/* * Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "gk20a/mm_gk20a.h" #include "gk20a/fence_gk20a.h" /* * This is expected to be called from the shutdown path (or the error path in * the vidmem init code). As such we do not expect new vidmem frees to be * enqueued. */ void nvgpu_vidmem_destroy(struct gk20a *g) { struct nvgpu_timeout timeout; if (!g->ops.fb.get_vidmem_size) return; nvgpu_timeout_init(g, &timeout, 100, NVGPU_TIMER_RETRY_TIMER); /* * Ensure that the thread runs one last time to flush anything in the * queue. */ nvgpu_cond_signal_interruptible(&g->mm.vidmem.clearing_thread_cond); /* * Wait for at most 1 second before just continuing on. It doesn't make * sense to hang the system over some potential memory leaks. */ do { bool empty; nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex); empty = nvgpu_list_empty(&g->mm.vidmem.clear_list_head); nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex); if (empty) break; nvgpu_msleep(10); } while (!nvgpu_timeout_expired(&timeout)); /* * Kill the vidmem clearing thread now. This will wake the thread up * automatically and cause the wait_interruptible condition trigger. */ nvgpu_thread_stop(&g->mm.vidmem.clearing_thread); if (nvgpu_alloc_initialized(&g->mm.vidmem.allocator)) nvgpu_alloc_destroy(&g->mm.vidmem.allocator); if (nvgpu_alloc_initialized(&g->mm.vidmem.bootstrap_allocator)) nvgpu_alloc_destroy(&g->mm.vidmem.bootstrap_allocator); } static int __nvgpu_vidmem_do_clear_all(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; struct gk20a_fence *gk20a_fence_out = NULL; int err = 0; if (mm->vidmem.ce_ctx_id == (u32)~0) return -EINVAL; vidmem_dbg(g, "Clearing all VIDMEM:"); err = gk20a_ce_execute_ops(g, mm->vidmem.ce_ctx_id, 0, mm->vidmem.base, mm->vidmem.bootstrap_base - mm->vidmem.base, 0x00000000, NVGPU_CE_DST_LOCATION_LOCAL_FB, NVGPU_CE_MEMSET, 0, &gk20a_fence_out); if (err) { nvgpu_err(g, "Failed to clear vidmem : %d", err); return err; } if (gk20a_fence_out) { struct nvgpu_timeout timeout; nvgpu_timeout_init(g, &timeout, gk20a_get_gr_idle_timeout(g), NVGPU_TIMER_CPU_TIMER); do { err = gk20a_fence_wait(g, gk20a_fence_out, gk20a_get_gr_idle_timeout(g)); } while (err == -ERESTARTSYS && !nvgpu_timeout_expired(&timeout)); gk20a_fence_put(gk20a_fence_out); if (err) { nvgpu_err(g, "fence wait failed for CE execute ops"); return err; } } mm->vidmem.cleared = true; vidmem_dbg(g, "Done!"); return 0; } void nvgpu_vidmem_thread_pause_sync(struct mm_gk20a *mm) { /* * On the first increment of the pause_count (0 -> 1) take the pause * lock and prevent the vidmem clearing thread from processing work * items. * * Otherwise the increment is all that's needed - it's essentially a * ref-count for the number of pause() calls. * * The sync component is implemented by waiting for the lock to be * released by the clearing thread in case the thread is currently * processing work items. */ if (nvgpu_atomic_inc_return(&mm->vidmem.pause_count) == 1) nvgpu_mutex_acquire(&mm->vidmem.clearing_thread_lock); vidmem_dbg(mm->g, "Clearing thread paused; new count=%d", nvgpu_atomic_read(&mm->vidmem.pause_count)); } void nvgpu_vidmem_thread_unpause(struct mm_gk20a *mm) { vidmem_dbg(mm->g, "Unpausing clearing thread; current count=%d", nvgpu_atomic_read(&mm->vidmem.pause_count)); /* * And on the last decrement (1 -> 0) release the pause lock and let * the vidmem clearing thread continue. */ if (nvgpu_atomic_dec_return(&mm->vidmem.pause_count) == 0) { nvgpu_mutex_release(&mm->vidmem.clearing_thread_lock); vidmem_dbg(mm->g, " > Clearing thread really unpaused!"); } } int nvgpu_vidmem_clear_list_enqueue(struct gk20a *g, struct nvgpu_mem *mem) { struct mm_gk20a *mm = &g->mm; /* * Crap. Can't enqueue new vidmem bufs! CE may be gone! * * However, an errant app can hold a vidmem dma_buf FD open past when * the nvgpu driver has exited. Thus when the FD does get closed * eventually the dma_buf release function will try to call the vidmem * free function which will attempt to enqueue the vidmem into the * vidmem clearing thread. */ if (nvgpu_is_enabled(g, NVGPU_DRIVER_IS_DYING)) return -ENOSYS; nvgpu_mutex_acquire(&mm->vidmem.clear_list_mutex); nvgpu_list_add_tail(&mem->clear_list_entry, &mm->vidmem.clear_list_head); nvgpu_atomic64_add(mem->aligned_size, &mm->vidmem.bytes_pending); nvgpu_mutex_release(&mm->vidmem.clear_list_mutex); nvgpu_cond_signal_interruptible(&mm->vidmem.clearing_thread_cond); return 0; } static struct nvgpu_mem *nvgpu_vidmem_clear_list_dequeue(struct mm_gk20a *mm) { struct nvgpu_mem *mem = NULL; nvgpu_mutex_acquire(&mm->vidmem.clear_list_mutex); if (!nvgpu_list_empty(&mm->vidmem.clear_list_head)) { mem = nvgpu_list_first_entry(&mm->vidmem.clear_list_head, nvgpu_mem, clear_list_entry); nvgpu_list_del(&mem->clear_list_entry); } nvgpu_mutex_release(&mm->vidmem.clear_list_mutex); return mem; } static void nvgpu_vidmem_clear_pending_allocs(struct mm_gk20a *mm) { struct gk20a *g = mm->g; struct nvgpu_mem *mem; vidmem_dbg(g, "Running VIDMEM clearing thread:"); while ((mem = nvgpu_vidmem_clear_list_dequeue(mm)) != NULL) { nvgpu_vidmem_clear(g, mem); WARN_ON(nvgpu_atomic64_sub_return(mem->aligned_size, &g->mm.vidmem.bytes_pending) < 0); mem->size = 0; mem->aperture = APERTURE_INVALID; __nvgpu_mem_free_vidmem_alloc(g, mem); nvgpu_kfree(g, mem); } vidmem_dbg(g, "Done!"); } static int nvgpu_vidmem_clear_pending_allocs_thr(void *mm_ptr) { struct mm_gk20a *mm = mm_ptr; /* * Simple thread who's sole job is to periodically clear userspace * vidmem allocations that have been recently freed. * * Since it doesn't make sense to run unless there's pending work a * condition field is used to wait for work. When the DMA API frees a * userspace vidmem buf it enqueues it into the clear list and alerts us * that we have some work to do. */ while (!nvgpu_thread_should_stop(&mm->vidmem.clearing_thread)) { int ret; /* * Wait for work but also make sure we should not be paused. */ ret = NVGPU_COND_WAIT_INTERRUPTIBLE( &mm->vidmem.clearing_thread_cond, nvgpu_thread_should_stop( &mm->vidmem.clearing_thread) || !nvgpu_list_empty(&mm->vidmem.clear_list_head), 0); if (ret == -ERESTARTSYS) continue; /* * Use this lock to implement a pause mechanism. By taking this * lock some other code can prevent this thread from processing * work items. */ if (!nvgpu_mutex_tryacquire(&mm->vidmem.clearing_thread_lock)) continue; nvgpu_vidmem_clear_pending_allocs(mm); nvgpu_mutex_release(&mm->vidmem.clearing_thread_lock); } return 0; } int nvgpu_vidmem_init(struct mm_gk20a *mm) { struct gk20a *g = mm->g; u64 bootstrap_base, base; u64 bootstrap_size = SZ_512M; u64 default_page_size = SZ_64K; size_t size; int err; static struct nvgpu_alloc_carveout bootstrap_co = NVGPU_CARVEOUT("bootstrap-region", 0, 0); size = g->ops.fb.get_vidmem_size ? g->ops.fb.get_vidmem_size(g) : 0; if (!size) return 0; vidmem_dbg(g, "init begin"); bootstrap_co.base = size - bootstrap_size; bootstrap_co.length = bootstrap_size; bootstrap_base = bootstrap_co.base; base = default_page_size; /* * Bootstrap allocator for use before the CE is initialized (CE * initialization requires vidmem but we want to use the CE to zero * out vidmem before allocating it... */ err = nvgpu_page_allocator_init(g, &g->mm.vidmem.bootstrap_allocator, "vidmem-bootstrap", bootstrap_base, bootstrap_size, SZ_4K, GPU_ALLOC_FORCE_CONTIG); err = nvgpu_page_allocator_init(g, &g->mm.vidmem.allocator, "vidmem", base, size - base, default_page_size, GPU_ALLOC_4K_VIDMEM_PAGES); if (err) { nvgpu_err(g, "Failed to register vidmem for size %zu: %d", size, err); return err; } /* Reserve bootstrap region in vidmem allocator */ nvgpu_alloc_reserve_carveout(&g->mm.vidmem.allocator, &bootstrap_co); mm->vidmem.base = base; mm->vidmem.size = size - base; mm->vidmem.bootstrap_base = bootstrap_base; mm->vidmem.bootstrap_size = bootstrap_size; err = nvgpu_cond_init(&mm->vidmem.clearing_thread_cond); if (err) goto fail; nvgpu_atomic64_set(&mm->vidmem.bytes_pending, 0); nvgpu_init_list_node(&mm->vidmem.clear_list_head); nvgpu_mutex_init(&mm->vidmem.clear_list_mutex); nvgpu_mutex_init(&mm->vidmem.clearing_thread_lock); nvgpu_mutex_init(&mm->vidmem.first_clear_mutex); nvgpu_atomic_set(&mm->vidmem.pause_count, 0); /* * Start the thread off in the paused state. The thread doesn't have to * be running for this to work. It will be woken up later on in * finalize_poweron(). We won't necessarily have a CE context yet * either, so hypothetically one could cause a race where we try to * clear a vidmem struct before we have a CE context to do so. */ nvgpu_vidmem_thread_pause_sync(mm); err = nvgpu_thread_create(&mm->vidmem.clearing_thread, mm, nvgpu_vidmem_clear_pending_allocs_thr, "vidmem-clear"); if (err) goto fail; vidmem_dbg(g, "VIDMEM Total: %zu MB", size >> 20); vidmem_dbg(g, "VIDMEM Ranges:"); vidmem_dbg(g, " 0x%-10llx -> 0x%-10llx Primary", mm->vidmem.base, mm->vidmem.base + mm->vidmem.size); vidmem_dbg(g, " 0x%-10llx -> 0x%-10llx Bootstrap", mm->vidmem.bootstrap_base, mm->vidmem.bootstrap_base + mm->vidmem.bootstrap_size); vidmem_dbg(g, "VIDMEM carveouts:"); vidmem_dbg(g, " 0x%-10llx -> 0x%-10llx %s", bootstrap_co.base, bootstrap_co.base + bootstrap_co.length, bootstrap_co.name); return 0; fail: nvgpu_cond_destroy(&mm->vidmem.clearing_thread_cond); nvgpu_vidmem_destroy(g); return err; } int nvgpu_vidmem_get_space(struct gk20a *g, u64 *space) { struct nvgpu_allocator *allocator = &g->mm.vidmem.allocator; nvgpu_log_fn(g, " "); if (!nvgpu_alloc_initialized(allocator)) return -ENOSYS; nvgpu_mutex_acquire(&g->mm.vidmem.clear_list_mutex); *space = nvgpu_alloc_space(allocator) + nvgpu_atomic64_read(&g->mm.vidmem.bytes_pending); nvgpu_mutex_release(&g->mm.vidmem.clear_list_mutex); return 0; } int nvgpu_vidmem_clear(struct gk20a *g, struct nvgpu_mem *mem) { struct gk20a_fence *gk20a_fence_out = NULL; struct gk20a_fence *gk20a_last_fence = NULL; struct nvgpu_page_alloc *alloc = NULL; struct nvgpu_sgl *sgl = NULL; int err = 0; if (g->mm.vidmem.ce_ctx_id == (u32)~0) return -EINVAL; alloc = mem->vidmem_alloc; vidmem_dbg(g, "Clearing VIDMEM buf:"); nvgpu_sgt_for_each_sgl(sgl, &alloc->sgt) { if (gk20a_last_fence) gk20a_fence_put(gk20a_last_fence); err = gk20a_ce_execute_ops(g, g->mm.vidmem.ce_ctx_id, 0, nvgpu_sgt_get_phys(g, &alloc->sgt, sgl), nvgpu_sgt_get_length(&alloc->sgt, sgl), 0x00000000, NVGPU_CE_DST_LOCATION_LOCAL_FB, NVGPU_CE_MEMSET, 0, &gk20a_fence_out); if (err) { nvgpu_err(g, "Failed gk20a_ce_execute_ops[%d]", err); return err; } vidmem_dbg(g, " > [0x%llx +0x%llx]", nvgpu_sgt_get_phys(g, &alloc->sgt, sgl), nvgpu_sgt_get_length(&alloc->sgt, sgl)); gk20a_last_fence = gk20a_fence_out; } if (gk20a_last_fence) { struct nvgpu_timeout timeout; nvgpu_timeout_init(g, &timeout, gk20a_get_gr_idle_timeout(g), NVGPU_TIMER_CPU_TIMER); do { err = gk20a_fence_wait(g, gk20a_last_fence, gk20a_get_gr_idle_timeout(g)); } while (err == -ERESTARTSYS && !nvgpu_timeout_expired(&timeout)); gk20a_fence_put(gk20a_last_fence); if (err) nvgpu_err(g, "fence wait failed for CE execute ops"); } vidmem_dbg(g, " Done"); return err; } static int nvgpu_vidmem_clear_all(struct gk20a *g) { int err; if (g->mm.vidmem.cleared) return 0; nvgpu_mutex_acquire(&g->mm.vidmem.first_clear_mutex); if (!g->mm.vidmem.cleared) { err = __nvgpu_vidmem_do_clear_all(g); if (err) { nvgpu_mutex_release(&g->mm.vidmem.first_clear_mutex); nvgpu_err(g, "failed to clear whole vidmem"); return err; } } nvgpu_mutex_release(&g->mm.vidmem.first_clear_mutex); return 0; } struct nvgpu_vidmem_buf *nvgpu_vidmem_user_alloc(struct gk20a *g, size_t bytes) { struct nvgpu_vidmem_buf *buf; int err; err = nvgpu_vidmem_clear_all(g); if (err) return ERR_PTR(-ENOMEM); buf = nvgpu_kzalloc(g, sizeof(*buf)); if (!buf) return ERR_PTR(-ENOMEM); buf->g = g; buf->mem = nvgpu_kzalloc(g, sizeof(*buf->mem)); if (!buf->mem) { err = -ENOMEM; goto fail; } err = nvgpu_dma_alloc_vid(g, bytes, buf->mem); if (err) goto fail; /* * Alerts the DMA API that when we free this vidmem buf we have to * clear it to avoid leaking data to userspace. */ buf->mem->mem_flags |= NVGPU_MEM_FLAG_USER_MEM; return buf; fail: /* buf will never be NULL here. */ nvgpu_kfree(g, buf->mem); nvgpu_kfree(g, buf); return ERR_PTR(err); } void nvgpu_vidmem_buf_free(struct gk20a *g, struct nvgpu_vidmem_buf *buf) { /* * In some error paths it's convenient to be able to "free" a NULL buf. */ if (IS_ERR_OR_NULL(buf)) return; nvgpu_dma_free(g, buf->mem); /* * We don't free buf->mem here. This is handled by nvgpu_dma_free()! * Since these buffers are cleared in the background the nvgpu_mem * struct must live on through that. We transfer ownership here to the * DMA API and let the DMA API free the buffer. */ nvgpu_kfree(g, buf); }