/* * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include "gk20a_allocator.h" #include "buddy_allocator_priv.h" #include "page_allocator_priv.h" #define palloc_dbg(a, fmt, arg...) \ alloc_dbg(palloc_owner(a), fmt, ##arg) static struct kmem_cache *page_alloc_cache; static struct kmem_cache *page_alloc_chunk_cache; static struct kmem_cache *page_alloc_slab_page_cache; static DEFINE_MUTEX(meta_data_cache_lock); /* * Handle the book-keeping for these operations. */ static inline void add_slab_page_to_empty(struct page_alloc_slab *slab, struct page_alloc_slab_page *page) { BUG_ON(page->state != SP_NONE); list_add(&page->list_entry, &slab->empty); slab->nr_empty++; page->state = SP_EMPTY; } static inline void add_slab_page_to_partial(struct page_alloc_slab *slab, struct page_alloc_slab_page *page) { BUG_ON(page->state != SP_NONE); list_add(&page->list_entry, &slab->partial); slab->nr_partial++; page->state = SP_PARTIAL; } static inline void add_slab_page_to_full(struct page_alloc_slab *slab, struct page_alloc_slab_page *page) { BUG_ON(page->state != SP_NONE); list_add(&page->list_entry, &slab->full); slab->nr_full++; page->state = SP_FULL; } static inline void del_slab_page_from_empty(struct page_alloc_slab *slab, struct page_alloc_slab_page *page) { list_del_init(&page->list_entry); slab->nr_empty--; page->state = SP_NONE; } static inline void del_slab_page_from_partial(struct page_alloc_slab *slab, struct page_alloc_slab_page *page) { list_del_init(&page->list_entry); slab->nr_partial--; page->state = SP_NONE; } static inline void del_slab_page_from_full(struct page_alloc_slab *slab, struct page_alloc_slab_page *page) { list_del_init(&page->list_entry); slab->nr_full--; page->state = SP_NONE; } static u64 gk20a_page_alloc_length(struct gk20a_allocator *a) { struct gk20a_page_allocator *va = a->priv; return gk20a_alloc_length(&va->source_allocator); } static u64 gk20a_page_alloc_base(struct gk20a_allocator *a) { struct gk20a_page_allocator *va = a->priv; return gk20a_alloc_base(&va->source_allocator); } static int gk20a_page_alloc_inited(struct gk20a_allocator *a) { struct gk20a_page_allocator *va = a->priv; return gk20a_alloc_initialized(&va->source_allocator); } static u64 gk20a_page_alloc_end(struct gk20a_allocator *a) { struct gk20a_page_allocator *va = a->priv; return gk20a_alloc_end(&va->source_allocator); } static u64 gk20a_page_alloc_space(struct gk20a_allocator *a) { struct gk20a_page_allocator *va = a->priv; return gk20a_alloc_space(&va->source_allocator); } static int gk20a_page_reserve_co(struct gk20a_allocator *a, struct gk20a_alloc_carveout *co) { struct gk20a_page_allocator *va = a->priv; return gk20a_alloc_reserve_carveout(&va->source_allocator, co); } static void gk20a_page_release_co(struct gk20a_allocator *a, struct gk20a_alloc_carveout *co) { struct gk20a_page_allocator *va = a->priv; gk20a_alloc_release_carveout(&va->source_allocator, co); } static void __gk20a_free_pages(struct gk20a_page_allocator *a, struct gk20a_page_alloc *alloc, bool free_buddy_alloc) { struct page_alloc_chunk *chunk; while (!list_empty(&alloc->alloc_chunks)) { chunk = list_first_entry(&alloc->alloc_chunks, struct page_alloc_chunk, list_entry); list_del(&chunk->list_entry); if (free_buddy_alloc) gk20a_free(&a->source_allocator, chunk->base); kfree(chunk); } kfree(alloc); } static int __insert_page_alloc(struct gk20a_page_allocator *a, struct gk20a_page_alloc *alloc) { struct rb_node **new = &a->allocs.rb_node; struct rb_node *parent = NULL; while (*new) { struct gk20a_page_alloc *tmp = container_of(*new, struct gk20a_page_alloc, tree_entry); parent = *new; if (alloc->base < tmp->base) { new = &((*new)->rb_left); } else if (alloc->base > tmp->base) { new = &((*new)->rb_right); } else { WARN(1, "Duplicate entries in allocated list!