/* * Copyright (c) 2016-2017, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "gk20a/gk20a.h" #include "clk/clk.h" #include "pstate/pstate.h" #include "lpwr/lpwr.h" #include "volt/volt.h" int nvgpu_clk_notification_queue_alloc(struct gk20a *g, struct nvgpu_clk_notification_queue *queue, size_t events_number) { queue->notifications = nvgpu_kcalloc(g, events_number, sizeof(struct nvgpu_clk_notification)); if (!queue->notifications) return -ENOMEM; queue->size = events_number; nvgpu_atomic_set(&queue->head, 0); nvgpu_atomic_set(&queue->tail, 0); return 0; } void nvgpu_clk_notification_queue_free(struct gk20a *g, struct nvgpu_clk_notification_queue *queue) { nvgpu_kfree(g, queue->notifications); queue->size = 0; nvgpu_atomic_set(&queue->head, 0); nvgpu_atomic_set(&queue->tail, 0); } static void nvgpu_clk_arb_queue_notification(struct gk20a *g, struct nvgpu_clk_notification_queue *queue, u32 alarm_mask) { u32 queue_index; u64 timestamp; queue_index = (nvgpu_atomic_inc_return(&queue->tail)) % queue->size; /* get current timestamp */ timestamp = (u64) sched_clock(); queue->notifications[queue_index].timestamp = timestamp; queue->notifications[queue_index].notification = alarm_mask; } static void nvgpu_clk_arb_set_global_alarm(struct gk20a *g, u32 alarm) { struct nvgpu_clk_arb *arb = g->clk_arb; u64 current_mask; u32 refcnt; u32 alarm_mask; u64 new_mask; do { current_mask = nvgpu_atomic64_read(&arb->alarm_mask); /* atomic operations are strong so they do not need masks */ refcnt = ((u32) (current_mask >> 32)) + 1; alarm_mask = (u32) (current_mask & ~0) | alarm; new_mask = ((u64) refcnt << 32) | alarm_mask; } while (unlikely(current_mask != (u64)nvgpu_atomic64_cmpxchg(&arb->alarm_mask, current_mask, new_mask))); nvgpu_clk_arb_queue_notification(g, &arb->notification_queue, alarm); } static int nvgpu_clk_arb_update_vf_table(struct nvgpu_clk_arb *arb) { struct gk20a *g = arb->g; struct nvgpu_clk_vf_table *table; u32 i, j; int status = -EINVAL; u32 gpc2clk_voltuv = 0, mclk_voltuv = 0; u32 gpc2clk_voltuv_sram = 0, mclk_voltuv_sram = 0; u16 clk_cur; u32 num_points; struct clk_set_info *p5_info, *p0_info; table = NV_ACCESS_ONCE(arb->current_vf_table); /* make flag visible when all data has resolved in the tables */ nvgpu_smp_rmb(); table = (table == &arb->vf_table_pool[0]) ? &arb->vf_table_pool[1] : &arb->vf_table_pool[0]; /* Get allowed memory ranges */ if (g->ops.clk_arb.get_arbiter_clk_range(g, CTRL_CLK_DOMAIN_GPC2CLK, &arb->gpc2clk_min, &arb->gpc2clk_max) < 0) { nvgpu_err(g, "failed to fetch GPC2CLK range"); goto exit_vf_table; } if (g->ops.clk_arb.get_arbiter_clk_range(g, CTRL_CLK_DOMAIN_MCLK, &arb->mclk_min, &arb->mclk_max) < 0) { nvgpu_err(g, "failed to fetch MCLK range"); goto exit_vf_table; } table->gpc2clk_num_points = MAX_F_POINTS; table->mclk_num_points = MAX_F_POINTS; if (clk_domain_get_f_points(arb->g, CTRL_CLK_DOMAIN_GPC2CLK, &table->gpc2clk_num_points, arb->gpc2clk_f_points)) { nvgpu_err(g, "failed to fetch GPC2CLK frequency points"); goto exit_vf_table; } if (clk_domain_get_f_points(arb->g, CTRL_CLK_DOMAIN_MCLK, &table->mclk_num_points, arb->mclk_f_points)) { nvgpu_err(g, "failed to fetch MCLK frequency points"); goto exit_vf_table; } if (!table->mclk_num_points || !table->gpc2clk_num_points) { nvgpu_err(g, "empty queries to f points mclk %d gpc2clk %d", table->mclk_num_points, table->gpc2clk_num_points); status = -EINVAL; goto exit_vf_table; } memset(table->mclk_points, 0, table->mclk_num_points*sizeof(struct nvgpu_clk_vf_point)); memset(table->gpc2clk_points, 0, table->gpc2clk_num_points*sizeof(struct nvgpu_clk_vf_point)); p5_info = pstate_get_clk_set_info(g, CTRL_PERF_PSTATE_P5, clkwhich_mclk); if (!p5_info) { nvgpu_err(g, "failed to get MCLK P5 info"); goto exit_vf_table; } p0_info = pstate_get_clk_set_info(g, CTRL_PERF_PSTATE_P0, clkwhich_mclk); if (!p0_info) { nvgpu_err(g, "failed to get MCLK P0 info"); goto exit_vf_table; } for (i = 0, j = 0, num_points = 0, clk_cur = 0; i < table->mclk_num_points; i++) { if ((arb->mclk_f_points[i] >= arb->mclk_min) && (arb->mclk_f_points[i] <= arb->mclk_max) && (arb->mclk_f_points[i] != clk_cur)) { table->mclk_points[j].mem_mhz = arb->mclk_f_points[i]; mclk_voltuv = mclk_voltuv_sram = 0; status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_MCLK, &table->mclk_points[j].mem_mhz, &mclk_voltuv, CTRL_VOLT_DOMAIN_LOGIC); if (status < 0) { nvgpu_err(g, "failed to get MCLK LOGIC voltage"); goto exit_vf_table; } status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_MCLK, &table->mclk_points[j].mem_mhz, &mclk_voltuv_sram, CTRL_VOLT_DOMAIN_SRAM); if (status < 0) { nvgpu_err(g, "failed to get