/* * Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "gk20a/gk20a.h" #include "gk20a/mm_gk20a.h" void nvgpu_vidmem_destroy(struct gk20a *g) { if (nvgpu_alloc_initialized(&g->mm.vidmem.allocator)) nvgpu_alloc_destroy(&g->mm.vidmem.allocator); } static int __nvgpu_vidmem_do_clear_all(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; struct gk20a_fence *gk20a_fence_out = NULL; u64 region2_base = 0; int err = 0; if (mm->vidmem.ce_ctx_id == (u32)~0) return -EINVAL; err = gk20a_ce_execute_ops(g, mm->vidmem.ce_ctx_id, 0, mm->vidmem.base, mm->vidmem.bootstrap_base - mm->vidmem.base, 0x00000000, NVGPU_CE_DST_LOCATION_LOCAL_FB, NVGPU_CE_MEMSET, NULL, 0, NULL); if (err) { nvgpu_err(g, "Failed to clear vidmem region 1 : %d", err); return err; } region2_base = mm->vidmem.bootstrap_base + mm->vidmem.bootstrap_size; err = gk20a_ce_execute_ops(g, mm->vidmem.ce_ctx_id, 0, region2_base, mm->vidmem.size - region2_base, 0x00000000, NVGPU_CE_DST_LOCATION_LOCAL_FB, NVGPU_CE_MEMSET, NULL, 0, &gk20a_fence_out); if (err) { nvgpu_err(g, "Failed to clear vidmem region 2 : %d", err); return err; } if (gk20a_fence_out) { struct nvgpu_timeout timeout; nvgpu_timeout_init(g, &timeout, gk20a_get_gr_idle_timeout(g), NVGPU_TIMER_CPU_TIMER); do { err = gk20a_fence_wait(g, gk20a_fence_out, gk20a_get_gr_idle_timeout(g)); } while (err == -ERESTARTSYS && !nvgpu_timeout_expired(&timeout)); gk20a_fence_put(gk20a_fence_out); if (err) { nvgpu_err(g, "fence wait failed for CE execute ops"); return err; } } mm->vidmem.cleared = true; return 0; } int nvgpu_vidmem_init(struct mm_gk20a *mm) { struct gk20a *g = mm->g; size_t size = g->ops.mm.get_vidmem_size ? g->ops.mm.get_vidmem_size(g) : 0; u64 bootstrap_base, bootstrap_size, base; u64 default_page_size = SZ_64K; int err; static struct nvgpu_alloc_carveout wpr_co = NVGPU_CARVEOUT("wpr-region", 0, SZ_16M); if (!size) return 0; wpr_co.base = size - SZ_256M; bootstrap_base = wpr_co.base; bootstrap_size = SZ_16M; base = default_page_size; /* * Bootstrap allocator for use before the CE is initialized (CE * initialization requires vidmem but we want to use the CE to zero * out vidmem before allocating it... */ err = nvgpu_page_allocator_init(g, &g->mm.vidmem.bootstrap_allocator, "vidmem-bootstrap", bootstrap_base, bootstrap_size, SZ_4K, 0); err = nvgpu_page_allocator_init(g, &g->mm.vidmem.allocator, "vidmem", base, size - base, default_page_size, GPU_ALLOC_4K_VIDMEM_PAGES); if (err) { nvgpu_err(g, "Failed to register vidmem for size %zu: %d", size, err); return err; } /* Reserve bootstrap region in vidmem allocator */ nvgpu_alloc_reserve_carveout(&g->mm.vidmem.allocator, &wpr_co); mm->vidmem.base = base; mm->vidmem.size = size - base; mm->vidmem.bootstrap_base = bootstrap_base; mm->vidmem.bootstrap_size = bootstrap_size; nvgpu_mutex_init(&mm->vidmem.first_clear_mutex); INIT_WORK(&mm->vidmem.clear_mem_worker, nvgpu_vidmem_clear_mem_worker); nvgpu_atomic64_set(&mm->vidmem.bytes_pending, 0); nvgpu_init_list_node(&mm->vidmem.clear_list_head); nvgpu_mutex_init(&mm->vidmem.clear_list_mutex); gk20a_dbg_info("registered vidmem: %zu MB", size / SZ_1M); return 0; } int nvgpu_vidmem_get_space(struct gk20a *g, u64 *space) { struct nvgpu_allocator *allocator = &g->mm.vidmem.allocator; gk20a_dbg_fn(""); if (!nvgpu_alloc_initialized(allocator)) return -ENOSYS; nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex); *space = nvgpu_alloc_space(allocator) + nvgpu_atomic64_read(&g->mm.vidmem.bytes_pending); nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex); return 0; } int nvgpu_vidmem_clear(struct gk20a *g, struct nvgpu_mem *mem) { struct gk20a_fence *gk20a_fence_out = NULL; struct gk20a_fence *gk20a_last_fence = NULL; struct nvgpu_page_alloc *alloc = NULL; void *sgl = NULL; int err = 0; if (g->mm.vidmem.ce_ctx_id == (u32)~0) return -EINVAL; alloc = mem->vidmem_alloc; nvgpu_sgt_for_each_sgl(sgl, &alloc->sgt) { if (gk20a_last_fence) gk20a_fence_put(gk20a_last_fence); err = gk20a_ce_execute_ops(g, g->mm.vidmem.ce_ctx_id, 0, nvgpu_sgt_get_phys(&alloc->sgt, sgl), nvgpu_sgt_get_length(&alloc->sgt, sgl), 0x00000000, NVGPU_CE_DST_LOCATION_LOCAL_FB, NVGPU_CE_MEMSET, NULL, 0, &gk20a_fence_out); if (err) { nvgpu_err(g, "Failed gk20a_ce_execute_ops[%d]", err); return err; } gk20a_last_fence = gk20a_fence_out; } if (gk20a_last_fence) { struct nvgpu_timeout timeout; nvgpu_timeout_init(g, &timeout, gk20a_get_gr_idle_timeout(g), NVGPU_TIMER_CPU_TIMER); do { err = gk20a_fence_wait(g, gk20a_last_fence, gk20a_get_gr_idle_timeout(g)); } while (err == -ERESTARTSYS && !nvgpu_timeout_expired(&timeout)); gk20a_fence_put(gk20a_last_fence); if (err) nvgpu_err(g, "fence wait failed for CE execute ops"); } return err; } struct nvgpu_mem *nvgpu_vidmem_get_pending_alloc(struct mm_gk20a *mm) { struct nvgpu_mem *mem = NULL; nvgpu_mutex_acquire(&mm->vidmem.clear_list_mutex); if (!nvgpu_list_empty(&mm->vidmem.clear_list_head)) { mem = nvgpu_list_first_entry(&mm->vidmem.clear_list_head, nvgpu_mem, clear_list_entry); nvgpu_list_del(&mem->clear_list_entry); } nvgpu_mutex_release(&mm->vidmem.clear_list_mutex); return mem; } static int nvgpu_vidmem_clear_all(struct gk20a *g) { int err; if (g->mm.vidmem.cleared) return 0; nvgpu_mutex_acquire(&g->mm.vidmem.first_clear_mutex); if (!g->mm.vidmem.cleared) { err = __nvgpu_vidmem_do_clear_all(g); if (err) { nvgpu_mutex_release(&g->mm.vidmem.first_clear_mutex); nvgpu_err(g, "failed to clear whole vidmem"); return err; } } nvgpu_mutex_release(&g->mm.vidmem.first_clear_mutex); return 0; } struct nvgpu_vidmem_buf *nvgpu_vidmem_user_alloc(struct gk20a *g, size_t bytes) { struct nvgpu_vidmem_buf *buf; int err; err = nvgpu_vidmem_clear_all(g); if (err) return NULL; buf = nvgpu_kzalloc(g, sizeof(*buf)); if (!buf) return NULL; buf->g = g; buf->mem = nvgpu_kzalloc(g, sizeof(*buf->mem)); if (!buf->mem) goto fail; err = nvgpu_dma_alloc_vid(g, bytes, buf->mem); if (err) goto fail; /* * Alerts the DMA API that when we free this vidmem buf we have to * clear it to avoid leaking data to userspace. */ buf->mem->mem_flags |= NVGPU_MEM_FLAG_USER_MEM; return buf; fail: /* buf will never be NULL here. */ nvgpu_kfree(g, buf->mem); nvgpu_kfree(g, buf); return NULL; } void nvgpu_vidmem_buf_free(struct gk20a *g, struct nvgpu_vidmem_buf *buf) { /* * In some error paths it's convenient to be able to "free" a NULL buf. */ if (!buf) return; nvgpu_dma_free(g, buf->mem); /* * We don't free buf->mem here. This is handled by nvgpu_dma_free()! * Since these buffers are cleared in the background the nvgpu_mem * struct must live on through that. We transfer ownership here to the * DMA API and let the DMA API free the buffer. */ nvgpu_kfree(g, buf); }