#include // Kernel types #include "nvdebug.h" /* Get runlist head and info (incl. length) @param rl_iter Location at which to store output @param rl_id Which runlist to obtain? */ int get_runlist_iter(struct nvdebug_state *g, int rl_id, struct runlist_iter *rl_iter) { runlist_base_t rl_base; runlist_info_t rl_info; u64 runlist_iova; *rl_iter = (struct runlist_iter){0}; rl_base.raw = nvdebug_readl(g, NV_PFIFO_ENG_RUNLIST_BASE(rl_id)); // Check that reads are working if (rl_base.raw == -1) return -EIO; // The address pointed to `regs` + NV_PFIFO_RUNLIST_BASE seems to not be: // - A GPU address (type is sysmem_coherent) // - A physical address (dereferencing after ioremap crashes) // - A kernel virtual address (dereferencing segfaults) // So maybe it's some sort of custom thing? This is an address that the GPU // can use, so it would make most sense for it to be a physical address. // // BUT, it can't possibly be a physical address, as it would refer to an // address greater than the maximum one on our system (by a lot!). // Maybe I'm reading the runlist base wrong? // Aha, the driver calls it runlist_iova. Sounds like runlist I/O virtual // address! So, what's this I/O address space? All I know is that it's what // nvgpu_mem_get_addr() returns. That function returns the result of either: // - gpu_phys_addr which is __nvgpu_sgl_phys on our platform which (?) // converts an IPA to a PA? // - nvgpu_mem_iommu_translate // // The original memory is allocated with nvgpu_dma_alloc_flags_sys(), which // returns SYSMEM. // // To convert a physical address to a IOMMU address, we add a bit // // BUT, it turns out that it IS JUST A PHYSICAL ADDRESS! It wasn't working // before because the GPU had simply gone to sleep and invalidated its // register state, so nvgpu_readl() was simply returning garbage. rl_info.raw = nvdebug_readl(g, NV_PFIFO_ENG_RUNLIST(rl_id)); runlist_iova = ((u64)rl_base.ptr) << 12; printk(KERN_INFO "[nvdebug] Runlist %d @ %llx in %s (config raw: %x)\n", rl_id, runlist_iova, target_to_text(rl_base.target), rl_base.raw); printk(KERN_INFO "[nvdebug] Runlist length %d, ID %d\n", rl_info.len, rl_info.id); // Return early on an empty runlist if (!rl_info.len) return 0; // If the runlist is in VID_MEM, search the BAR2/3 page tables for a mapping if (rl_base.target == TARGET_VID_MEM) { printk(KERN_WARNING "[nvdebug] Runlist is located in video memory. Access to video memory is experimental."); bar_config_block_t bar1_block, bar2_block; bar1_block.raw = nvdebug_readl(g, NV_PBUS_BAR1_BLOCK); printk(KERN_INFO "[nvdebug] BAR1 inst block @ %llx in %s's %s address space.\n", ((u64)bar1_block.ptr) << 12, target_to_text(bar1_block.target), bar1_block.is_virtual ? "virtual" : "physical"); bar2_block.raw = nvdebug_readl(g, NV_PBUS_BAR2_BLOCK); printk(KERN_INFO "[nvdebug] BAR2 inst block @ %llx in %s's %s address space.\n", ((u64)bar2_block.ptr) << 12, target_to_text(bar2_block.target), bar1_block.is_virtual ? "virtual" : "physical"); uint32_t bar_inst_pramin_offset = vram2PRAMIN(g, (uint64_t)bar2_block.ptr << 12); if (!bar_inst_pramin_offset) { printk(KERN_WARNING "[nvdebug] Unable to find instance block for BAR2/3 in the current NV_PRAMIN window. VRAM inaccessible.\n"); return -EOPNOTSUPP; } /* TODO: Support BAR1? bar_inst_pramin_offset = vram2PRAMIN(g, bar1_block.ptr << 12); if (!bar_inst_pramin_offset) { printk(KERN_WARNING "[nvdebug] Unable to find instance block for BAR1 in the current NV_PRAMIN window. VRAM inaccessible.