MCLK SRAM voltage"); goto exit_vf_table; } table->mclk_points[j].uvolt = mclk_voltuv; table->mclk_points[j].uvolt_sram = mclk_voltuv_sram; clk_cur = table->mclk_points[j].mem_mhz; if ((clk_cur >= p5_info->min_mhz) && (clk_cur <= p5_info->max_mhz)) VF_POINT_SET_PSTATE_SUPPORTED( &table->mclk_points[j], CTRL_PERF_PSTATE_P5); if ((clk_cur >= p0_info->min_mhz) && (clk_cur <= p0_info->max_mhz)) VF_POINT_SET_PSTATE_SUPPORTED( &table->mclk_points[j], CTRL_PERF_PSTATE_P0); j++; num_points++; } } table->mclk_num_points = num_points; p5_info = pstate_get_clk_set_info(g, CTRL_PERF_PSTATE_P5, clkwhich_gpc2clk); if (!p5_info) { status = -EINVAL; nvgpu_err(g, "failed to get GPC2CLK P5 info"); goto exit_vf_table; } p0_info = pstate_get_clk_set_info(g, CTRL_PERF_PSTATE_P0, clkwhich_gpc2clk); if (!p0_info) { status = -EINVAL; nvgpu_err(g, "failed to get GPC2CLK P0 info"); goto exit_vf_table; } /* GPC2CLK needs to be checked in two passes. The first determines the * relationships between GPC2CLK, SYS2CLK and XBAR2CLK, while the * second verifies that the clocks minimum is satisfied and sets * the voltages */ for (i = 0, j = 0, num_points = 0, clk_cur = 0; i < table->gpc2clk_num_points; i++) { struct set_fll_clk setfllclk; if ((arb->gpc2clk_f_points[i] >= arb->gpc2clk_min) && (arb->gpc2clk_f_points[i] <= arb->gpc2clk_max) && (arb->gpc2clk_f_points[i] != clk_cur)) { table->gpc2clk_points[j].gpc_mhz = arb->gpc2clk_f_points[i]; setfllclk.gpc2clkmhz = arb->gpc2clk_f_points[i]; status = clk_get_fll_clks(g, &setfllclk); if (status < 0) { nvgpu_err(g, "failed to get GPC2CLK slave clocks"); goto exit_vf_table; } table->gpc2clk_points[j].sys_mhz = setfllclk.sys2clkmhz; table->gpc2clk_points[j].xbar_mhz = setfllclk.xbar2clkmhz; clk_cur = table->gpc2clk_points[j].gpc_mhz; if ((clk_cur >= p5_info->min_mhz) && (clk_cur <= p5_info->max_mhz)) VF_POINT_SET_PSTATE_SUPPORTED( &table->gpc2clk_points[j], CTRL_PERF_PSTATE_P5); if ((clk_cur >= p0_info->min_mhz) && (clk_cur <= p0_info->max_mhz)) VF_POINT_SET_PSTATE_SUPPORTED( &table->gpc2clk_points[j], CTRL_PERF_PSTATE_P0); j++; num_points++; } } table->gpc2clk_num_points = num_points; /* Second pass */ for (i = 0, j = 0; i < table->gpc2clk_num_points; i++) { u16 alt_gpc2clk = table->gpc2clk_points[i].gpc_mhz; gpc2clk_voltuv = gpc2clk_voltuv_sram = 0; /* Check sysclk */ p5_info = pstate_get_clk_set_info(g, VF_POINT_GET_PSTATE(&table->gpc2clk_points[i]), clkwhich_sys2clk); if (!p5_info) { status = -EINVAL; nvgpu_err(g, "failed to get SYS2CLK P5 info"); goto exit_vf_table; } /* sys2clk below clk min, need to find correct clock */ if (table->gpc2clk_points[i].sys_mhz < p5_info->min_mhz) { for (j = i + 1; j < table->gpc2clk_num_points; j++) { if (table->gpc2clk_points[j].sys_mhz >= p5_info->min_mhz) { table->gpc2clk_points[i].sys_mhz = p5_info->min_mhz; alt_gpc2clk = alt_gpc2clk < table->gpc2clk_points[j]. gpc_mhz ? table->gpc2clk_points[j]. gpc_mhz : alt_gpc2clk; break; } } /* no VF exists that satisfies condition */ if (j == table->gpc2clk_num_points) { nvgpu_err(g, "NO SYS2CLK VF point possible"); status = -EINVAL; goto exit_vf_table; } } /* Check xbarclk */ p5_info = pstate_get_clk_set_info(g, VF_POINT_GET_PSTATE(&table->gpc2clk_points[i]), clkwhich_xbar2clk); if (!p5_info) { status = -EINVAL; nvgpu_err(g, "failed to get SYS2CLK P5 info"); goto exit_vf_table; } /* xbar2clk below clk min, need to find correct clock */ if (table->gpc2clk_points[i].xbar_mhz < p5_info->min_mhz) { for (j = i; j < table->gpc2clk_num_points; j++) { if (table->gpc2clk_points[j].xbar_mhz >= p5_info->min_mhz) { table->gpc2clk_points[i].xbar_mhz = p5_info->min_mhz; alt_gpc2clk = alt_gpc2clk < table->gpc2clk_points[j]. gpc_mhz ? table->gpc2clk_points[j]. gpc_mhz : alt_gpc2clk; break; } } /* no VF exists that satisfies condition */ if (j == table->gpc2clk_num_points) { status = -EINVAL; nvgpu_err(g, "NO XBAR2CLK VF point possible"); goto exit_vf_table; } } /* Calculate voltages */ status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_GPC2CLK, &alt_gpc2clk, &gpc2clk_voltuv, CTRL_VOLT_DOMAIN_LOGIC); if (status < 0) { nvgpu_err(g, "failed to get GPC2CLK LOGIC voltage"); goto exit_vf_table; } status = clk_domain_get_f_or_v(g, CTRL_CLK_DOMAIN_GPC2CLK, &alt_gpc2clk, &gpc2clk_voltuv_sram, CTRL_VOLT_DOMAIN_SRAM); if (status < 0) { nvgpu_err(g, "failed to get GPC2CLK SRAM voltage"); goto exit_vf_table; } table->gpc2clk_points[i].uvolt = gpc2clk_voltuv; table->gpc2clk_points[i].uvolt_sram = gpc2clk_voltuv_sram; } /* make table visible when all data has resolved in the tables */ nvgpu_smp_wmb(); xchg(&arb->current_vf_table, table); exit_vf_table: if (status < 