/*
* Color decompression engine support
*
* Copyright (c) 2014-2018, NVIDIA Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "gk20a/mm_gk20a.h"
#include "gk20a/fence_gk20a.h"
#include "gk20a/gr_gk20a.h"
#include "cde.h"
#include "os_linux.h"
#include "dmabuf.h"
#include "channel.h"
#include "cde_gm20b.h"
#include "cde_gp10b.h"
#include
#include
static int gk20a_cde_load(struct gk20a_cde_ctx *cde_ctx);
static struct gk20a_cde_ctx *gk20a_cde_allocate_context(struct nvgpu_os_linux *l);
#define CTX_DELETE_TIME 1000
#define MAX_CTX_USE_COUNT 42
#define MAX_CTX_RETRY_TIME 2000
static dma_addr_t gpuva_to_iova_base(struct vm_gk20a *vm, u64 gpu_vaddr)
{
struct nvgpu_mapped_buf *buffer;
dma_addr_t addr = 0;
struct gk20a *g = gk20a_from_vm(vm);
nvgpu_mutex_acquire(&vm->update_gmmu_lock);
buffer = __nvgpu_vm_find_mapped_buf(vm, gpu_vaddr);
if (buffer)
addr = nvgpu_mem_get_addr_sgl(g, buffer->os_priv.sgt->sgl);
nvgpu_mutex_release(&vm->update_gmmu_lock);
return addr;
}
static void gk20a_deinit_cde_img(struct gk20a_cde_ctx *cde_ctx)
{
unsigned int i;
for (i = 0; i < cde_ctx->num_bufs; i++) {
struct nvgpu_mem *mem = cde_ctx->mem + i;
nvgpu_dma_unmap_free(cde_ctx->vm, mem);
}
nvgpu_kfree(&cde_ctx->l->g, cde_ctx->init_convert_cmd);
cde_ctx->convert_cmd = NULL;
cde_ctx->init_convert_cmd = NULL;
cde_ctx->num_bufs = 0;
cde_ctx->num_params = 0;
cde_ctx->init_cmd_num_entries = 0;
cde_ctx->convert_cmd_num_entries = 0;
cde_ctx->init_cmd_executed = false;
}
static void gk20a_cde_remove_ctx(struct gk20a_cde_ctx *cde_ctx)
__must_hold(&cde_app->mutex)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
struct channel_gk20a *ch = cde_ctx->ch;
struct vm_gk20a *vm = ch->vm;
trace_gk20a_cde_remove_ctx(cde_ctx);
/* release mapped memory */
gk20a_deinit_cde_img(cde_ctx);
nvgpu_gmmu_unmap(vm, &g->gr.compbit_store.mem,
cde_ctx->backing_store_vaddr);
/*
* free the channel
* gk20a_channel_close() will also unbind the channel from TSG
*/
gk20a_channel_close(ch);
nvgpu_ref_put(&cde_ctx->tsg->refcount, gk20a_tsg_release);
/* housekeeping on app */
nvgpu_list_del(&cde_ctx->list);
l->cde_app.ctx_count--;
nvgpu_kfree(g, cde_ctx);
}
static void gk20a_cde_cancel_deleter(struct gk20a_cde_ctx *cde_ctx,
bool wait_finish)
__releases(&cde_app->mutex)
__acquires(&cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &cde_ctx->l->cde_app;
/* permanent contexts do not have deleter works */
if (!cde_ctx->is_temporary)
return;
if (wait_finish) {
nvgpu_mutex_release(&cde_app->mutex);
cancel_delayed_work_sync(&cde_ctx->ctx_deleter_work);
nvgpu_mutex_acquire(&cde_app->mutex);
} else {
cancel_delayed_work(&cde_ctx->ctx_deleter_work);
}
}
static void gk20a_cde_remove_contexts(struct nvgpu_os_linux *l)
__must_hold(&l->cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &l->cde_app;
struct gk20a_cde_ctx *cde_ctx, *cde_ctx_save;
/* safe to go off the mutex in cancel_deleter since app is
* deinitialised; no new jobs are started. deleter works may be only at
* waiting for the mutex or before, going to abort */
nvgpu_list_for_each_entry_safe(cde_ctx, cde_ctx_save,
