/* * Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include "gk20a/gk20a.h" #include "os_linux.h" #include "sim.h" #include "hw_sim_pci.h" static inline void sim_writel(struct sim_gk20a *sim, u32 r, u32 v) { struct sim_gk20a_linux *sim_linux = container_of(sim, struct sim_gk20a_linux, sim); writel(v, sim_linux->regs + r); } static inline u32 sim_readl(struct sim_gk20a *sim, u32 r) { struct sim_gk20a_linux *sim_linux = container_of(sim, struct sim_gk20a_linux, sim); return readl(sim_linux->regs + r); } static int gk20a_alloc_sim_buffer(struct gk20a *g, struct nvgpu_mem *mem) { int err; err = nvgpu_dma_alloc(g, PAGE_SIZE, mem); if (err) return err; /* * create a valid cpu_va mapping */ nvgpu_mem_begin(g, mem); return 0; } static void gk20a_free_sim_buffer(struct gk20a *g, struct nvgpu_mem *mem) { if (nvgpu_mem_is_valid(mem)) { /* * invalidate the cpu_va mapping */ nvgpu_mem_end(g, mem); nvgpu_dma_free(g, mem); } memset(mem, 0, sizeof(*mem)); } static void gk20a_free_sim_support(struct gk20a *g) { struct sim_gk20a_linux *sim_linux = container_of(g->sim, struct sim_gk20a_linux, sim); gk20a_free_sim_buffer(g, &sim_linux->send_bfr); gk20a_free_sim_buffer(g, &sim_linux->recv_bfr); gk20a_free_sim_buffer(g, &sim_linux->msg_bfr); } static void gk20a_remove_sim_support(struct sim_gk20a *s) { struct gk20a *g = s->g; struct sim_gk20a_linux *sim_linux = container_of(g->sim, struct sim_gk20a_linux, sim); if (sim_linux->regs) sim_writel(s, sim_config_r(), sim_config_mode_disabled_v()); gk20a_free_sim_support(g); if (sim_linux->regs) { iounmap(sim_linux->regs); sim_linux->regs = NULL; } nvgpu_kfree(g, sim_linux); g->sim = NULL; } static inline u32 sim_msg_header_size(void) { return 32U; } static inline u32 *sim_msg_bfr(struct gk20a *g, u32 byte_offset) { struct sim_gk20a_linux *sim_linux = container_of(g->sim, struct sim_gk20a_linux, sim); u8 *cpu_va; cpu_va = (u8 *)sim_linux->msg_bfr.cpu_va; return (u32 *)(cpu_va + byte_offset); } static inline u32 *sim_msg_hdr(struct gk20a *g, u32 byte_offset) { return sim_msg_bfr(g, byte_offset); /* starts at 0 */ } static inline u32 *sim_msg_param(struct gk20a *g, u32 byte_offset) { /* starts after msg header/cmn */ return sim_msg_bfr(g, byte_offset + sim_msg_header_size()); } static inline void sim_write_hdr(struct gk20a *g, u32 func, u32 size) { *sim_msg_hdr(g, sim_msg_header_version_r()) = sim_msg_header_version_major_tot_v() | sim_msg_header_version_minor_tot_v(); *sim_msg_hdr(g, sim_msg_signature_r()) = sim_msg_signature_valid_v(); *sim_msg_hdr(g, sim_msg_result_r()) = sim_msg_result_rpc_pending_v(); *sim_msg_hdr(g, sim_msg_spare_r()) = sim_msg_spare__init_v(); *sim_msg_hdr(g, sim_msg_function_r()) = func; *sim_msg_hdr(g, sim_msg_length_r()) = size + sim_msg_header_size(); } static inline u32 sim_escape_read_hdr_size(void) { return 12U; } static u32 *sim_send_ring_bfr(struct gk20a *g, u32 byte_offset) { struct sim_gk20a_linux *sim_linux = container_of(g->sim, struct