\n"); return -EOPNOTSUPP; }*/ // Instance blocks (size == 1kb) contain many things, but we only care about // the section which describes the location of the page directory (page table) uint32_t bar_pdb_config_pramin_offset = bar_inst_pramin_offset + NV_PRAMIN_PDB_CONFIG_OFF; page_dir_config_t pd_config; pd_config.raw = nvdebug_readq(g, bar_pdb_config_pramin_offset + NV_PRAMIN); uint64_t bar_pdb_vram_addr = pd_config.page_dir_hi; bar_pdb_vram_addr <<= 20; bar_pdb_vram_addr |= pd_config.page_dir_lo; bar_pdb_vram_addr <<= 12; printk(KERN_INFO "[nvdebug] BAR2 PDB @ %llx in %s of version %s (config raw: %llx)\n", bar_pdb_vram_addr, target_to_text(pd_config.target), pd_config.is_ver2 ? "2" : "1", pd_config.raw); // TODO: SYSMEM support for page table location if (pd_config.target != TARGET_VID_MEM) { printk(KERN_WARNING "[nvdebug] BAR2 PDB is in an unsupported location.\n"); return -EOPNOTSUPP; } uint32_t bar_pdb_pramin_offset = vram2PRAMIN(g, bar_pdb_vram_addr); if (!bar_pdb_pramin_offset) { printk(KERN_WARNING "[nvdebug] Unable to find page directory BAR2/3 in the current NV_PRAMIN window. VRAM inaccessible.\n"); return -EOPNOTSUPP; } uint64_t runlist_bar_vaddr; if (pd_config.is_ver2) runlist_bar_vaddr = search_page_directory(g, g->regs + NV_PRAMIN + bar_pdb_pramin_offset, phy2PRAMIN, runlist_iova); else runlist_bar_vaddr = search_v1_page_directory(g, g->regs + NV_PRAMIN + bar_pdb_pramin_offset, phy2PRAMIN, runlist_iova); if (!runlist_bar_vaddr) { printk(KERN_WARNING "[nvdebug] Unable to find runlist mapping in BAR2/3 page tables.\n"); return -EOPNOTSUPP; } printk(KERN_INFO "[nvdebug] Runlist @ %llx in BAR2 virtual address space.\n", runlist_bar_vaddr); /* XXX: Old test code uint32_t bar2_pd_pramin_offset = vram_to_pramin_off(bar2_pd); //walk_pd_subtree(bar2_pd_pramin_offset); uint64_t runlist_bar2_vaddr = search_pd_subtree(bar2_pd_pramin_offset, runlist_iova); page_dir_entry_t pde_0; pde_0.raw = nvdebug_readl(g, NV_PRAMIN + bar2_pd_pramin_offset); uint32_t pde_1 = nvdebug_readl(g, NV_PRAMIN + vram_to_pramin_off(((u64)pde_0.addr) << 12)); uint64_t pde_bar2_vaddr = search_pd_subtree(bar2_pd_pramin_offset, ((u64)pde_0.addr) << 12); uint32_t pde_2 = readl(g->bar3 + pde_bar2_vaddr); printk(KERN_INFO "[nvdebug] PDE0 via PRAMIN: %x, via BAR3: %x\n", pde_1, pde_2); */ if (!g->bar3) { printk(KERN_WARNING "[nvdebug] BAR2/3 not mapped.\n"); return -ENODEV; } rl_iter->curr_entry = g->bar2 + runlist_bar_vaddr; } else { // Directly access the runlist if stored in SYS_MEM (physically addressed) rl_iter->curr_entry = phys_to_virt(runlist_iova); } rl_iter->rl_info = rl_info; return 0; } int preempt_tsg(struct nvdebug_state *g, uint32_t tsg_id) { runlist_info_t rl_info; pfifo_preempt_t pfifo_preempt; runlist_disable_t rl_disable; if (!g) return -EIO; rl_info.raw = nvdebug_readl(g, NV_PFIFO_RUNLIST); pfifo_preempt.id = tsg_id; pfifo_preempt.is_pending = 0; pfifo_preempt.type = PREEMPT_TYPE_TSG; // There may be a bug (?) that requires us to disable scheduling before preempting rl_disable.raw = nvdebug_readl(g, NV_PFIFO_SCHED_DISABLE); rl_disable.raw |= BIT(rl_info.id); // Disable runlist rl_info.id nvdebug_writel(g, NV_PFIFO_SCHED_DISABLE, rl_disable.raw); // Actually trigger the preemption nvdebug_writel(g, NV_PFIFO_PREEMPT, pfifo_preempt.raw); // Renable scheduling rl_disable.raw &= ~BIT(rl_info.id); // Enable runlist rl_info.id nvdebug_writel(g, NV_PFIFO_SCHED_DISABLE, rl_disable.raw); printk(KERN_INFO "[nvdebug] TSG %d preempted (runlist %d)\n", tsg_id, rl_info.id); return 0; }