&cde_app->free_contexts, gk20a_cde_ctx, list) {
gk20a_cde_cancel_deleter(cde_ctx, true);
gk20a_cde_remove_ctx(cde_ctx);
}
nvgpu_list_for_each_entry_safe(cde_ctx, cde_ctx_save,
&cde_app->used_contexts, gk20a_cde_ctx, list) {
gk20a_cde_cancel_deleter(cde_ctx, true);
gk20a_cde_remove_ctx(cde_ctx);
}
}
static void gk20a_cde_stop(struct nvgpu_os_linux *l)
__must_hold(&l->cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &l->cde_app;
/* prevent further conversions and delayed works from working */
cde_app->initialised = false;
/* free all data, empty the list */
gk20a_cde_remove_contexts(l);
}
void gk20a_cde_destroy(struct nvgpu_os_linux *l)
__acquires(&l->cde_app->mutex)
__releases(&l->cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &l->cde_app;
if (!cde_app->initialised)
return;
nvgpu_mutex_acquire(&cde_app->mutex);
gk20a_cde_stop(l);
nvgpu_mutex_release(&cde_app->mutex);
nvgpu_mutex_destroy(&cde_app->mutex);
}
void gk20a_cde_suspend(struct nvgpu_os_linux *l)
__acquires(&l->cde_app->mutex)
__releases(&l->cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &l->cde_app;
struct gk20a_cde_ctx *cde_ctx, *cde_ctx_save;
if (!cde_app->initialised)
return;
nvgpu_mutex_acquire(&cde_app->mutex);
nvgpu_list_for_each_entry_safe(cde_ctx, cde_ctx_save,
&cde_app->free_contexts, gk20a_cde_ctx, list) {
gk20a_cde_cancel_deleter(cde_ctx, false);
}
nvgpu_list_for_each_entry_safe(cde_ctx, cde_ctx_save,
&cde_app->used_contexts, gk20a_cde_ctx, list) {
gk20a_cde_cancel_deleter(cde_ctx, false);
}
nvgpu_mutex_release(&cde_app->mutex);
}
static int gk20a_cde_create_context(struct nvgpu_os_linux *l)
__must_hold(&l->cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &l->cde_app;
struct gk20a_cde_ctx *cde_ctx;
cde_ctx = gk20a_cde_allocate_context(l);
if (IS_ERR(cde_ctx))
return PTR_ERR(cde_ctx);
nvgpu_list_add(&cde_ctx->list, &cde_app->free_contexts);
cde_app->ctx_count++;
if (cde_app->ctx_count > cde_app->ctx_count_top)
cde_app->ctx_count_top = cde_app->ctx_count;
return 0;
}
static int gk20a_cde_create_contexts(struct nvgpu_os_linux *l)
__must_hold(&l->cde_app->mutex)
{
int err;
int i;
for (i = 0; i < NUM_CDE_CONTEXTS; i++) {
err = gk20a_cde_create_context(l);
if (err)
goto out;
}
return 0;
out:
gk20a_cde_remove_contexts(l);
return err;
}
static int gk20a_init_cde_buf(struct gk20a_cde_ctx *cde_ctx,
struct nvgpu_firmware *img,
struct gk20a_cde_hdr_buf *buf)
{
struct nvgpu_mem *mem;
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
int err;
/* check that the file can hold the buf */
if (buf->data_byte_offset != 0 &&
buf->data_byte_offset + buf->num_bytes > img->size) {
nvgpu_warn(g, "cde: invalid data section. buffer idx = %d",
cde_ctx->num_bufs);
return -EINVAL;
}
/* check that we have enough buf elems available */
if (cde_ctx->num_bufs >= MAX_CDE_BUFS) {
nvgpu_warn(g, "cde: invalid data section. buffer idx = %d",
cde_ctx->num_bufs);
return -ENOMEM;
}
/* allocate buf */
mem = cde_ctx->mem + cde_ctx->num_bufs;
err = nvgpu_dma_alloc_map_sys(cde_ctx->vm, buf->num_bytes, mem);
if (err) {
nvgpu_warn(g, "cde: could not allocate device memory. buffer idx = %d",