\n"); return 0; } } rb_link_node(&alloc->tree_entry, parent, new); rb_insert_color(&alloc->tree_entry, &a->allocs); return 0; } static struct gk20a_page_alloc *__find_page_alloc( struct gk20a_page_allocator *a, u64 addr) { struct rb_node *node = a->allocs.rb_node; struct gk20a_page_alloc *alloc; while (node) { alloc = container_of(node, struct gk20a_page_alloc, tree_entry); if (addr < alloc->base) node = node->rb_left; else if (addr > alloc->base) node = node->rb_right; else break; } if (!node) return NULL; rb_erase(node, &a->allocs); return alloc; } static struct page_alloc_slab_page *alloc_slab_page( struct gk20a_page_allocator *a, struct page_alloc_slab *slab) { struct page_alloc_slab_page *slab_page; slab_page = kmem_cache_alloc(page_alloc_slab_page_cache, GFP_KERNEL); if (!slab_page) { palloc_dbg(a, "OOM: unable to alloc slab_page struct!\n"); return ERR_PTR(-ENOMEM); } memset(slab_page, 0, sizeof(*slab_page)); slab_page->page_addr = gk20a_alloc(&a->source_allocator, a->page_size); if (!slab_page->page_addr) { kfree(slab_page); palloc_dbg(a, "OOM: vidmem is full!\n"); return ERR_PTR(-ENOMEM); } INIT_LIST_HEAD(&slab_page->list_entry); slab_page->slab_size = slab->slab_size; slab_page->nr_objects = (u32)a->page_size / slab->slab_size; slab_page->nr_objects_alloced = 0; slab_page->owner = slab; slab_page->state = SP_NONE; a->pages_alloced++; palloc_dbg(a, "Allocated new slab page @ 0x%012llx size=%u\n", slab_page->page_addr, slab_page->slab_size); return slab_page; } static void free_slab_page(struct gk20a_page_allocator *a, struct page_alloc_slab_page *slab_page) { palloc_dbg(a, "Freeing slab page @ 0x%012llx\n", slab_page->page_addr); BUG_ON((slab_page->state != SP_NONE && slab_page->state != SP_EMPTY) || slab_page->nr_objects_alloced != 0 || slab_page->bitmap != 0); gk20a_free(&a->source_allocator, slab_page->page_addr); a->pages_freed++; kmem_cache_free(page_alloc_slab_page_cache, slab_page); } /* * This expects @alloc to have 1 empty page_alloc_chunk already added to the * alloc_chunks list. */ static int __do_slab_alloc(struct gk20a_page_allocator *a, struct page_alloc_slab *slab, struct gk20a_page_alloc *alloc) { struct page_alloc_slab_page *slab_page = NULL; struct page_alloc_chunk *chunk; unsigned long offs; /* * Check the partial and empty lists to see if we have some space * readily available. Take the slab_page out of what ever list it * was in since it may be put back into a different list later. */ if (!list_empty(&slab->partial)) { slab_page = list_first_entry(&slab->partial, struct page_alloc_slab_page, list_entry); del_slab_page_from_partial(slab, slab_page); } else if (!list_empty(&slab->empty)) { slab_page = list_first_entry(&slab->empty, struct page_alloc_slab_page, list_entry); del_slab_page_from_empty(slab, slab_page); } if (!slab_page) { slab_page = alloc_slab_page(a, slab); if (IS_ERR(slab_page)) return PTR_ERR(slab_page); } /* * We now have a slab_page. Do the alloc. */ offs = bitmap_find_next_zero_area(&slab_page->bitmap, slab_page->nr_objects, 0, 1, 0); if (offs >= slab_page->nr_objects) { WARN(1, "Empty/partial slab with no free objects?"); /* Add the buggy page to the full list... This isn't ideal. */ add_slab_page_to_full(slab, slab_page); return -ENOMEM; } bitmap_set(&slab_page->bitmap, offs, 1); slab_page->nr_objects_alloced++; if (slab_page->nr_objects_alloced < slab_page->nr_objects) add_slab_page_to_partial(slab, slab_page); else if (slab_page->nr_objects_alloced == slab_page->nr_objects) add_slab_page_to_full(slab, slab_page); else BUG(); /* Should be impossible to hit this. */ /* * Handle building the gk20a_page_alloc struct. We expect one * page_alloc_chunk to be present. */ alloc->slab_page = slab_page; alloc->nr_chunks = 1; alloc->length = slab_page->slab_size; alloc->base = slab_page->page_addr + (offs * slab_page->slab_size); chunk = list_first_entry(&alloc->alloc_chunks, struct page_alloc_chunk, list_entry); chunk->base = alloc->base; chunk->length = alloc->length; return 0; } /* * Allocate from a slab instead of directly from the page allocator. */ static struct gk20a_page_alloc *__gk20a_alloc_slab( struct gk20a_page_allocator *a, u64 len) { int err, slab_nr; struct page_alloc_slab *slab; struct gk20a_page_alloc *alloc = NULL; struct page_alloc_chunk *chunk = NULL; /* * Align the length to a page and then divide by the page size (4k for * this code). ilog2() of that then gets us the correct slab to use. */ slab_nr = (int)ilog2(PAGE_ALIGN(len) >> 12); slab = &a->slabs[slab_nr]; alloc = kmem_cache_alloc(page_alloc_cache, GFP_KERNEL); if (!alloc) { palloc_dbg(a, "OOM: could not alloc page_alloc struct!\n"); goto fail; } chunk = kmem_cache_alloc(page_alloc_chunk_cache, GFP_KERNEL); if (!chunk) { palloc_dbg(a, "OOM: could not alloc alloc_chunk struct!\n"); goto fail; } INIT_LIST_HEAD(&alloc->alloc_chunks); list_add(&chunk->list_entry, &alloc->alloc_chunks); err = __do_slab_alloc(a, slab, alloc); if (err) goto fail; palloc_dbg(a, "Alloc 0x%04llx sr=%d id=0x%010llx [slab]\n", len, slab_nr, alloc->base); a->nr_slab_allocs++; return alloc; fail: kfree(alloc); kfree(chunk); return NULL; } static void __gk20a_free_slab(struct gk20a_page_allocator *a, struct gk20a_page_alloc *alloc) { struct page_alloc_slab_page *slab_page = alloc->slab_page; struct page_alloc_slab *slab = slab_page->owner; enum slab_page_state new_state; int offs; offs = (u32)(alloc->base - slab_page->page_addr) / slab_page->slab_size; bitmap_clear(&slab_page->bitmap, offs, 1); slab_page->nr_objects_alloced--; if (slab_page->nr_objects_alloced == 0) new_state = SP_EMPTY; else new_state = SP_PARTIAL; /* * Need to migrate the page to a different list. */ if (new_state != slab_page->state) { /* Delete - can't be in empty. */ if (slab_page->state == SP_PARTIAL) del_slab_page_from_partial(slab, slab_page); else del_slab_page_from_full(slab, slab_page); /* And add. */ if (new_state == SP_EMPTY) { if (list_empty(&slab->empty)) add_slab_page_to_empty(slab, slab_page); else free_slab_page(a, slab_page); } else { add_slab_page_to_partial(slab, slab_page); } } /* * Now handle the page_alloc. */ __gk20a_free_pages(a, alloc, false); a->nr_slab_frees++; return; } /* * Allocate physical pages. Since the underlying allocator is a buddy allocator * the returned pages are always contiguous. However, since there could be * fragmentation in the space this allocator will collate smaller non-contiguous * allocations together if necessary. */ static struct gk20a_page_alloc *__do_gk20a_alloc_pages( struct gk20a_page_allocator *a, u64 pages) { struct gk20a_page_alloc *alloc; struct page_alloc_chunk *c; u64 max_chunk_len = pages << a->page_shift; int i = 0; alloc = kmem_cache_alloc(page_alloc_cache, GFP_KERNEL); if (!alloc) goto fail; memset(alloc, 0, sizeof(*alloc)); INIT_LIST_HEAD(&alloc->alloc_chunks); alloc->length = pages << a->page_shift; while (pages) { u64 chunk_addr = 0; u64 chunk_pages = (u64)1 << __fls(pages); u64 chunk_len = chunk_pages << a->page_shift; /* * Take care of the possibility that the allocation must be * contiguous. If this is not the first iteration then that * means the first iteration failed to alloc the entire * requested size. The buddy allocator guarantees any given * single alloc is contiguous. */ if (a->flags & GPU_ALLOC_FORCE_CONTIG && i != 0) goto fail_cleanup; if (chunk_len > max_chunk_len) chunk_len = max_chunk_len; /* * Keep attempting to allocate in smaller chunks until the alloc * either succeeds or is smaller than the page_size of the * allocator (i.e the allocator is OOM). */ do { chunk_addr = gk20a_alloc(&a->source_allocator, chunk_len); /* Divide by 2 and try again */ if (!chunk_addr) { palloc_dbg(a, "balloc failed: 0x%llx\n", chunk_len); chunk_len >>= 1; max_chunk_len = chunk_len; } } while (!chunk_addr && chunk_len >= a->page_size); chunk_pages = chunk_len >> a->page_shift; if (!chunk_addr) { palloc_dbg(a, "bailing @ 0x%llx\n", chunk_len); goto fail_cleanup; } c = kmem_cache_alloc(page_alloc_chunk_cache, GFP_KERNEL); if (!c) { gk20a_free(&a->source_allocator, chunk_addr); goto fail_cleanup; } pages -= chunk_pages; c->base = chunk_addr; c->length = chunk_len; list_add(&c->list_entry, &alloc->alloc_chunks); i++; } alloc->nr_chunks = i; c = list_first_entry(&alloc->alloc_chunks, struct page_alloc_chunk, list_entry); alloc->base = c->base; return alloc; fail_cleanup: while (!list_empty(&alloc->alloc_chunks)) { c = list_first_entry(&alloc->alloc_chunks, struct page_alloc_chunk, list_entry); list_del(&c->list_entry); gk20a_free(&a->source_allocator, c->base); kfree(c); } kfree(alloc); fail: return ERR_PTR(-ENOMEM); } static struct gk20a_page_alloc *__gk20a_alloc_pages( struct gk20a_page_allocator *a, u64 len) { struct gk20a_page_alloc *alloc = NULL; struct page_alloc_chunk *c; u64 pages; int i = 0; pages = ALIGN(len, a->page_size) >> a->page_shift; alloc = __do_gk20a_alloc_pages(a, pages); if (IS_ERR(alloc)) { palloc_dbg(a, "Alloc 0x%llx (%llu) (failed)\n", pages << a->page_shift, pages); return NULL; } palloc_dbg(a, "Alloc 0x%llx (%llu) id=0x%010llx\n", pages << a->page_shift, pages, alloc->base); list_for_each_entry(c, &alloc->alloc_chunks, list_entry) { palloc_dbg(a, " Chunk %2d: 0x%010llx + 0x%llx\n", i++, c->base, c->length); } return alloc; } /* * Allocate enough pages to satisfy @len. Page size is determined at * initialization of the allocator. * * The return is actually a pointer to a struct gk20a_page_alloc pointer. This * is because it doesn't make a lot of sense to return the address of the first * page in the list of pages (since they could be discontiguous). This has * precedent in the dma_alloc APIs, though, it's really just an annoying * artifact of the fact that the gk20a_alloc() API requires a u64 return type. */ static u64 gk20a_page_alloc(struct gk20a_allocator *__a, u64 len) { struct gk20a_page_allocator *a = page_allocator(__a); struct gk20a_page_alloc *alloc = NULL; u64 real_len; /* * If we want contig pages we have to round up to a power of two. It's * easier to do that here than in the buddy allocator. */ real_len = a->flags & GPU_ALLOC_FORCE_CONTIG ? roundup_pow_of_two(len) : len; alloc_lock(__a); if (a->flags & GPU_ALLOC_4K_VIDMEM_PAGES && real_len <= (a->page_size / 2)) alloc = __gk20a_alloc_slab(a, real_len); else alloc = __gk20a_alloc_pages(a, real_len); if (!alloc) { alloc_unlock(__a); return 0; } __insert_page_alloc(a, alloc); a->nr_allocs++; if (real_len > a->page_size / 2) a->pages_alloced += alloc->length >> a->page_shift; alloc_unlock(__a); if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER) return alloc->base; else return (u64) (uintptr_t) alloc; } /* * Note: this will remove the gk20a_page_alloc struct from the RB tree * if it's found. */ static void gk20a_page_free(struct gk20a_allocator *__a, u64 base) { struct gk20a_page_allocator *a = page_allocator(__a); struct gk20a_page_alloc *alloc; alloc_lock(__a); if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER) alloc = __find_page_alloc(a, base); else alloc = __find_page_alloc(a, ((struct gk20a_page_alloc *)(uintptr_t)base)->base); if (!alloc) { palloc_dbg(a, "Hrm, found no alloc?