/* * GP10B MMU * * Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include "gm20b/mm_gm20b.h" #include "mm_gp10b.h" #include #include u32 gp10b_mm_get_default_big_page_size(void) { return SZ_64K; } u32 gp10b_mm_get_iommu_bit(struct gk20a *g) { return 36; } int gp10b_init_bar2_vm(struct gk20a *g) { int err; struct mm_gk20a *mm = &g->mm; struct nvgpu_mem *inst_block = &mm->bar2.inst_block; u32 big_page_size = g->ops.mm.get_default_big_page_size(); /* BAR2 aperture size is 32MB */ mm->bar2.aperture_size = 32 << 20; nvgpu_log_info(g, "bar2 vm size = 0x%x", mm->bar2.aperture_size); mm->bar2.vm = nvgpu_vm_init(g, big_page_size, SZ_4K, mm->bar2.aperture_size - SZ_4K, mm->bar2.aperture_size, false, false, "bar2"); if (!mm->bar2.vm) { return -ENOMEM; } /* allocate instance mem for bar2 */ err = g->ops.mm.alloc_inst_block(g, inst_block); if (err) { goto clean_up_va; } g->ops.mm.init_inst_block(inst_block, mm->bar2.vm, big_page_size); return 0; clean_up_va: nvgpu_vm_put(mm->bar2.vm); return err; } /* * For GV11B and TU104 MSS NVLINK HW settings are in force_snoop mode. * This will force all the GPU mappings to be coherent. * By default the mem aperture sets as sysmem_non_coherent and will use L2 mode. * Change target pte aperture to sysmem_coherent if mem attribute requests for * platform atomics to use rmw atomic capability. * */ static u32 gmmu_aperture_mask(struct gk20a *g, enum nvgpu_aperture mem_ap, bool platform_atomic_attr, u32 sysmem_mask, u32 sysmem_coh_mask, u32 vidmem_mask) { if (nvgpu_is_enabled(g, NVGPU_SUPPORT_PLATFORM_ATOMIC) && platform_atomic_attr) { mem_ap = APERTURE_SYSMEM_COH; } return nvgpu_aperture_mask_raw(g, mem_ap, sysmem_mask, sysmem_coh_mask, vidmem_mask); } static void update_gmmu_pde3_locked(struct vm_gk20a *vm, const struct gk20a_mmu_level *l, struct nvgpu_gmmu_pd *pd, u32 pd_idx, u64 virt_addr, u64 phys_addr, struct nvgpu_gmmu_attrs *attrs) { struct gk20a *g = gk20a_from_vm(vm); struct nvgpu_gmmu_pd *next_pd = &pd->entries[pd_idx]; u32 pd_offset = pd_offset_from_index(l, pd_idx); u32 pde_v[2] = {0, 0}; phys_addr >>= gmmu_new_pde_address_shift_v(); pde_v[0] |= nvgpu_aperture_mask(g, next_pd->mem, gmmu_new_pde_aperture_sys_mem_ncoh_f(), gmmu_new_pde_aperture_sys_mem_coh_f(), gmmu_new_pde_aperture_video_memory_f()); pde_v[0] |= gmmu_new_pde_address_sys_f(u64_lo32(phys_addr)); pde_v[0] |= gmmu_new_pde_vol_true_f(); pde_v[1] |= phys_addr >> 24; pd_write(g, pd, pd_offset + 0, pde_v[0]); pd_write(g, pd, pd_offset + 1, pde_v[1]); pte_dbg(g, attrs, "PDE: i=%-4u size=%-2u offs=%-4u pgsz: -- | " "GPU %#-12llx phys %#-12llx " "[0x%08x, 0x%08x]", pd_idx, l->entry_size, pd_offset, virt_addr, phys_addr, pde_v[1], pde_v[0]); } static