0) nvgpu_clk_arb_set_global_alarm(g, EVENT(ALARM_VF_TABLE_UPDATE_FAILED)); nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item); return status; } static void nvgpu_clk_arb_run_vf_table_cb(struct nvgpu_clk_arb *arb) { struct gk20a *g = arb->g; u32 err; /* get latest vf curve from pmu */ err = clk_vf_point_cache(g); if (err) { nvgpu_err(g, "failed to cache VF table"); nvgpu_clk_arb_set_global_alarm(g, EVENT(ALARM_VF_TABLE_UPDATE_FAILED)); nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item); return; } nvgpu_clk_arb_update_vf_table(arb); } static u8 nvgpu_clk_arb_find_vf_point(struct nvgpu_clk_arb *arb, u16 *gpc2clk, u16 *sys2clk, u16 *xbar2clk, u16 *mclk, u32 *voltuv, u32 *voltuv_sram, u32 *nuvmin, u32 *nuvmin_sram) { u16 gpc2clk_target, mclk_target; u32 gpc2clk_voltuv, gpc2clk_voltuv_sram; u32 mclk_voltuv, mclk_voltuv_sram; u32 pstate = VF_POINT_INVALID_PSTATE; struct nvgpu_clk_vf_table *table; u32 index, index_mclk; struct nvgpu_clk_vf_point *mclk_vf = NULL; do { gpc2clk_target = *gpc2clk; mclk_target = *mclk; gpc2clk_voltuv = 0; gpc2clk_voltuv_sram = 0; mclk_voltuv = 0; mclk_voltuv_sram = 0; table = NV_ACCESS_ONCE(arb->current_vf_table); /* pointer to table can be updated by callback */ nvgpu_smp_rmb(); if (!table) continue; if ((!table->gpc2clk_num_points) || (!table->mclk_num_points)) { nvgpu_err(arb->g, "found empty table"); goto find_exit; } /* First we check MCLK to find out which PSTATE we are * are requesting, and from there try to find the minimum * GPC2CLK on the same PSTATE that satisfies the request. * If no GPC2CLK can be found, then we need to up the PSTATE */ recalculate_vf_point: for (index = 0; index < table->mclk_num_points; index++) { if (table->mclk_points[index].mem_mhz >= mclk_target) { mclk_vf = &table->mclk_points[index]; break; } } if (index == table->mclk_num_points) { mclk_vf = &table->mclk_points[index-1]; index = table->mclk_num_points - 1; } index_mclk = index; /* round up the freq requests */ for (index = 0; index < table->gpc2clk_num_points; index++) { pstate = VF_POINT_COMMON_PSTATE( &table->gpc2clk_points[index], mclk_vf); if ((table->gpc2clk_points[index].gpc_mhz >= gpc2clk_target) && (pstate != VF_POINT_INVALID_PSTATE)) { gpc2clk_target = table->gpc2clk_points[index].gpc_mhz; *sys2clk = table->gpc2clk_points[index].sys_mhz; *xbar2clk = table->gpc2clk_points[index].xbar_mhz; gpc2clk_voltuv = table->gpc2clk_points[index].uvolt; gpc2clk_voltuv_sram = table->gpc2clk_points[index].uvolt_sram; break; } } if (index == table->gpc2clk_num_points) { pstate = VF_POINT_COMMON_PSTATE( &table->gpc2clk_points[index-1], mclk_vf); if (pstate != VF_POINT_INVALID_PSTATE) { gpc2clk_target = table->gpc2clk_points[index-1].gpc_mhz; *sys2clk = table->gpc2clk_points[index-1].sys_mhz; *xbar2clk = table->gpc2clk_points[index-1].xbar_mhz; gpc2clk_voltuv = table->gpc2clk_points[index-1].uvolt; gpc2clk_voltuv_sram = table->gpc2clk_points[index-1]. uvolt_sram; } else if (index_mclk >= table->mclk_num_points - 1) { /* There is no available combination of MCLK * and GPC2CLK, we need to fail this */ gpc2clk_target = 0; mclk_target = 0; pstate = VF_POINT_INVALID_PSTATE; goto find_exit; } else { /* recalculate with higher PSTATE */ gpc2clk_target = *gpc2clk; mclk_target = table->mclk_points[index_mclk+1]. mem_mhz; goto recalculate_vf_point; } } mclk_target = mclk_vf->mem_mhz; mclk_voltuv = mclk_vf->uvolt; mclk_voltuv_sram = mclk_vf->uvolt_sram; } while (!table || (NV_ACCESS_ONCE(arb->current_vf_table) != table)); find_exit: *voltuv = gpc2clk_voltuv > mclk_voltuv ? gpc2clk_voltuv : mclk_voltuv; *voltuv_sram = gpc2clk_voltuv_sram > mclk_voltuv_sram ? gpc2clk_voltuv_sram : mclk_voltuv_sram; /* noise unaware vmin */ *nuvmin = mclk_voltuv; *nuvmin_sram = mclk_voltuv_sram; *gpc2clk = gpc2clk_target < *gpc2clk ? gpc2clk_target : *gpc2clk; *mclk = mclk_target; return pstate; } static int nvgpu_clk_arb_change_vf_point(struct gk20a *g, u16 gpc2clk_target, u16 sys2clk_target, u16 xbar2clk_target, u16 mclk_target, u32 voltuv, u32 voltuv_sram) { struct set_fll_clk fllclk; struct nvgpu_clk_arb *arb = g->clk_arb; int status; fllclk.gpc2clkmhz = gpc2clk_target; fllclk.sys2clkmhz = sys2clk_target; fllclk.xbar2clkmhz = xbar2clk_target; fllclk.voltuv = voltuv; /* if voltage ascends we do: * (1) FLL change * (2) Voltage change * (3) MCLK change * If it goes down * (1) MCLK change * (2) Voltage change * (3) FLL change */ /* descending */ if (voltuv < arb->voltuv_actual) { status = g->ops.clk.mclk_change(g, mclk_target); if (status < 0) return status; status = volt_set_voltage(g, voltuv, voltuv_sram); if (status < 0) return status; status = clk_set_fll_clks(g, &fllclk); if (status < 0) return status; } else { status = clk_set_fll_clks(g, &fllclk); if (status < 0) return status; status = volt_set_voltage(g, voltuv, voltuv_sram); if (status < 0) return status; status = g->ops.clk.mclk_change(g, mclk_target); if (status < 0) return status; } return 0; } static u32 nvgpu_clk_arb_notify(struct nvgpu_clk_dev *dev, struct nvgpu_clk_arb_target *target, u32 alarm) { struct nvgpu_clk_session *session = dev->session; struct nvgpu_clk_arb *arb = session->g->clk_arb; struct nvgpu_clk_notification *notification; u32 queue_alarm_mask = 0; u32 enabled_mask = 0; u32 new_alarms_reported = 0; u32 poll_mask = 0; u32 tail, head; u32 queue_index; size_t size; int index; enabled_mask = nvgpu_atomic_read(&dev->enabled_mask); size = arb->notification_queue.size; /* queue global arbiter notifications in buffer */ do { tail = nvgpu_atomic_read(&arb->notification_queue.tail); /* copy items to the queue */ queue_index = nvgpu_atomic_read(&dev->queue.tail); head = dev->arb_queue_head; head = (tail - head) < arb->notification_queue.size ? head : tail - arb->notification_queue.size; for (index = head; _WRAPGTEQ(tail, index); index++) { u32 alarm_detected; notification = &arb->notification_queue. notifications[(index+1) % size]; alarm_detected = NV_ACCESS_ONCE(notification->notification); if (!(enabled_mask & alarm_detected)) continue; queue_index++; dev->queue.notifications[ queue_index % dev->queue.size].timestamp = NV_ACCESS_ONCE(notification->timestamp); dev->queue.notifications[ queue_index % dev->queue.size].notification = alarm_detected; queue_alarm_mask |= alarm_detected; } } while (unlikely(nvgpu_atomic_read(&arb->notification_queue.tail) != (int)tail)); nvgpu_atomic_set(&dev->queue.tail, queue_index); /* update the last notification we processed from global queue */ dev->arb_queue_head = tail; /* Check if current session targets are met */ if (enabled_mask & EVENT(ALARM_LOCAL_TARGET_VF_NOT_POSSIBLE)) { if ((target->gpc2clk < session->target->gpc2clk) || (target->mclk < session->target->mclk)) { poll_mask |= (NVGPU_POLLIN | NVGPU_POLLPRI); nvgpu_clk_arb_queue_notification(arb->g, &dev->queue, EVENT(ALARM_LOCAL_TARGET_VF_NOT_POSSIBLE)); } } /* Check if there is a new VF update */ if (queue_alarm_mask & EVENT(VF_UPDATE)) poll_mask |= (NVGPU_POLLIN | NVGPU_POLLRDNORM); /* Notify sticky alarms that were not reported on previous run*/ new_alarms_reported = (queue_alarm_mask | (alarm & ~dev->alarms_reported & queue_alarm_mask)); if (new_alarms_reported & ~LOCAL_ALARM_MASK) { /* check that we are not re-reporting */ if (new_alarms_reported & EVENT(ALARM_GPU_LOST)) poll_mask |= NVGPU_POLLHUP; poll_mask |= (NVGPU_POLLIN | NVGPU_POLLPRI); /* On next run do not report global alarms that were already * reported, but report SHUTDOWN always */ dev->alarms_reported = new_alarms_reported & ~LOCAL_ALARM_MASK & ~EVENT(ALARM_GPU_LOST); } if (poll_mask) { nvgpu_atomic_set(&dev->poll_mask, poll_mask); nvgpu_cond_broadcast_interruptible(&dev->readout_wq); } return new_alarms_reported; } static void nvgpu_clk_arb_clear_global_alarm(struct gk20a *g, u32 alarm) { struct nvgpu_clk_arb *arb = g->clk_arb; u64 current_mask; u32 refcnt; u32 alarm_mask; u64 new_mask; do { current_mask = nvgpu_atomic64_read(&arb->alarm_mask); /* atomic operations are strong so they do not need masks */ refcnt = ((u32) (current_mask >> 32)) + 1; alarm_mask = (u32) (current_mask & ~alarm); new_mask = ((u64) refcnt << 32) | alarm_mask; } while (unlikely(current_mask != (u64)nvgpu_atomic64_cmpxchg(&arb->alarm_mask, current_mask, new_mask))); } static void nvgpu_clk_arb_run_arbiter_cb(struct nvgpu_clk_arb *arb) { struct nvgpu_clk_session *session; struct nvgpu_clk_dev *dev; struct nvgpu_clk_dev *tmp; struct nvgpu_clk_arb_target *target, *actual; struct gk20a *g = arb->g; u32 pstate = VF_POINT_INVALID_PSTATE; u32 voltuv, voltuv_sram; bool mclk_set, gpc2clk_set; u32 nuvmin, nuvmin_sram; u32 alarms_notified = 0; u32 current_alarm; int status = 0; /* Temporary variables for checking target frequency */ u16 gpc2clk_target, sys2clk_target, xbar2clk_target, mclk_target; u16 gpc2clk_session_target, mclk_session_target; #ifdef CONFIG_DEBUG_FS u64 t0, t1; struct nvgpu_clk_arb_debug *debug; #endif clk_arb_dbg(g, " "); /* bail out if gpu is down */ if (nvgpu_atomic64_read(&arb->alarm_mask) & EVENT(ALARM_GPU_LOST)) goto exit_arb; #ifdef CONFIG_DEBUG_FS g->ops.bus.read_ptimer(g, &t0); #endif /* Only one arbiter should be running */ gpc2clk_target = 0; mclk_target = 0; nvgpu_spinlock_acquire(&arb->sessions_lock); nvgpu_list_for_each_entry(session, &arb->sessions, nvgpu_clk_session, link) { if (!session->zombie) { mclk_set = false; gpc2clk_set = false; target = (session->target == &session->target_pool[0] ? &session->target_pool[1] : &session->target_pool[0]); nvgpu_spinlock_acquire(&session->session_lock); if (!nvgpu_list_empty(&session->targets)) { /* Copy over state */ target->mclk = session->target->mclk; target->gpc2clk = session->target->gpc2clk; /* Query the latest committed request */ nvgpu_list_for_each_entry_safe(dev, tmp, &session->targets, nvgpu_clk_dev, node) { if (!mclk_set && dev->mclk_target_mhz) { target->mclk = dev->mclk_target_mhz; mclk_set = true; } if (!gpc2clk_set && dev->gpc2clk_target_mhz) { target->gpc2clk = dev->gpc2clk_target_mhz; gpc2clk_set = true; } nvgpu_ref_get(&dev->refcount); nvgpu_list_del(&dev->node); nvgpu_spinlock_acquire(&arb->requests_lock); nvgpu_list_add(&dev->node, &arb->requests); nvgpu_spinlock_release(&arb->requests_lock); } xchg(&session->target, target); } nvgpu_spinlock_release(&session->session_lock); mclk_target = mclk_target > session->target->mclk ? mclk_target : session->target->mclk; gpc2clk_target = gpc2clk_target > session->target->gpc2clk ? gpc2clk_target : session->target->gpc2clk; } } nvgpu_spinlock_release(&arb->sessions_lock); gpc2clk_target = (gpc2clk_target > 0) ? gpc2clk_target : arb->gpc2clk_default_mhz; if (gpc2clk_target < arb->gpc2clk_min) gpc2clk_target = arb->gpc2clk_min; if (gpc2clk_target > arb->gpc2clk_max) gpc2clk_target = arb->gpc2clk_max; mclk_target = (mclk_target > 0) ? mclk_target : arb->mclk_default_mhz; if (mclk_target < arb->mclk_min) mclk_target = arb->mclk_min; if (mclk_target > arb->mclk_max) mclk_target = arb->mclk_max; sys2clk_target = 0; xbar2clk_target = 0; gpc2clk_session_target = gpc2clk_target; mclk_session_target = mclk_target; /* Query the table for the closest vf point to program */ pstate = nvgpu_clk_arb_find_vf_point(arb, &gpc2clk_target, &sys2clk_target, &xbar2clk_target, &mclk_target, &voltuv, &voltuv_sram, &nuvmin, &nuvmin_sram); if (pstate == VF_POINT_INVALID_PSTATE) { arb->status = -EINVAL; /* make status visible */ nvgpu_smp_mb(); goto exit_arb; } if ((gpc2clk_target < gpc2clk_session_target) || (mclk_target < mclk_session_target)) nvgpu_clk_arb_set_global_alarm(g, EVENT(ALARM_TARGET_VF_NOT_POSSIBLE)); if ((arb->actual->gpc2clk == gpc2clk_target) && (arb->actual->mclk == mclk_target) && (arb->voltuv_actual == voltuv)) { goto exit_arb; } /* Program clocks */ /* A change in both mclk of gpc2clk may require a change in voltage */ nvgpu_mutex_acquire(&arb->pstate_lock); status = nvgpu_lpwr_disable_pg(g, false); status = clk_pmu_freq_controller_load(g, false, CTRL_CLK_CLK_FREQ_CONTROLLER_ID_ALL); if (status < 0) { arb->status = status; nvgpu_mutex_release(&arb->pstate_lock); /* make status visible */ nvgpu_smp_mb(); goto exit_arb; } status = volt_set_noiseaware_vmin(g, nuvmin, nuvmin_sram); if (status < 0) { arb->status = status; nvgpu_mutex_release(&arb->pstate_lock); /* make status visible */ nvgpu_smp_mb(); goto exit_arb; } status = nvgpu_clk_arb_change_vf_point(g, gpc2clk_target, sys2clk_target, xbar2clk_target, mclk_target, voltuv, voltuv_sram); if (status < 0) { arb->status = status; nvgpu_mutex_release(&arb->pstate_lock); /* make status visible */ nvgpu_smp_mb(); goto exit_arb; } status = clk_pmu_freq_controller_load(g, true, CTRL_CLK_CLK_FREQ_CONTROLLER_ID_ALL); if (status < 0) { arb->status = status; nvgpu_mutex_release(&arb->pstate_lock); /* make status visible */ nvgpu_smp_mb(); goto exit_arb; } status = nvgpu_lwpr_mclk_change(g, pstate); if (status < 0) { arb->status = status; nvgpu_mutex_release(&arb->pstate_lock); /* make status visible */ nvgpu_smp_mb(); goto exit_arb; } actual = NV_ACCESS_ONCE(arb->actual) == &arb->actual_pool[0] ? &arb->actual_pool[1] : &arb->actual_pool[0]; /* do not reorder this pointer */ nvgpu_smp_rmb(); actual->gpc2clk = gpc2clk_target; actual->mclk = mclk_target; arb->voltuv_actual = voltuv; actual->pstate = pstate; arb->status = status; /* Make changes visible to other threads */ nvgpu_smp_wmb(); xchg(&arb->actual, actual); status = nvgpu_lpwr_enable_pg(g, false); if (status < 0) { arb->status = status; nvgpu_mutex_release(&arb->pstate_lock); /* make status visible */ nvgpu_smp_mb(); goto exit_arb; } /* status must be visible before atomic inc */ nvgpu_smp_wmb(); nvgpu_atomic_inc(&arb->req_nr); /* Unlock pstate change for PG */ nvgpu_mutex_release(&arb->pstate_lock); /* VF Update complete */ nvgpu_clk_arb_set_global_alarm(g, EVENT(VF_UPDATE)); nvgpu_cond_signal_interruptible(&arb->request_wq); #ifdef CONFIG_DEBUG_FS g->ops.bus.read_ptimer(g, &t1); debug = arb->debug == &arb->debug_pool[0] ? &arb->debug_pool[1] : &arb->debug_pool[0]; memcpy(debug, arb->debug, sizeof(arb->debug_pool[0])); debug->switch_num++; if (debug->switch_num == 1) { debug->switch_max = debug->switch_min = debug->switch_avg = (t1-t0)/1000; debug->switch_std = 0; } else { s64 prev_avg; s64 curr = (t1-t0)/1000; debug->switch_max = curr > debug->switch_max ? curr : debug->switch_max; debug->switch_min = debug->switch_min ? (curr < debug->switch_min ? curr : debug->switch_min) : curr; prev_avg = debug->switch_avg; debug->switch_avg = (curr + (debug->switch_avg * (debug->switch_num-1))) / debug->switch_num; debug->switch_std += (curr - debug->switch_avg) * (curr - prev_avg); } /* commit changes before exchanging debug pointer */ nvgpu_smp_wmb(); xchg(&arb->debug, debug); #endif exit_arb: if (status < 0) { nvgpu_err(g, "Error in arbiter update"); nvgpu_clk_arb_set_global_alarm(g, EVENT(ALARM_CLOCK_ARBITER_FAILED)); } current_alarm = (u32) nvgpu_atomic64_read(&arb->alarm_mask); /* notify completion for all requests */ nvgpu_spinlock_acquire(&arb->requests_lock); nvgpu_list_for_each_entry_safe(dev, tmp, &arb->requests, nvgpu_clk_dev, node) { nvgpu_atomic_set(&dev->poll_mask, NVGPU_POLLIN | NVGPU_POLLRDNORM); nvgpu_cond_signal_interruptible(&dev->readout_wq); nvgpu_ref_put(&dev->refcount, nvgpu_clk_arb_free_fd); nvgpu_list_del(&dev->node); } nvgpu_spinlock_release(&arb->requests_lock); nvgpu_atomic_set(&arb->notification_queue.head, nvgpu_atomic_read(&arb->notification_queue.tail)); /* notify event for all users */ nvgpu_spinlock_acquire(&arb->users_lock); nvgpu_list_for_each_entry(dev, &arb->users, nvgpu_clk_dev, link) { alarms_notified |= nvgpu_clk_arb_notify(dev, arb->actual, current_alarm); } nvgpu_spinlock_release(&arb->users_lock); /* clear alarms */ nvgpu_clk_arb_clear_global_alarm(g, alarms_notified & ~EVENT(ALARM_GPU_LOST)); } /* * Process one scheduled work item. */ static void nvgpu_clk_arb_worker_process_item( struct nvgpu_clk_arb_work_item *work_item) { clk_arb_dbg(work_item->arb->g, " "); if (work_item->item_type == CLK_ARB_WORK_UPDATE_VF_TABLE) nvgpu_clk_arb_run_vf_table_cb(work_item->arb); else if (work_item->item_type == CLK_ARB_WORK_UPDATE_ARB) nvgpu_clk_arb_run_arbiter_cb(work_item->arb); } /** * Tell the worker that one more work needs to be done. * * Increase the work counter to synchronize the worker with the new work. Wake * up the worker. If the worker was already running, it will handle this work * before going to sleep. */ static int nvgpu_clk_arb_worker_wakeup(struct gk20a *g) { int put; clk_arb_dbg(g, " "); put = nvgpu_atomic_inc_return(&g->clk_arb_worker.put); nvgpu_cond_signal_interruptible(&g->clk_arb_worker.wq); return put; } /** * Test if there is some work pending. * * This is a pair for nvgpu_clk_arb_worker_wakeup to be called from the * worker. The worker has an internal work counter which is incremented once * per finished work item. This is compared with the number of queued jobs. */ static bool nvgpu_clk_arb_worker_pending(struct gk20a *g, int get) { bool pending = nvgpu_atomic_read(&g->clk_arb_worker.put) != get; /* We don't need barriers because they are implicit in locking */ return pending; } /** * Process the queued works for the worker thread serially. * * Flush all the work items in the queue one by one. This may block timeout * handling for a short while, as these are serialized. */ static void nvgpu_clk_arb_worker_process(struct gk20a *g, int *get) { while (nvgpu_clk_arb_worker_pending(g, *get)) { struct nvgpu_clk_arb_work_item *work_item = NULL; nvgpu_spinlock_acquire(&g->clk_arb_worker.items_lock); if (!nvgpu_list_empty(&g->clk_arb_worker.items)) { work_item = nvgpu_list_first_entry(&g->clk_arb_worker.items, nvgpu_clk_arb_work_item, worker_item); nvgpu_list_del(&work_item->worker_item); } nvgpu_spinlock_release(&g->clk_arb_worker.items_lock); if (!work_item) { /* * Woke up for some other reason, but there are no * other reasons than a work item added in the items list * currently, so warn and ack the message. */ nvgpu_warn(g, "Spurious worker event!"); ++*get; break; } nvgpu_clk_arb_worker_process_item(work_item); ++*get; } } /* * Process all work items found in the clk arbiter work queue. */ static int nvgpu_clk_arb_poll_worker(void *arg) { struct gk20a *g = (struct gk20a *)arg; struct gk20a_worker *worker = &g->clk_arb_worker; int get = 0; clk_arb_dbg(g, " "); while (!nvgpu_thread_should_stop(&worker->poll_task)) { int ret; ret = NVGPU_COND_WAIT_INTERRUPTIBLE( &worker->wq, nvgpu_clk_arb_worker_pending(g, get), 0); if (ret == 0) nvgpu_clk_arb_worker_process(g, &get); } return 0; } static int __nvgpu_clk_arb_worker_start(struct gk20a *g) { char thread_name[64]; int err = 0; if (nvgpu_thread_is_running(&g->clk_arb_worker.poll_task)) return err; nvgpu_mutex_acquire(&g->clk_arb_worker.start_lock); /* * Mutexes have implicit barriers, so there is no risk of a thread * having a stale copy of the poll_task variable as the call to * thread_is_running is volatile */ if (nvgpu_thread_is_running(&g->clk_arb_worker.poll_task)) { nvgpu_mutex_release(&g->clk_arb_worker.start_lock); return err; } snprintf(thread_name, sizeof(thread_name), "nvgpu_clk_arb_poll_%s", g->name); err = nvgpu_thread_create(&g->clk_arb_worker.poll_task, g, nvgpu_clk_arb_poll_worker, thread_name); nvgpu_mutex_release(&g->clk_arb_worker.start_lock); return err; } /** * Append a work item to the worker's list. * * This adds work item to the end of the list and wakes the worker * up immediately. If the work item already existed in the list, it's not added, * because in that case it has been scheduled already but has not yet been * processed. */ void nvgpu_clk_arb_worker_enqueue(struct gk20a *g, struct nvgpu_clk_arb_work_item *work_item) { clk_arb_dbg(g, " "); /* * Warn if worker thread cannot run */ if (WARN_ON(__nvgpu_clk_arb_worker_start(g))) { nvgpu_warn(g, "clk arb worker cannot run!"); return; } nvgpu_spinlock_acquire(&g->clk_arb_worker.items_lock); if (!nvgpu_list_empty(&work_item->worker_item)) { /* * Already queued, so will get processed eventually. * The worker is probably awake already. */ nvgpu_spinlock_release(&g->clk_arb_worker.items_lock); return; } nvgpu_list_add_tail(&work_item->worker_item, &g->clk_arb_worker.items); nvgpu_spinlock_release(&g->clk_arb_worker.items_lock); nvgpu_clk_arb_worker_wakeup(g); } /** * Initialize the clk arb worker's metadata and start the background thread. */ static int nvgpu_clk_arb_worker_init(struct gk20a *g) { int err; nvgpu_atomic_set(&g->clk_arb_worker.put, 0); nvgpu_cond_init(&g->clk_arb_worker.wq); nvgpu_init_list_node(&g->clk_arb_worker.items); nvgpu_spinlock_init(&g->clk_arb_worker.items_lock); err = nvgpu_mutex_init(&g->clk_arb_worker.start_lock); if (err) goto error_check; err = __nvgpu_clk_arb_worker_start(g); error_check: if (err) { nvgpu_err(g, "failed to start clk arb poller thread"); return err; } return 0; } int nvgpu_clk_arb_init_arbiter(struct gk20a *g) { struct nvgpu_clk_arb *arb; u16 default_mhz; int err; int index; struct nvgpu_clk_vf_table *table; clk_arb_dbg(g, " "); if (!g->ops.clk_arb.get_arbiter_clk_domains) return 0; arb = nvgpu_kzalloc(g, sizeof(struct nvgpu_clk_arb)); if (!arb) return -ENOMEM; err = nvgpu_mutex_init(&arb->pstate_lock); if (err) goto mutex_fail; nvgpu_spinlock_init(&arb->sessions_lock); nvgpu_spinlock_init(&arb->users_lock); nvgpu_spinlock_init(&arb->requests_lock); arb->mclk_f_points = nvgpu_kcalloc(g, MAX_F_POINTS, sizeof(u16)); if (!arb->mclk_f_points) { err = -ENOMEM; goto init_fail; } arb->gpc2clk_f_points = nvgpu_kcalloc(g, MAX_F_POINTS, sizeof(u16)); if (!arb->gpc2clk_f_points) { err = -ENOMEM; goto init_fail; } for (index = 0; index < 2; index++) { table = &arb->vf_table_pool[index]; table->gpc2clk_num_points = MAX_F_POINTS; table->mclk_num_points = MAX_F_POINTS; table->gpc2clk_points = nvgpu_kcalloc(g, MAX_F_POINTS, sizeof(struct nvgpu_clk_vf_point)); if (!table->gpc2clk_points) { err = -ENOMEM; goto init_fail; } table->mclk_points = nvgpu_kcalloc(g, MAX_F_POINTS, sizeof(struct nvgpu_clk_vf_point)); if (!table->mclk_points) { err = -ENOMEM; goto init_fail; } } g->clk_arb = arb; arb->g = g; err = g->ops.clk_arb.get_arbiter_clk_default(g, CTRL_CLK_DOMAIN_MCLK, &default_mhz); if (err < 0) { err = -EINVAL; goto init_fail; } arb->mclk_default_mhz = default_mhz; err = g->ops.clk_arb.get_arbiter_clk_default(g, CTRL_CLK_DOMAIN_GPC2CLK, &default_mhz); if (err < 0) { err = -EINVAL; goto init_fail; } arb->gpc2clk_default_mhz = default_mhz; arb->actual = &arb->actual_pool[0]; nvgpu_atomic_set(&arb->req_nr, 0); nvgpu_atomic64_set(&arb->alarm_mask, 0); err = nvgpu_clk_notification_queue_alloc(g, &arb->notification_queue, DEFAULT_EVENT_NUMBER); if (err < 0) goto init_fail; nvgpu_init_list_node(&arb->users); nvgpu_init_list_node(&arb->sessions); nvgpu_init_list_node(&arb->requests); nvgpu_cond_init(&arb->request_wq); nvgpu_init_list_node(&arb->update_vf_table_work_item.worker_item); nvgpu_init_list_node(&arb->update_arb_work_item.worker_item); arb->update_vf_table_work_item.arb = arb; arb->update_arb_work_item.arb = arb; arb->update_vf_table_work_item.item_type = CLK_ARB_WORK_UPDATE_VF_TABLE; arb->update_arb_work_item.item_type = CLK_ARB_WORK_UPDATE_ARB; err = nvgpu_clk_arb_worker_init(g); if (err < 0) goto init_fail; #ifdef CONFIG_DEBUG_FS arb->debug = &arb->debug_pool[0]; if (!arb->debugfs_set) { if (nvgpu_clk_arb_debugfs_init(g)) arb->debugfs_set = true; } #endif err = clk_vf_point_cache(g); if (err < 0) goto init_fail; err = nvgpu_clk_arb_update_vf_table(arb); if (err < 0) goto init_fail; do { /* Check that first run is completed */ nvgpu_smp_mb(); NVGPU_COND_WAIT_INTERRUPTIBLE(&arb->request_wq, nvgpu_atomic_read(&arb->req_nr), 0); } while (!nvgpu_atomic_read(&arb->req_nr)); return arb->status; init_fail: nvgpu_kfree(g, arb->gpc2clk_f_points); nvgpu_kfree(g, arb->mclk_f_points); for (index = 0; index < 2; index++) { nvgpu_kfree(g, arb->vf_table_pool[index].gpc2clk_points); nvgpu_kfree(g, arb->vf_table_pool[index].mclk_points); } nvgpu_mutex_destroy(&arb->pstate_lock); mutex_fail: nvgpu_kfree(g, arb); return err; } void nvgpu_clk_arb_send_thermal_alarm(struct gk20a *g) { nvgpu_clk_arb_schedule_alarm(g, (0x1UL << NVGPU_EVENT_ALARM_THERMAL_ABOVE_THRESHOLD)); } void nvgpu_clk_arb_schedule_alarm(struct gk20a *g, u32 alarm) { struct nvgpu_clk_arb *arb = g->clk_arb; nvgpu_clk_arb_set_global_alarm(g, alarm); nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item); } static void nvgpu_clk_arb_worker_deinit(struct gk20a *g) { nvgpu_mutex_acquire(&g->clk_arb_worker.start_lock); nvgpu_thread_stop(&g->clk_arb_worker.poll_task); nvgpu_mutex_release(&g->clk_arb_worker.start_lock); } void nvgpu_clk_arb_cleanup_arbiter(struct gk20a *g) { struct nvgpu_clk_arb *arb = g->clk_arb; int index; if (arb) { nvgpu_clk_arb_worker_deinit(g); nvgpu_kfree(g, arb->gpc2clk_f_points); nvgpu_kfree(g, arb->mclk_f_points); for (index = 0; index < 2; index++) { nvgpu_kfree(g, arb->vf_table_pool[index].gpc2clk_points); nvgpu_kfree(g, arb->vf_table_pool[index].mclk_points); } nvgpu_mutex_destroy(&g->clk_arb->pstate_lock); nvgpu_kfree(g, g->clk_arb); g->clk_arb = NULL; } } int nvgpu_clk_arb_init_session(struct gk20a *g, struct nvgpu_clk_session **_session) { struct nvgpu_clk_arb *arb = g->clk_arb; struct nvgpu_clk_session *session = *(_session); clk_arb_dbg(g, " "); if (!g->ops.clk_arb.get_arbiter_clk_domains) return 0; session = nvgpu_kzalloc(g, sizeof(struct nvgpu_clk_session)); if (!session) return -ENOMEM; session->g = g; nvgpu_ref_init(&session->refcount); session->zombie = false; session->target_pool[0].pstate = CTRL_PERF_PSTATE_P8; /* make sure that the initialization of the pool is visible * before the update */ nvgpu_smp_wmb(); session->target = &session->target_pool[0]; nvgpu_init_list_node(&session->targets); nvgpu_spinlock_init(&session->session_lock); nvgpu_spinlock_acquire(&arb->sessions_lock); nvgpu_list_add_tail(&session->link, &arb->sessions); nvgpu_spinlock_release(&arb->sessions_lock); *_session = session; return 0; } void nvgpu_clk_arb_free_fd(struct nvgpu_ref *refcount) { struct nvgpu_clk_dev *dev = container_of(refcount, struct nvgpu_clk_dev, refcount); struct nvgpu_clk_session *session = dev->session; nvgpu_kfree(session->g, dev); } void nvgpu_clk_arb_free_session(struct nvgpu_ref *refcount) { struct nvgpu_clk_session *session = container_of(refcount, struct nvgpu_clk_session, refcount); struct nvgpu_clk_arb *arb = session->g->clk_arb; struct gk20a *g = session->g; struct nvgpu_clk_dev *dev, *tmp; clk_arb_dbg(g, " "); if (arb) { nvgpu_spinlock_acquire(&arb->sessions_lock); nvgpu_list_del(&session->link); nvgpu_spinlock_release(&arb->sessions_lock); } nvgpu_spinlock_acquire(&session->session_lock); nvgpu_list_for_each_entry_safe(dev, tmp, &session->targets, nvgpu_clk_dev, node) { nvgpu_ref_put(&dev->refcount, nvgpu_clk_arb_free_fd); nvgpu_list_del(&dev->node); } nvgpu_spinlock_release(&session->session_lock); nvgpu_kfree(g, session); } void nvgpu_clk_arb_release_session(struct gk20a *g, struct nvgpu_clk_session *session) { struct nvgpu_clk_arb *arb = g->clk_arb; clk_arb_dbg(g, " "); session->zombie = true; nvgpu_ref_put(&session->refcount, nvgpu_clk_arb_free_session); if (arb) nvgpu_clk_arb_worker_enqueue(g, &arb->update_arb_work_item); } void nvgpu_clk_arb_schedule_vf_table_update(struct gk20a *g) { struct nvgpu_clk_arb *arb = g->clk_arb; nvgpu_clk_arb_worker_enqueue(g, &arb->update_vf_table_work_item); } /* This function is inherently unsafe to call while arbiter is running * arbiter must be blocked before calling this function */ int nvgpu_clk_arb_get_current_pstate(struct gk20a *g) { return NV_ACCESS_ONCE(g->clk_arb->actual->pstate); } void nvgpu_clk_arb_pstate_change_lock(struct gk20a *g, bool lock) { struct nvgpu_clk_arb *arb = g->clk_arb; if (lock) nvgpu_mutex_acquire(&arb->pstate_lock); else nvgpu_mutex_release(&arb->pstate_lock); }