(g, invalidate); g->ops.mm.fb_flush(g); } /* * On Volta the GPU determines whether to do L3 allocation for a mapping by * checking bit 36 of the phsyical address. So if a mapping should allocte lines * in the L3 this bit must be set. */ u64 gv11b_gpu_phys_addr(struct gk20a *g, struct nvgpu_gmmu_attrs *attrs, u64 phys) { if (attrs && attrs->l3_alloc) return phys | NVGPU_L3_ALLOC_BIT; return phys; } int gv11b_init_bar2_mm_hw_setup(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; struct nvgpu_mem *inst_block = &mm->bar2.inst_block; u64 inst_pa = nvgpu_inst_block_addr(g, inst_block); u32 reg_val; struct nvgpu_timeout timeout; u32 delay = GR_IDLE_CHECK_DEFAULT; nvgpu_log_fn(g, " "); g->ops.fb.set_mmu_page_size(g); inst_pa = (u32)(inst_pa >> bus_bar2_block_ptr_shift_v()); nvgpu_log_info(g, "bar2 inst block ptr: 0x%08x", (u32)inst_pa); gk20a_writel(g, bus_bar2_block_r(), nvgpu_aperture_mask(g, inst_block, bus_bar2_block_target_sys_mem_ncoh_f(), bus_bar2_block_target_vid_mem_f()) | bus_bar2_block_mode_virtual_f() | bus_bar2_block_ptr_f(inst_pa)); /* This is needed as BAR1 support is removed and there is no way * to know if gpu successfully accessed memory. * To avoid deadlocks and non-deterministic virtual address translation * behavior, after writing BAR2_BLOCK to bind BAR2 to a virtual address * space, SW must ensure that the bind has completed prior to issuing * any further BAR2 requests by polling for both * BUS_BIND_STATUS_BAR2_PENDING to return to EMPTY and * BUS_BIND_STATUS_BAR2_OUTSTANDING to return to FALSE */ nvgpu_timeout_init(g, &timeout, gk20a_get_gr_idle_timeout(g), NVGPU_TIMER_CPU_TIMER); nvgpu_log_info(g, "check bar2 bind status"); do { reg_val = gk20a_readl(g, bus_bind_status_r()); if (!((reg_val & bus_bind_status_bar2_pending_busy_f()) || (reg_val & bus_bind_status_bar2_outstanding_true_f()))) return 0; nvgpu_usleep_range(delay, delay * 2); delay = min_t(u32, delay << 1, GR_IDLE_CHECK_MAX); } while (!nvgpu_timeout_expired_msg(&timeout, "bar2 bind timedout")); nvgpu_err(g, "bar2 bind failed. gpu unable to access memory"); return -EBUSY; }