sim_gk20a_linux, sim); u8 *cpu_va; cpu_va = (u8 *)sim_linux->send_bfr.cpu_va; return (u32 *)(cpu_va + byte_offset); } static int rpc_send_message(struct gk20a *g) { /* calculations done in units of u32s */ u32 send_base = sim_send_put_pointer_v(g->sim->send_ring_put) * 2; u32 dma_offset = send_base + sim_dma_r()/sizeof(u32); u32 dma_hi_offset = send_base + sim_dma_hi_r()/sizeof(u32); struct sim_gk20a_linux *sim_linux = container_of(g->sim, struct sim_gk20a_linux, sim); *sim_send_ring_bfr(g, dma_offset*sizeof(u32)) = sim_dma_target_phys_pci_coherent_f() | sim_dma_status_valid_f() | sim_dma_size_4kb_f() | sim_dma_addr_lo_f(nvgpu_mem_get_addr(g, &sim_linux->msg_bfr) >> PAGE_SHIFT); *sim_send_ring_bfr(g, dma_hi_offset*sizeof(u32)) = u64_hi32(nvgpu_mem_get_addr(g, &sim_linux->msg_bfr)); *sim_msg_hdr(g, sim_msg_sequence_r()) = g->sim->sequence_base++; g->sim->send_ring_put = (g->sim->send_ring_put + 2 * sizeof(u32)) % PAGE_SIZE; /* Update the put pointer. This will trap into the host. */ sim_writel(g->sim, sim_send_put_r(), g->sim->send_ring_put); return 0; } static inline u32 *sim_recv_ring_bfr(struct gk20a *g, u32 byte_offset) { struct sim_gk20a_linux *sim_linux = container_of(g->sim, struct sim_gk20a_linux, sim); u8 *cpu_va; cpu_va = (u8 *)sim_linux->recv_bfr.cpu_va; return (u32 *)(cpu_va + byte_offset); } static int rpc_recv_poll(struct gk20a *g) { u64 recv_phys_addr; struct sim_gk20a_linux *sim_linux = container_of(g->sim, struct sim_gk20a_linux, sim); /* Poll the recv ring get pointer in an infinite loop */ do { g->sim->recv_ring_put = sim_readl(g->sim, sim_recv_put_r()); } while (g->sim->recv_ring_put == g->sim->recv_ring_get); /* process all replies */ while (g->sim->recv_ring_put != g->sim->recv_ring_get) { /* these are in u32 offsets */ u32 dma_lo_offset = sim_recv_put_pointer_v(g->sim->recv_ring_get)*2 + 0; u32 dma_hi_offset = dma_lo_offset + 1; u32 recv_phys_addr_lo = sim_dma_addr_lo_v( *sim_recv_ring_bfr(g, dma_lo_offset*4)); u32 recv_phys_addr_hi = sim_dma_hi_addr_v( *sim_recv_ring_bfr(g, dma_hi_offset*4)); recv_phys_addr = (u64)recv_phys_addr_hi << 32 | (u64)recv_phys_addr_lo << PAGE_SHIFT; if (recv_phys_addr != nvgpu_mem_get_addr(g, &sim_linux->msg_bfr)) { nvgpu_err(g, "Error in RPC reply"); return -EINVAL; } /* Update GET pointer */ g->sim->recv_ring_get = (g->sim->recv_ring_get + 2*sizeof(u32)) % PAGE_SIZE; sim_writel(g->sim, sim_recv_get_r(), g->sim->recv_ring_get); g->sim->recv_ring_put = sim_readl(g->sim, sim_recv_put_r()); } return 0; } static int issue_rpc_and_wait(struct gk20a *g) { int err; err = rpc_send_message(g); if (err) { nvgpu_err(g, "failed rpc_send_message"); return err; } err = rpc_recv_poll(g); if (err) { nvgpu_err(g, "failed rpc_recv_poll"); return err; } /* Now check if RPC really succeeded */ if (*sim_msg_hdr(g, sim_msg_result_r()) != sim_msg_result_success_v()) { nvgpu_err(g, "received failed status!"); return -EINVAL; } return 0; } static int gk20a_sim_esc_readl(struct gk20a *g, char *path, u32 index, u32 *data) { int err; size_t pathlen = strlen(path); u32 data_offset; sim_write_hdr(g, sim_msg_function_sim_escape_read_v(), sim_escape_read_hdr_size()); *sim_msg_param(g, 0) = index; *sim_msg_param(g, 4) = sizeof(u32); data_offset = roundup(pathlen + 1, sizeof(u32)); *sim_msg_param(g, 8) = data_offset; strcpy((char *)sim_msg_param(g, 0xc), path); err = issue_rpc_and_wait(g); if (!err) memcpy(data, sim_msg_param(g, data_offset + 0xc), sizeof(u32)); return err; } static bool _nvgpu_pci_is_simulation(struct gk20a *g, u32 sim_base) { u32 cfg; bool is_simulation = false; cfg = nvgpu_readl(g, sim_base + sim_config_r()); if (sim_config_mode_v(cfg) == sim_config_mode_enabled_v()) is_simulation = true; return is_simulation; } int nvgpu_pci_init_sim_support(struct gk20a *g) { int err = 0; u64 phys; struct sim_gk20a_linux *sim_linux; bool is_simulation; struct nvgpu_os_linux *l = nvgpu_os_linux_from_gk20a(g); /* initialize sim aperture */ is_simulation = _nvgpu_pci_is_simulation(g, sim_r()); __nvgpu_set_enabled(g, NVGPU_IS_FMODEL, is_simulation); if (!is_simulation) return 0; sim_linux = nvgpu_kzalloc(g, sizeof(*sim_linux)); if (!sim_linux) goto fail; g->sim = &sim_linux->sim; sim_linux->regs = l->regs + sim_r(); /* allocate sim event/msg buffers */ err = gk20a_alloc_sim_buffer(g, &sim_linux->send_bfr); err = err || gk20a_alloc_sim_buffer(g, &sim_linux->recv_bfr); err = err || gk20a_alloc_sim_buffer(g, &sim_linux->msg_bfr); if (err) goto fail; /* mark send ring invalid */ sim_writel(g->sim, sim_send_ring_r(), sim_send_ring_status_invalid_f()); /* read get pointer and make equal to put */ g->sim->send_ring_put = sim_readl(g->sim, sim_send_get_r()); sim_writel(g->sim, sim_send_put_r(), g->sim->send_ring_put); /* write send ring address and make it valid */ phys = nvgpu_mem_get_addr(g, &sim_linux->send_bfr); sim_writel(g->sim, sim_send_ring_hi_r(), sim_send_ring_hi_addr_f(u64_hi32(phys))); sim_writel(g->sim, sim_send_ring_r(), sim_send_ring_status_valid_f() | sim_send_ring_target_phys_pci_coherent_f() | sim_send_ring_size_4kb_f() | sim_send_ring_addr_lo_f(phys >> PAGE_SHIFT)); /* repeat for recv ring (but swap put,get as roles are opposite) */ sim_writel(g->sim, sim_recv_ring_r(), sim_recv_ring_status_invalid_f()); /* read put pointer and make equal to get */ g->sim->recv_ring_get = sim_readl(g->sim, sim_recv_put_r()); sim_writel(g->sim, sim_recv_get_r(), g->sim->recv_ring_get); /* write send ring address and make it valid */ phys = nvgpu_mem_get_addr(g, &sim_linux->recv_bfr); sim_writel(g->sim, sim_recv_ring_hi_r(), sim_recv_ring_hi_addr_f(u64_hi32(phys))); sim_writel(g->sim, sim_recv_ring_r(), sim_recv_ring_status_valid_f() | sim_recv_ring_target_phys_pci_coherent_f() | sim_recv_ring_size_4kb_f() | sim_recv_ring_addr_lo_f(phys >> PAGE_SHIFT)); g->sim->remove_support = gk20a_remove_sim_support; g->sim->esc_readl = gk20a_sim_esc_readl; return 0; fail: gk20a_free_sim_support(g); return err; }