cde_ctx->num_bufs);
return -ENOMEM;
}
/* copy the content */
if (buf->data_byte_offset != 0)
memcpy(mem->cpu_va, img->data + buf->data_byte_offset,
buf->num_bytes);
cde_ctx->num_bufs++;
return 0;
}
static int gk20a_replace_data(struct gk20a_cde_ctx *cde_ctx, void *target,
int type, s32 shift, u64 mask, u64 value)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
u32 *target_mem_ptr = target;
u64 *target_mem_ptr_u64 = target;
u64 current_value, new_value;
value = (shift >= 0) ? value << shift : value >> -shift;
value &= mask;
/* read current data from the location */
current_value = 0;
if (type == TYPE_PARAM_TYPE_U32) {
if (mask != 0xfffffffful)
current_value = *target_mem_ptr;
} else if (type == TYPE_PARAM_TYPE_U64_LITTLE) {
if (mask != ~0ul)
current_value = *target_mem_ptr_u64;
} else if (type == TYPE_PARAM_TYPE_U64_BIG) {
current_value = *target_mem_ptr_u64;
current_value = (u64)(current_value >> 32) |
(u64)(current_value << 32);
} else {
nvgpu_warn(g, "cde: unknown type. type=%d",
type);
return -EINVAL;
}
current_value &= ~mask;
new_value = current_value | value;
/* store the element data back */
if (type == TYPE_PARAM_TYPE_U32)
*target_mem_ptr = (u32)new_value;
else if (type == TYPE_PARAM_TYPE_U64_LITTLE)
*target_mem_ptr_u64 = new_value;
else {
new_value = (u64)(new_value >> 32) |
(u64)(new_value << 32);
*target_mem_ptr_u64 = new_value;
}
return 0;
}
static int gk20a_init_cde_replace(struct gk20a_cde_ctx *cde_ctx,
struct nvgpu_firmware *img,
struct gk20a_cde_hdr_replace *replace)
{
struct nvgpu_mem *source_mem;
struct nvgpu_mem *target_mem;
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
u32 *target_mem_ptr;
u64 vaddr;
int err;
if (replace->target_buf >= cde_ctx->num_bufs ||
replace->source_buf >= cde_ctx->num_bufs) {
nvgpu_warn(g, "cde: invalid buffer. target_buf=%u, source_buf=%u, num_bufs=%d",
replace->target_buf, replace->source_buf,
cde_ctx->num_bufs);
return -EINVAL;
}
source_mem = cde_ctx->mem + replace->source_buf;
target_mem = cde_ctx->mem + replace->target_buf;
target_mem_ptr = target_mem->cpu_va;
if (source_mem->size < (replace->source_byte_offset + 3) ||
target_mem->size < (replace->target_byte_offset + 3)) {
nvgpu_warn(g, "cde: invalid buffer offsets. target_buf_offs=%lld, source_buf_offs=%lld, source_buf_size=%zu, dest_buf_size=%zu",
replace->target_byte_offset,
replace->source_byte_offset,
source_mem->size,
target_mem->size);
return -EINVAL;
}
/* calculate the target pointer */
target_mem_ptr += (replace->target_byte_offset / sizeof(u32));
/* determine patch value */
vaddr = source_mem->gpu_va + replace->source_byte_offset;
err = gk20a_replace_data(cde_ctx, target_mem_ptr, replace->type,
replace->shift, replace->mask,
vaddr);
if (err) {
nvgpu_warn(g, "cde: replace failed. err=%d, target_buf=%u, target_buf_offs=%lld, source_buf=%u, source_buf_offs=%lld",
err, replace->target_buf,
replace->target_byte_offset,
replace->source_buf,
replace->source_byte_offset);
}
return err;
}
static int gk20a_cde_patch_params(struct gk20a_cde_ctx *cde_ctx)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