void update_gmmu_pde0_locked(struct vm_gk20a *vm, const struct gk20a_mmu_level *l, struct nvgpu_gmmu_pd *pd, u32 pd_idx, u64 virt_addr, u64 phys_addr, struct nvgpu_gmmu_attrs *attrs) { struct gk20a *g = gk20a_from_vm(vm); struct nvgpu_gmmu_pd *next_pd = &pd->entries[pd_idx]; bool small_valid, big_valid; u32 small_addr = 0, big_addr = 0; u32 pd_offset = pd_offset_from_index(l, pd_idx); u32 pde_v[4] = {0, 0, 0, 0}; small_valid = attrs->pgsz == GMMU_PAGE_SIZE_SMALL; big_valid = attrs->pgsz == GMMU_PAGE_SIZE_BIG; if (small_valid) { small_addr = phys_addr >> gmmu_new_dual_pde_address_shift_v(); } if (big_valid) { big_addr = phys_addr >> gmmu_new_dual_pde_address_big_shift_v(); } if (small_valid) { pde_v[2] |= gmmu_new_dual_pde_address_small_sys_f(small_addr); pde_v[2] |= nvgpu_aperture_mask(g, next_pd->mem, gmmu_new_dual_pde_aperture_small_sys_mem_ncoh_f(), gmmu_new_dual_pde_aperture_small_sys_mem_coh_f(), gmmu_new_dual_pde_aperture_small_video_memory_f()); pde_v[2] |= gmmu_new_dual_pde_vol_small_true_f(); pde_v[3] |= small_addr >> 24; } if (big_valid) { pde_v[0] |= gmmu_new_dual_pde_address_big_sys_f(big_addr); pde_v[0] |= gmmu_new_dual_pde_vol_big_true_f(); pde_v[0] |= nvgpu_aperture_mask(g, next_pd->mem, gmmu_new_dual_pde_aperture_big_sys_mem_ncoh_f(), gmmu_new_dual_pde_aperture_big_sys_mem_coh_f(), gmmu_new_dual_pde_aperture_big_video_memory_f()); pde_v[1] |= big_addr >> 28; } pd_write(g, pd, pd_offset + 0, pde_v[0]); pd_write(g, pd, pd_offset + 1, pde_v[1]); pd_write(g, pd, pd_offset + 2, pde_v[2]); pd_write(g, pd, pd_offset + 3, pde_v[3]); pte_dbg(g, attrs, "PDE: i=%-4u size=%-2u offs=%-4u pgsz: %c%c | " "GPU %#-12llx phys %#-12llx " "[0x%08x, 0x%08x, 0x%08x, 0x%08x]", pd_idx, l->entry_size, pd_offset, small_valid ? 'S' : '-', big_valid ? 'B' : '-', virt_addr, phys_addr, pde_v[3], pde_v[2], pde_v[1], pde_v[0]); } static void __update_pte(struct vm_gk20a *vm, u32 *pte_w, u64 phys_addr, struct nvgpu_gmmu_attrs *attrs) { struct gk20a *g = gk20a_from_vm(vm); u64 ctag_granularity = g->ops.fb.compression_page_size(g); u32 page_size = vm->gmmu_page_sizes[attrs->pgsz]; u32 pte_valid = attrs->valid ? gmmu_new_pte_valid_true_f() : gmmu_new_pte_valid_false_f(); u32 phys_shifted = phys_addr >> gmmu_new_pte_address_shift_v(); u32 pte_addr = attrs->aperture == APERTURE_SYSMEM ? gmmu_new_pte_address_sys_f(phys_shifted) : gmmu_new_pte_address_vid_f(phys_shifted); u32 pte_tgt = gmmu_aperture_mask(g, attrs->aperture, attrs->platform_atomic, gmmu_new_pte_aperture_sys_mem_ncoh_f(), gmmu_new_pte_aperture_sys_mem_coh_f(), gmmu_new_pte_aperture_video_memory_f()); pte_w[0] = pte_valid | pte_addr | pte_tgt; if (attrs->priv) { pte_w[0] |= gmmu_new_pte_privilege_true_f(); } pte_w[1] = phys_addr >> (24 + gmmu_new_pte_address_shift_v()) | gmmu_new_pte_kind_f(attrs->kind_v) | gmmu_new_pte_comptagline_f((u32)(attrs->ctag / ctag_granularity)); if (attrs->rw_flag == gk20a_mem_flag_read_only) { pte_w[0] |= gmmu_new_pte_read_only_true_f(); } if (!attrs->valid && !attrs->cacheable) { pte_w[0] |= gmmu_new_pte_read_only_true_f(); } else if (!attrs->cacheable) { pte_w[0] |= gmmu_new_pte_vol_true_f(); } if (attrs->ctag) { attrs->ctag += page_size; } } static void __update_pte_sparse(u32 *pte_w) { pte_w[0] = gmmu_new_pte_valid_false_f(); pte_w[0] |= gmmu_new_pte_vol_true_f(); } static void update_gmmu_pte_locked(struct vm_gk20a *vm, const struct gk20a_mmu_level *l, struct nvgpu_gmmu_pd *pd, u32 pd_idx, u64 virt_addr, u64 phys_addr, struct nvgpu_gmmu_attrs *attrs) { struct gk20a *g = vm->mm->g; u32 page_size = vm->gmmu_page_sizes[attrs->pgsz]; u32 pd_offset = pd_offset_from_index(l, pd_idx); u32 pte_w[2] = {0, 0}; if (phys_addr) { __update_pte(vm, pte_w, phys_addr, attrs); } else if (attrs->sparse) { __update_pte_sparse(pte_w); } pte_dbg(g, attrs, "vm=%s " "PTE: i=%-4u size=%-2u | " "GPU %#-12llx phys %#-12llx " "pgsz: %3dkb perm=%-2s kind=%#02x APT=%-6s %c%c%c%c%c " "ctag=0x%08x " "[0x%08x, 0x%08x]", vm->name, pd_idx, l->entry_size, virt_addr, phys_addr, page_size >> 10, nvgpu_gmmu_perm_str(attrs->rw_flag), attrs->kind_v, nvgpu_aperture_str(g, attrs->aperture), attrs->cacheable ? 'C' : '-', attrs->sparse ? 'S' : '-', attrs->priv ? 'P' : '-', attrs->valid ? 'V' : '-', attrs->platform_atomic ? 'A' : '-', (u32)attrs->ctag / g->ops.fb.compression_page_size(g), pte_w[1], pte_w[0]); pd_write(g, pd, pd_offset + 0, pte_w[0]); pd_write(g, pd, pd_offset + 1, pte_w[1]); } #define GP10B_PDE0_ENTRY_SIZE 16 /* * Calculate the pgsz of the pde level * Pascal+ implements a 5 level page table structure with only the last * level having a different number of entries depending on whether it holds * big pages or small pages. */ static u32 gp10b_get_pde0_pgsz(struct gk20a *g, const struct gk20a_mmu_level *l, struct nvgpu_gmmu_pd *pd, u32 pd_idx) { u32 pde_base = pd->mem_offs / sizeof(u32); u32 pde_offset = pde_base + pd_offset_from_index(l, pd_idx); u32 pde_v[GP10B_PDE0_ENTRY_SIZE >> 2]; u32 i; u32 pgsz = GMMU_NR_PAGE_SIZES; if (!pd->mem) { return pgsz; } for (i = 0; i < GP10B_PDE0_ENTRY_SIZE >> 2; i++) { pde_v[i] = nvgpu_mem_rd32(g, pd->mem, pde_offset + i); } /* * Check if the aperture AND address are set */ if (pde_v[2] & (gmmu_new_dual_pde_aperture_small_sys_mem_ncoh_f() | gmmu_new_dual_pde_aperture_small_sys_mem_coh_f() | gmmu_new_dual_pde_aperture_small_video_memory_f())) { u64 