/* * Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include /* * Attempt to find a reserved memory area to determine PTE size for the passed * mapping. If no reserved area can be found use small pages. */ static u32 nvgpu_vm_get_pte_size_fixed_map(struct vm_gk20a *vm, u64 base, u64 size) { struct nvgpu_vm_area *vm_area; vm_area = nvgpu_vm_area_find(vm, base); if (vm_area == NULL) { return GMMU_PAGE_SIZE_SMALL; } return vm_area->pgsz_idx; } /* * This is for when the address space does not support unified address spaces. */ static u32 nvgpu_vm_get_pte_size_split_addr(struct vm_gk20a *vm, u64 base, u64 size) { if (base == 0ULL) { if (size >= vm->gmmu_page_sizes[GMMU_PAGE_SIZE_BIG]) { return GMMU_PAGE_SIZE_BIG; } return GMMU_PAGE_SIZE_SMALL; } else { if (base < nvgpu_gmmu_va_small_page_limit()) { return GMMU_PAGE_SIZE_SMALL; } else { return GMMU_PAGE_SIZE_BIG; } } } /* * This determines the PTE size for a given alloc. Used by both the GVA space * allocator and the mm core code so that agreement can be reached on how to * map allocations. * * The page size of a buffer is this: * * o If the VM doesn't support large pages then obviously small pages * must be used. * o If the base address is non-zero (fixed address map): * - Attempt to find a reserved memory area and use the page size * based on that. * - If no reserved page size is available, default to small pages. * o If the base is zero and we have an SMMU: * - If the size is larger than or equal to the big page size, use big * pages. * - Otherwise use small pages. * o If there's no SMMU: * - Regardless of buffer size use small pages since we have no * - guarantee of contiguity. */ u32 nvgpu_vm_get_pte_size(struct vm_gk20a *vm, u64 base, u64 size) { struct gk20a *g = gk20a_from_vm(vm); if (!vm->big_pages) { return GMMU_PAGE_SIZE_SMALL; } if (!nvgpu_is_enabled(g, NVGPU_MM_UNIFY_ADDRESS_SPACES)) { return nvgpu_vm_get_pte_size_split_addr(vm, base, size); } if (base) { return nvgpu_vm_get_pte_size_fixed_map(vm, base, size); } if (size >= vm->gmmu_page_sizes[GMMU_PAGE_SIZE_BIG] && nvgpu_iommuable(g)) { return GMMU_PAGE_SIZE_BIG; } return GMMU_PAGE_SIZE_SMALL; } int nvgpu_mm_suspend(struct gk20a *g) { nvgpu_log_info(g, "MM suspend running..."); nvgpu_vidmem_thread_pause_sync(&g->mm); g->ops.mm.cbc_clean(g); g->ops.mm.l2_flush(g, false); if (g->ops.fb.disable_hub_intr != NULL) { g->ops.fb.disable_hub_intr(g); } if (g->ops.mm.mmu_fault_disable_hw != NULL) { g->ops.mm.mmu_fault_disable_hw(g); } nvgpu_log_info(g, "MM suspend done!"); return 0; } u64 nvgpu_inst_block_addr(struct gk20a *g, struct nvgpu_mem *inst_block) { if (nvgpu_is_enabled(g, NVGPU_SUPPORT_NVLINK)) { return nvgpu_mem_get_phys_addr(g, inst_block); } else { return nvgpu_mem_get_addr(g, inst_block); } } void nvgpu_free_inst_block(struct gk20a *g, struct nvgpu_mem *inst_block) { if (nvgpu_mem_is_valid(inst_block)) { nvgpu_dma_free(g, inst_block); } } static int nvgpu_alloc_sysmem_flush(struct gk20a *g) { return nvgpu_dma_alloc_sys(g, SZ_4K, &g->mm.sysmem_flush); } static void nvgpu_remove_mm_ce_support(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); if (mm->vidmem.ce_ctx_id != (u32)~0) { gk20a_ce_delete_context_priv(g, mm->vidmem.ce_ctx_id); } mm->vidmem.ce_ctx_id = (u32)~0; nvgpu_vm_put(mm->ce.vm); } static void nvgpu_remove_mm_support(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); nvgpu_dma_free(g, &mm->mmu_wr_mem); nvgpu_dma_free(g, &mm->mmu_rd_mem); if (g->ops.mm.fault_info_mem_destroy) { g->ops.mm.fault_info_mem_destroy(g); } if (g->ops.mm.remove_bar2_vm) { g->ops.mm.remove_bar2_vm(g); } nvgpu_free_inst_block(g, &mm->bar1.inst_block); nvgpu_vm_put(mm->bar1.vm); nvgpu_free_inst_block(g, &mm->pmu.inst_block); nvgpu_free_inst_block(g, &mm->hwpm.inst_block); nvgpu_vm_put(mm->pmu.vm); if (g->has_cde) { nvgpu_vm_put(mm->cde.vm); } nvgpu_semaphore_sea_destroy(g); nvgpu_vidmem_destroy(g); nvgpu_pd_cache_fini(g); if (g->ops.fifo.deinit_pdb_cache_war) { g->ops.fifo.deinit_pdb_cache_war(g); } } /* pmu vm, share channel_vm interfaces */ static int nvgpu_init_system_vm(struct mm_gk20a *mm) { int err; struct gk20a *g = gk20a_from_mm(mm); struct nvgpu_mem *inst_block = &mm->pmu.inst_block; u32 big_page_size = g->ops.mm.get_default_big_page_size(); u64 low_hole, aperture_size; /* * For some reason the maxwell PMU code is dependent on the large page * size. No reason AFAICT for this. Probably a bug somewhere. */ if (nvgpu_is_enabled(g, NVGPU_MM_FORCE_128K_PMU_VM)) { big_page_size = SZ_128K; } /* * No user region - so we will pass that as zero sized. */ low_hole = SZ_4K * 16UL; aperture_size = GK20A_PMU_VA_SIZE; mm->pmu.aperture_size = GK20A_PMU_VA_SIZE; nvgpu_log_info(g, "pmu vm size = 0x%x", mm->pmu.aperture_size); mm->pmu.vm = nvgpu_vm_init(g, big_page_size, low_hole, aperture_size - low_hole, aperture_size, true, false, "system"); if (mm->pmu.vm == NULL) { return -ENOMEM; } err = g->ops.mm.alloc_inst_block(g, inst_block); if (err) { goto clean_up_vm; } g->ops.mm.init_inst_block(inst_block, mm->pmu.vm, big_page_size); return 0; clean_up_vm: nvgpu_vm_put(mm->pmu.vm); return err; } static int nvgpu_init_hwpm(struct mm_gk20a *mm) { int err; struct gk20a *g = gk20a_from_mm(mm); struct nvgpu_mem *inst_block = &mm->hwpm.inst_block; err = g->ops.mm.alloc_inst_block(g, inst_block); if (err) { return err; } g->ops.mm.init_inst_block(inst_block, mm->pmu.vm, 0); return 0; } static int nvgpu_init_cde_vm(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); u32 big_page_size = g->ops.mm.get_default_big_page_size(); mm->cde.vm = nvgpu_vm_init(g, big_page_size, big_page_size << 10, NV_MM_DEFAULT_KERNEL_SIZE, NV_MM_DEFAULT_KERNEL_SIZE + NV_MM_DEFAULT_USER_SIZE, false, false, "cde"); if (mm->cde.vm == NULL) { return -ENOMEM; } return 0; } static int nvgpu_init_ce_vm(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); u32 big_page_size = g->ops.mm.get_default_big_page_size(); mm->ce.vm = nvgpu_vm_init(g, big_page_size, big_page_size << 10, NV_MM_DEFAULT_KERNEL_SIZE, NV_MM_DEFAULT_KERNEL_SIZE + NV_MM_DEFAULT_USER_SIZE, false, false, "ce"); if (mm->ce.vm == NULL) { return -ENOMEM; } return 0; } static int nvgpu_init_mmu_debug(struct mm_gk20a *mm) { struct gk20a *g = gk20a_from_mm(mm); int err; if (!nvgpu_mem_is_valid(&mm->mmu_wr_mem)) { err = nvgpu_dma_alloc_sys(g, SZ_4K, &mm->mmu_wr_mem); if (err) { goto err; } } if (!nvgpu_mem_is_valid(&mm->mmu_rd_mem)) { err = nvgpu_dma_alloc_sys(g, SZ_4K, &mm->mmu_rd_mem); if (err) { goto err_free_wr_mem; } } return 0; err_free_wr_mem: nvgpu_dma_free(g, &mm->mmu_wr_mem); err: return -ENOMEM; } void nvgpu_init_mm_ce_context(struct gk20a *g) { #if defined(CONFIG_GK20A_VIDMEM) if (g->mm.vidmem.size && (g->mm.vidmem.ce_ctx_id == (u32)~0)) { g->mm.vidmem.ce_ctx_id = gk20a_ce_create_context(g, gk20a_fifo_get_fast_ce_runlist_id(g), -1, -1); if (g->mm.vidmem.ce_ctx_id == (u32)~0) nvgpu_err(g, "Failed to allocate CE context for vidmem page clearing support"); } #endif } static int nvgpu_init_mm_reset_enable_hw(struct gk20a *g) { if (g->ops.mc.fb_reset) { g->ops.mc.fb_reset(g); } nvgpu_cg_slcg_fb_ltc_load_enable(g); nvgpu_cg_blcg_fb_ltc_load_enable(g); if (g->ops.fb.init_fs_state) { g->ops.fb.init_fs_state(g); } return 0; } static int nvgpu_init_bar1_vm(struct mm_gk20a *mm) { int err; struct gk20a *g = gk20a_from_mm(mm); struct nvgpu_mem *inst_block = &mm->bar1.inst_block; u32 big_page_size = g->ops.mm.get_default_big_page_size(); mm->bar1.aperture_size = bar1_aperture_size_mb_gk20a() << 20; nvgpu_log_info(g, "bar1 vm size = 0x%x", mm->bar1.aperture_size); mm->bar1.vm = nvgpu_vm_init(g, big_page_size, SZ_64K, mm->bar1.aperture_size - SZ_64K, mm->bar1.aperture_size, true, false, "bar1"); if (mm->bar1.vm == NULL) { return -ENOMEM; } err = g->ops.mm.alloc_inst_block(g, inst_block); if (err) { goto clean_up_vm; } g->ops.mm.init_inst_block(inst_block, mm->bar1.vm, big_page_size); return 0; clean_up_vm: nvgpu_vm_put(mm->bar1.vm); return err; } static int nvgpu_init_mm_setup_sw(struct gk20a *g) { struct mm_gk20a *mm = &g->mm; int err = 0; if (mm->sw_ready) { nvgpu_log_info(g, "skip init"); return 0; } mm->g = g; err = nvgpu_mutex_init(&mm->l2_op_lock); if (err != 0) { nvgpu_err(g, "Error in l2_op_lock mutex initialization"); return err; } /*TBD: make channel vm size configurable */ mm->channel.user_size = NV_MM_DEFAULT_USER_SIZE - NV_MM_DEFAULT_KERNEL_SIZE; mm->channel.kernel_size = NV_MM_DEFAULT_KERNEL_SIZE; nvgpu_log_info(g, "channel vm size: user %dMB kernel %dMB", (int)(mm->channel.user_size >> 20), (int)(mm->channel.kernel_size >> 20)); nvgpu_init_pramin(mm); mm->vidmem.ce_ctx_id = (u32)~0; err = nvgpu_vidmem_init(mm); if (err) { return err; } /* * this requires fixed allocations in vidmem which must be * allocated before all other buffers */ if (g->acr.alloc_blob_space != NULL && !nvgpu_is_enabled(g, NVGPU_MM_UNIFIED_MEMORY)) { err = g->acr.alloc_blob_space(g, 0, &g->acr.ucode_blob); if (err) { return err; } } err = nvgpu_alloc_sysmem_flush(g); if (err) { return err; } err = nvgpu_init_bar1_vm(mm); if (err) { return err; } if (g->ops.mm.init_bar2_vm) { err = g->ops.mm.init_bar2_vm(g); if (err) { return err; } } err = nvgpu_init_system_vm(mm); if (err) { return err; } err = nvgpu_init_hwpm(mm); if (err) { return err; } if (g->has_cde) { err = nvgpu_init_cde_vm(mm); if (err) { return err; } } err = nvgpu_init_ce_vm(mm); if (err) { return err; } err = nvgpu_init_mmu_debug(mm); if (err) return err; mm->remove_support = nvgpu_remove_mm_support; mm->remove_ce_support = nvgpu_remove_mm_ce_support; mm->sw_ready = true; return 0; } static int nvgpu_init_mm_pdb_cache_war(struct gk20a *g) { int err; if (g->ops.fifo.init_pdb_cache_war) { err = g->ops.fifo.init_pdb_cache_war(g); if (err) { return err; } } if (g->ops.fb.apply_pdb_cache_war) { err = g->ops.fb.apply_pdb_cache_war(g); if (err) { return err; } } return 0; } int nvgpu_init_mm_support(struct gk20a *g) { u32 err; err = nvgpu_init_mm_reset_enable_hw(g); if (err) { return err; } err = nvgpu_init_mm_pdb_cache_war(g); if (err) { return err; } err = nvgpu_init_mm_setup_sw(g); if (err) { return err; } if (g->ops.mm.init_mm_setup_hw) { err = g->ops.mm.init_mm_setup_hw(g); } return err; } u32 nvgpu_mm_get_default_big_page_size(struct gk20a *g) { u32 big_page_size; big_page_size = g->ops.mm.get_default_big_page_size(); if (g->mm.disable_bigpage) { big_page_size = 0; } return big_page_size; } u32 nvgpu_mm_get_available_big_page_sizes(struct gk20a *g) { u32 available_big_page_sizes = 0; if (!g->mm.disable_bigpage) { available_big_page_sizes = g->ops.mm.get_default_big_page_size(); if (g->ops.mm.get_big_page_sizes) { available_big_page_sizes |= g->ops.mm.get_big_page_sizes(); } } return available_big_page_sizes; }