struct nvgpu_mem *target_mem;
u32 *target_mem_ptr;
u64 new_data;
int user_id = 0, err;
unsigned int i;
for (i = 0; i < cde_ctx->num_params; i++) {
struct gk20a_cde_hdr_param *param = cde_ctx->params + i;
target_mem = cde_ctx->mem + param->target_buf;
target_mem_ptr = target_mem->cpu_va;
target_mem_ptr += (param->target_byte_offset / sizeof(u32));
switch (param->id) {
case TYPE_PARAM_COMPTAGS_PER_CACHELINE:
new_data = g->gr.comptags_per_cacheline;
break;
case TYPE_PARAM_GPU_CONFIGURATION:
new_data = (u64)g->ltc_count * g->gr.slices_per_ltc *
g->gr.cacheline_size;
break;
case TYPE_PARAM_FIRSTPAGEOFFSET:
new_data = cde_ctx->surf_param_offset;
break;
case TYPE_PARAM_NUMPAGES:
new_data = cde_ctx->surf_param_lines;
break;
case TYPE_PARAM_BACKINGSTORE:
new_data = cde_ctx->backing_store_vaddr;
break;
case TYPE_PARAM_DESTINATION:
new_data = cde_ctx->compbit_vaddr;
break;
case TYPE_PARAM_DESTINATION_SIZE:
new_data = cde_ctx->compbit_size;
break;
case TYPE_PARAM_BACKINGSTORE_SIZE:
new_data = g->gr.compbit_store.mem.size;
break;
case TYPE_PARAM_SOURCE_SMMU_ADDR:
new_data = gpuva_to_iova_base(cde_ctx->vm,
cde_ctx->surf_vaddr);
if (new_data == 0) {
nvgpu_warn(g, "cde: failed to find 0x%llx",
cde_ctx->surf_vaddr);
return -EINVAL;
}
break;
case TYPE_PARAM_BACKINGSTORE_BASE_HW:
new_data = g->gr.compbit_store.base_hw;
break;
case TYPE_PARAM_GOBS_PER_COMPTAGLINE_PER_SLICE:
new_data = g->gr.gobs_per_comptagline_per_slice;
break;
case TYPE_PARAM_SCATTERBUFFER:
new_data = cde_ctx->scatterbuffer_vaddr;
break;
case TYPE_PARAM_SCATTERBUFFER_SIZE:
new_data = cde_ctx->scatterbuffer_size;
break;
default:
user_id = param->id - NUM_RESERVED_PARAMS;
if (user_id < 0 || user_id >= MAX_CDE_USER_PARAMS)
continue;
new_data = cde_ctx->user_param_values[user_id];
}
nvgpu_log(g, gpu_dbg_cde, "cde: patch: idx_in_file=%d param_id=%d target_buf=%u target_byte_offset=%lld data_value=0x%llx data_offset/data_diff=%lld data_type=%d data_shift=%d data_mask=0x%llx",
i, param->id, param->target_buf,
param->target_byte_offset, new_data,
param->data_offset, param->type, param->shift,
param->mask);
new_data += param->data_offset;
err = gk20a_replace_data(cde_ctx, target_mem_ptr, param->type,
param->shift, param->mask, new_data);
if (err) {
nvgpu_warn(g, "cde: patch failed. err=%d, idx=%d, id=%d, target_buf=%u, target_buf_offs=%lld, patch_value=%llu",
err, i, param->id, param->target_buf,
param->target_byte_offset, new_data);
return err;
}
}
return 0;
}
static int gk20a_init_cde_param(struct gk20a_cde_ctx *cde_ctx,
struct nvgpu_firmware *img,
struct gk20a_cde_hdr_param *param)
{
struct nvgpu_mem *target_mem;
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
if (param->target_buf >= cde_ctx->num_bufs) {
nvgpu_warn(g, "cde: invalid buffer parameter. param idx = %d, target_buf=%u, num_bufs=%u",
cde_ctx->num_params, param->target_buf,
cde_ctx->num_bufs);
return -EINVAL;
}
target_mem = cde_ctx->mem + param->target_buf;
if (target_mem->size < (param->target_byte_offset + 3)) {