addr = (((u64) pde_v[3] << 32) | (u64) (pde_v[2] & gmmu_new_dual_pde_address_small_sys_f(~0))) << gmmu_new_dual_pde_address_shift_v(); if (addr) { pgsz = GMMU_PAGE_SIZE_SMALL; } } if (pde_v[0] & (gmmu_new_dual_pde_aperture_big_sys_mem_ncoh_f() | gmmu_new_dual_pde_aperture_big_sys_mem_coh_f() | gmmu_new_dual_pde_aperture_big_video_memory_f())) { u64 addr = (((u64) pde_v[1] << 32) | (u64) (pde_v[0] & gmmu_new_dual_pde_address_big_sys_f(~0))) << gmmu_new_dual_pde_address_big_shift_v(); if (addr) { /* * If small is set that means that somehow MM allowed * both small and big to be set, the PDE is not valid * and may be corrupted */ if (pgsz == GMMU_PAGE_SIZE_SMALL) { nvgpu_err(g, "both small and big apertures enabled"); return GMMU_NR_PAGE_SIZES; } pgsz = GMMU_PAGE_SIZE_BIG; } } return pgsz; } static const struct gk20a_mmu_level gp10b_mm_levels[] = { {.hi_bit = {48, 48}, .lo_bit = {47, 47}, .update_entry = update_gmmu_pde3_locked, .entry_size = 8, .get_pgsz = gk20a_get_pde_pgsz}, {.hi_bit = {46, 46}, .lo_bit = {38, 38}, .update_entry = update_gmmu_pde3_locked, .entry_size = 8, .get_pgsz = gk20a_get_pde_pgsz}, {.hi_bit = {37, 37}, .lo_bit = {29, 29}, .update_entry = update_gmmu_pde3_locked, .entry_size = 8, .get_pgsz = gk20a_get_pde_pgsz}, {.hi_bit = {28, 28}, .lo_bit = {21, 21}, .update_entry = update_gmmu_pde0_locked, .entry_size = GP10B_PDE0_ENTRY_SIZE, .get_pgsz = gp10b_get_pde0_pgsz}, {.hi_bit = {20, 20}, .lo_bit = {12, 16}, .update_entry = update_gmmu_pte_locked, .entry_size = 8, .get_pgsz = gk20a_get_pte_pgsz}, {.update_entry = NULL} }; const struct gk20a_mmu_level *gp10b_mm_get_mmu_levels(struct gk20a *g, u32 big_page_size) { return gp10b_mm_levels; } void gp10b_mm_init_pdb(struct gk20a *g, struct nvgpu_mem *inst_block, struct vm_gk20a *vm) { u64 pdb_addr = nvgpu_mem_get_addr(g, vm->pdb.mem); u32 pdb_addr_lo = u64_lo32(pdb_addr >> ram_in_base_shift_v()); u32 pdb_addr_hi = u64_hi32(pdb_addr); nvgpu_log_info(g, "pde pa=0x%llx", pdb_addr); nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_lo_w(), nvgpu_aperture_mask(g, vm->pdb.mem, ram_in_page_dir_base_target_sys_mem_ncoh_f(), ram_in_page_dir_base_target_sys_mem_coh_f(), ram_in_page_dir_base_target_vid_mem_f()) | ram_in_page_dir_base_vol_true_f() | ram_in_big_page_size_64kb_f() | ram_in_page_dir_base_lo_f(pdb_addr_lo) | ram_in_use_ver2_pt_format_true_f()); nvgpu_mem_wr32(g, inst_block, ram_in_page_dir_base_hi_w(), ram_in_page_dir_base_hi_f(pdb_addr_hi)); } void gp10b_remove_bar2_vm(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; nvgpu_free_inst_block(g, &mm->bar2.inst_block); nvgpu_vm_put(mm->bar2.vm); }