/* * Copyright (c) 2017-2020, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include /* * Make sure to use the right coherency aperture if you use this function! This * will not add any checks. If you want to simply use the default coherency then * use nvgpu_aperture_mask(). */ u32 nvgpu_aperture_mask_raw(struct gk20a *g, enum nvgpu_aperture aperture, u32 sysmem_mask, u32 sysmem_coh_mask, u32 vidmem_mask) { /* * Some iGPUs treat sysmem (i.e SoC DRAM) as vidmem. In these cases the * "sysmem" aperture should really be translated to VIDMEM. */ if (!nvgpu_is_enabled(g, NVGPU_MM_HONORS_APERTURE)) { aperture = APERTURE_VIDMEM; } switch (aperture) { case APERTURE_SYSMEM_COH: return sysmem_coh_mask; case APERTURE_SYSMEM: return sysmem_mask; case APERTURE_VIDMEM: return vidmem_mask; case APERTURE_INVALID: WARN_ON("Bad aperture"); } return 0; } u32 nvgpu_aperture_mask(struct gk20a *g, struct nvgpu_mem *mem, u32 sysmem_mask, u32 sysmem_coh_mask, u32 vidmem_mask) { enum nvgpu_aperture ap = mem->aperture; /* * Handle the coherent aperture: ideally most of the driver is not * aware of the difference between coherent and non-coherent sysmem so * we add this translation step here. */ if (nvgpu_is_enabled(g, NVGPU_USE_COHERENT_SYSMEM) && ap == APERTURE_SYSMEM) { ap = APERTURE_SYSMEM_COH; } return nvgpu_aperture_mask_raw(g, ap, sysmem_mask, sysmem_coh_mask, vidmem_mask); } bool nvgpu_aperture_is_sysmem(enum nvgpu_aperture ap) { return ap == APERTURE_SYSMEM_COH || ap == APERTURE_SYSMEM; } bool nvgpu_mem_is_sysmem(struct nvgpu_mem *mem) { return nvgpu_aperture_is_sysmem(mem->aperture); } struct nvgpu_sgl *nvgpu_sgt_get_next(struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl) { return sgt->ops->sgl_next(sgl); } u64 nvgpu_sgt_get_phys(struct gk20a *g, struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl) { return sgt->ops->sgl_phys(g, sgl); } u64 nvgpu_sgt_get_dma(struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl) { return sgt->ops->sgl_dma(sgl); } u64 nvgpu_sgt_get_length(struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl) { return sgt->ops->sgl_length(sgl); } u64 nvgpu_sgt_get_gpu_addr(struct gk20a *g, struct nvgpu_sgt *sgt, struct nvgpu_sgl *sgl, struct nvgpu_gmmu_attrs *attrs) { return sgt->ops->sgl_gpu_addr(g, sgl, attrs); } bool nvgpu_sgt_iommuable(struct gk20a *g, struct nvgpu_sgt *sgt) { if (sgt->ops->sgt_iommuable) { return sgt->ops->sgt_iommuable(g, sgt); } return false; } void nvgpu_sgt_free(struct gk20a *g, struct nvgpu_sgt *sgt) { if (sgt != NULL && sgt->ops->sgt_free != NULL) { sgt->ops->sgt_free(g, sgt); } } u64 nvgpu_mem_iommu_translate(struct gk20a *g, u64 phys) { /* ensure it is not vidmem allocation */ WARN_ON(nvgpu_addr_is_vidmem_page_alloc(phys)); if (nvgpu_iommuable(g) && g->ops.mm.get_iommu_bit != NULL) { return phys | 1ULL << g->ops.mm.get_iommu_bit(g); } return phys; } /* * Determine alignment for a passed buffer. Necessary since the buffer may * appear big enough to map with large pages but the SGL may have chunks that * are not aligned on a 64/128kB large page boundary. There's also the * possibility chunks are odd sizes which will necessitate small page mappings * to correctly glue them together into a contiguous virtual mapping. */ u64 nvgpu_sgt_alignment(struct gk20a *g, struct nvgpu_sgt *sgt) { u64 align = 0, chunk_align = 0; struct nvgpu_sgl *sgl; /* * If