\n"); goto done; } a->nr_frees++; palloc_dbg(a, "Free 0x%llx id=0x%010llx\n", alloc->length, alloc->base); /* * Frees *alloc. */ if (alloc->slab_page) { __gk20a_free_slab(a, alloc); } else { a->pages_freed += (alloc->length >> a->page_shift); __gk20a_free_pages(a, alloc, true); } done: alloc_unlock(__a); } static struct gk20a_page_alloc *__gk20a_alloc_pages_fixed( struct gk20a_page_allocator *a, u64 base, u64 length) { struct gk20a_page_alloc *alloc; struct page_alloc_chunk *c; alloc = kmem_cache_alloc(page_alloc_cache, GFP_KERNEL); c = kmem_cache_alloc(page_alloc_chunk_cache, GFP_KERNEL); if (!alloc || !c) goto fail; alloc->base = gk20a_alloc_fixed(&a->source_allocator, base, length); if (!alloc->base) { WARN(1, "gk20a: failed to fixed alloc pages @ 0x%010llx", base); goto fail; } alloc->nr_chunks = 1; alloc->length = length; INIT_LIST_HEAD(&alloc->alloc_chunks); c->base = alloc->base; c->length = length; list_add(&c->list_entry, &alloc->alloc_chunks); return alloc; fail: kfree(c); kfree(alloc); return ERR_PTR(-ENOMEM); } static u64 gk20a_page_alloc_fixed(struct gk20a_allocator *__a, u64 base, u64 len) { struct gk20a_page_allocator *a = page_allocator(__a); struct gk20a_page_alloc *alloc = NULL; struct page_alloc_chunk *c; u64 aligned_len, pages; int i = 0; aligned_len = ALIGN(len, a->page_size); pages = aligned_len >> a->page_shift; alloc_lock(__a); alloc = __gk20a_alloc_pages_fixed(a, base, aligned_len); if (IS_ERR(alloc)) { alloc_unlock(__a); return 0; } __insert_page_alloc(a, alloc); alloc_unlock(__a); palloc_dbg(a, "Alloc [fixed] @ 0x%010llx + 0x%llx (%llu)\n", alloc->base, aligned_len, pages); list_for_each_entry(c, &alloc->alloc_chunks, list_entry) { palloc_dbg(a, " Chunk %2d: 0x%010llx + 0x%llx\n", i++, c->base, c->length); } a->nr_fixed_allocs++; a->pages_alloced += pages; if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER) return alloc->base; else return (u64) (uintptr_t) alloc; } static void gk20a_page_free_fixed(struct gk20a_allocator *__a, u64 base, u64 len) { struct gk20a_page_allocator *a = page_allocator(__a); struct gk20a_page_alloc *alloc; alloc_lock(__a); if (a->flags & GPU_ALLOC_NO_SCATTER_GATHER) { alloc = __find_page_alloc(a, base); if (!alloc) goto done; } else { alloc = (struct gk20a_page_alloc *) (uintptr_t) base; } /* * This works for the time being since the buddy allocator * uses the same free function for both fixed and regular * allocs. This would have to be updated if the underlying * allocator were to change. */ palloc_dbg(a, "Free [fixed] 0x%010llx + 0x%llx\n", alloc->base, alloc->length); __gk20a_free_pages(a, alloc, true); a->nr_fixed_frees++; a->pages_freed += (alloc->length >> a->page_shift); done: alloc_unlock(__a); } static void gk20a_page_allocator_destroy(struct gk20a_allocator *__a) { struct gk20a_page_allocator *a = page_allocator(__a); alloc_lock(__a); kfree(a); __a->priv = NULL; alloc_unlock(__a); } static void gk20a_page_print_stats(struct gk20a_allocator *__a, struct seq_file *s, int lock) { struct gk20a_page_allocator *a = page_allocator(__a); int i; if (lock) alloc_lock(__a); __alloc_pstat(s, __a, "Page allocator:\n"); __alloc_pstat(s, __a, " allocs %lld\n", a->nr_allocs); __alloc_pstat(s, __a, " frees %lld\n", a->nr_frees); __alloc_pstat(s, __a, " fixed_allocs %lld\n", a->nr_fixed_allocs); __alloc_pstat(s, __a, " fixed_frees %lld\n", a->nr_fixed_frees); __alloc_pstat(s, __a, " slab_allocs %lld\n", a->nr_slab_allocs); __alloc_pstat(s, __a, " slab_frees %lld\n", a->nr_slab_frees); __alloc_pstat(s, __a, " pages alloced %lld\n", a->pages_alloced); __alloc_pstat(s, __a, " pages freed %lld\n", a->pages_freed); __alloc_pstat(s, __a, "\n"); /* * Slab info. */ if (a->flags & GPU_ALLOC_4K_VIDMEM_PAGES) { __alloc_pstat(s, __a, "Slabs:\n"); __alloc_pstat(s, __a, " size empty partial full\n"); __alloc_pstat(s, __a, " ---- ----- ------- ----\n"); for (i = 0; i < a->nr_slabs; i++) { struct page_alloc_slab *slab = &a->slabs[i]; __alloc_pstat(s, __a, " %-9u %-9d %-9u %u\n", slab->slab_size, slab->nr_empty, slab->nr_partial, slab->nr_full); } __alloc_pstat(s, __a, "\n"); } __alloc_pstat(s, __a, "Source alloc: %s\n", a->source_allocator.name); gk20a_alloc_print_stats(&a->source_allocator, s, lock); if (lock) alloc_unlock(__a); } static const struct gk20a_allocator_ops page_ops = { .alloc = gk20a_page_alloc, .free = gk20a_page_free, .alloc_fixed = gk20a_page_alloc_fixed, .free_fixed = gk20a_page_free_fixed, .reserve_carveout = gk20a_page_reserve_co, .release_carveout = gk20a_page_release_co, .base = gk20a_page_alloc_base, .length = gk20a_page_alloc_length, .end = gk20a_page_alloc_end, .inited = gk20a_page_alloc_inited, .space = gk20a_page_alloc_space, .fini = gk20a_page_allocator_destroy, .print_stats = gk20a_page_print_stats, }; /* * nr_slabs is computed as follows: divide page_size by 4096 to get number of * 4k pages in page_size. Then take the base 2 log of that to get number of * slabs. For 64k page_size that works on like: * * 1024*64 / 1024*4 = 16 * ilog2(16) = 4 * * That gives buckets of 1, 2, 4, and 8 pages (i.e 4k, 8k, 16k, 32k). */ static int gk20a_page_alloc_init_slabs(struct gk20a_page_allocator *a) { size_t nr_slabs = ilog2(a->page_size >> 12); unsigned int i; a->slabs = kcalloc(nr_slabs, sizeof(struct page_alloc_slab), GFP_KERNEL); if (!a->slabs) return -ENOMEM; a->nr_slabs = nr_slabs; for (i = 0; i < nr_slabs; i++) { struct page_alloc_slab *slab = &a->slabs[i]; slab->slab_size = SZ_4K * (1 << i); INIT_LIST_HEAD(&slab->empty); INIT_LIST_HEAD(&slab->partial); INIT_LIST_HEAD(&slab->full); slab->nr_empty = 0; slab->nr_partial = 0; slab->nr_full = 0; } return 0; } int gk20a_page_allocator_init(struct gk20a *g, struct gk20a_allocator *__a, const char *name, u64 base, u64 length, u64 blk_size, u64 flags) { struct gk20a_page_allocator *a; char buddy_name[sizeof(__a->name)]; int err; mutex_lock(&meta_data_cache_lock); if (!page_alloc_cache) page_alloc_cache = KMEM_CACHE(gk20a_page_alloc, 0); if (!page_alloc_chunk_cache) page_alloc_chunk_cache = KMEM_CACHE(page_alloc_chunk, 0); if (!page_alloc_slab_page_cache) page_alloc_slab_page_cache = KMEM_CACHE(page_alloc_slab_page, 0); mutex_unlock(&meta_data_cache_lock); if (!page_alloc_cache || !page_alloc_chunk_cache) return -ENOMEM; if (blk_size < SZ_4K) return -EINVAL; a = kzalloc(sizeof(struct gk20a_page_allocator), GFP_KERNEL); if (!a) return -ENOMEM; err = __gk20a_alloc_common_init(__a, name, a, false, &page_ops); if (err) goto fail; a->base = base; a->length = length; a->page_size = blk_size; a->page_shift = __ffs(blk_size); a->allocs = RB_ROOT; a->owner = __a; a->flags = flags; if (flags & GPU_ALLOC_4K_VIDMEM_PAGES && blk_size > SZ_4K) { err = gk20a_page_alloc_init_slabs(a); if (err) goto fail; } snprintf(buddy_name, sizeof(buddy_name), "%s-src", name); err = gk20a_buddy_allocator_init(g, &a->source_allocator, buddy_name, base, length, blk_size, 0); if (err) goto fail; gk20a_init_alloc_debug(g, __a); palloc_dbg(a, "New allocator: type page\n"); palloc_dbg(a, " base 0x%llx\n", a->base); palloc_dbg(a, " size 0x%llx\n", a->length); palloc_dbg(a, " page_size 0x%llx\n", a->page_size); palloc_dbg(a, " flags 0x%llx\n", a->flags); palloc_dbg(a, " slabs: %d\n", a->nr_slabs); return 0; fail: kfree(a); return err; }