this SGT is iommuable and we want to use the IOMMU address then * the SGT's first entry has the IOMMU address. We will align on this * and double check length of buffer later. Also, since there's an * IOMMU we know that this DMA address is contiguous. */ if (nvgpu_iommuable(g) && nvgpu_sgt_iommuable(g, sgt) && nvgpu_sgt_get_dma(sgt, sgt->sgl) != 0ULL) { return 1ULL << __ffs(nvgpu_sgt_get_dma(sgt, sgt->sgl)); } /* * Otherwise the buffer is not iommuable (VIDMEM, for example) or we are * bypassing the IOMMU and need to use the underlying physical entries * of the SGT. */ nvgpu_sgt_for_each_sgl(sgl, sgt) { chunk_align = 1ULL << __ffs(nvgpu_sgt_get_phys(g, sgt, sgl) | nvgpu_sgt_get_length(sgt, sgl)); if (align) { align = min(align, chunk_align); } else { align = chunk_align; } } return align; } u32 nvgpu_mem_rd32(struct gk20a *g, struct nvgpu_mem *mem, u32 w) { u32 data = 0; if (mem->aperture == APERTURE_SYSMEM) { u32 *ptr = mem->cpu_va; WARN_ON(ptr == NULL); data = ptr[w]; } else if (mem->aperture == APERTURE_VIDMEM) { nvgpu_pramin_rd_n(g, mem, w * sizeof(u32), sizeof(u32), &data); } else { WARN_ON("Accessing unallocated nvgpu_mem"); } return data; } u32 nvgpu_mem_rd(struct gk20a *g, struct nvgpu_mem *mem, u32 offset) { WARN_ON((offset & 3U) != 0U); return nvgpu_mem_rd32(g, mem, offset / sizeof(u32)); } void nvgpu_mem_rd_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, void *dest, u32 size) { WARN_ON((offset & 3U) != 0U); WARN_ON((size & 3U) != 0U); if (mem->aperture == APERTURE_SYSMEM) { u8 *src = (u8 *)mem->cpu_va + offset; WARN_ON(mem->cpu_va == NULL); memcpy(dest, src, size); } else if (mem->aperture == APERTURE_VIDMEM) { nvgpu_pramin_rd_n(g, mem, offset, size, dest); } else { WARN_ON("Accessing unallocated nvgpu_mem"); } } void nvgpu_mem_wr32(struct gk20a *g, struct nvgpu_mem *mem, u32 w, u32 data) { if (mem->aperture == APERTURE_SYSMEM) { u32 *ptr = mem->cpu_va; WARN_ON(ptr == NULL); ptr[w] = data; } else if (mem->aperture == APERTURE_VIDMEM) { nvgpu_pramin_wr_n(g, mem, w * sizeof(u32), sizeof(u32), &data); if (!mem->skip_wmb) { nvgpu_wmb(); } } else { WARN_ON("Accessing unallocated nvgpu_mem"); } } void nvgpu_mem_wr(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 data) { WARN_ON((offset & 3U) != 0U); nvgpu_mem_wr32(g, mem, offset / sizeof(u32), data); } void nvgpu_mem_wr_n(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, void *src, u32 size) { WARN_ON((offset & 3U) != 0U); WARN_ON((size & 3U) != 0U); if (mem->aperture == APERTURE_SYSMEM) { u8 *dest = (u8 *)mem->cpu_va + offset; WARN_ON(mem->cpu_va == NULL); memcpy(dest, src, size); } else if (mem->aperture == APERTURE_VIDMEM) { nvgpu_pramin_wr_n(g, mem, offset, size, src); if (!mem->skip_wmb) { nvgpu_wmb(); } } else { WARN_ON("Accessing unallocated nvgpu_mem"); } } void nvgpu_memset(struct gk20a *g, struct nvgpu_mem *mem, u32 offset, u32 c, u32 size) { WARN_ON((offset & 3U) != 0U); WARN_ON((size & 3U) != 0U); WARN_ON((c & ~0xffU) != 0U); c &= 0xffU; if (mem->aperture == APERTURE_SYSMEM) { u8 *dest = (u8 *)mem->cpu_va + offset; WARN_ON(mem->cpu_va == NULL); memset(dest, c, size); } else if (mem->aperture == APERTURE_VIDMEM) { u32 repeat_value = c | (c << 8) | (c << 16) | (c << 24); nvgpu_pramin_memset(g, mem, offset, size, repeat_value); if (!mem->skip_wmb) { nvgpu_wmb(); } } else { WARN_ON("Accessing unallocated nvgpu_mem"); } }