nvgpu_warn(g, "cde: invalid buffer parameter. param idx = %d, target_buf_offs=%lld, target_buf_size=%zu",
cde_ctx->num_params, param->target_byte_offset,
target_mem->size);
return -EINVAL;
}
/* does this parameter fit into our parameter structure */
if (cde_ctx->num_params >= MAX_CDE_PARAMS) {
nvgpu_warn(g, "cde: no room for new parameters param idx = %d",
cde_ctx->num_params);
return -ENOMEM;
}
/* is the given id valid? */
if (param->id >= NUM_RESERVED_PARAMS + MAX_CDE_USER_PARAMS) {
nvgpu_warn(g, "cde: parameter id is not valid. param idx = %d, id=%u, max=%u",
param->id, cde_ctx->num_params,
NUM_RESERVED_PARAMS + MAX_CDE_USER_PARAMS);
return -EINVAL;
}
cde_ctx->params[cde_ctx->num_params] = *param;
cde_ctx->num_params++;
return 0;
}
static int gk20a_init_cde_required_class(struct gk20a_cde_ctx *cde_ctx,
struct nvgpu_firmware *img,
u32 required_class)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
int err;
/* CDE enabled */
cde_ctx->ch->cde = true;
err = gk20a_alloc_obj_ctx(cde_ctx->ch, required_class, 0);
if (err) {
nvgpu_warn(g, "cde: failed to allocate ctx. err=%d",
err);
return err;
}
return 0;
}
static int gk20a_init_cde_command(struct gk20a_cde_ctx *cde_ctx,
struct nvgpu_firmware *img,
u32 op,
struct gk20a_cde_cmd_elem *cmd_elem,
u32 num_elems)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
struct nvgpu_gpfifo_entry **gpfifo, *gpfifo_elem;
u32 *num_entries;
unsigned int i;
/* check command type */
if (op == TYPE_BUF_COMMAND_INIT) {
gpfifo = &cde_ctx->init_convert_cmd;
num_entries = &cde_ctx->init_cmd_num_entries;
} else if (op == TYPE_BUF_COMMAND_CONVERT) {
gpfifo = &cde_ctx->convert_cmd;
num_entries = &cde_ctx->convert_cmd_num_entries;
} else {
nvgpu_warn(g, "cde: unknown command. op=%u",
op);
return -EINVAL;
}
/* allocate gpfifo entries to be pushed */
*gpfifo = nvgpu_kzalloc(g,
sizeof(struct nvgpu_gpfifo_entry) * num_elems);
if (!*gpfifo) {
nvgpu_warn(g, "cde: could not allocate memory for gpfifo entries");
return -ENOMEM;
}
gpfifo_elem = *gpfifo;
for (i = 0; i < num_elems; i++, cmd_elem++, gpfifo_elem++) {
struct nvgpu_mem *target_mem;
/* validate the current entry */
if (cmd_elem->target_buf >= cde_ctx->num_bufs) {
nvgpu_warn(g, "cde: target buffer is not available (target=%u, num_bufs=%u)",
cmd_elem->target_buf, cde_ctx->num_bufs);
return -EINVAL;
}
target_mem = cde_ctx->mem + cmd_elem->target_buf;
if (target_mem->size<
cmd_elem->target_byte_offset + cmd_elem->num_bytes) {
nvgpu_warn(g, "cde: target buffer cannot hold all entries (target_size=%zu, target_byte_offset=%lld, num_bytes=%llu)",
target_mem->size,
cmd_elem->target_byte_offset,
cmd_elem->num_bytes);
return -EINVAL;
}
/* store the element into gpfifo */
gpfifo_elem->entry0 =
u64_lo32(target_mem->gpu_va +
cmd_elem->target_byte_offset);
gpfifo_elem->entry1 =
u64_hi32(target_mem->gpu_va +
cmd_elem->target_byte_offset) |
pbdma_gp_entry1_length_f(cmd_elem->num_bytes /
sizeof(u32));
}
*num_entries = num_elems;
return 0;
}
static int gk20a_cde_pack_cmdbufs(struct gk20a_cde_ctx *cde_ctx)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
unsigned long init_bytes = cde_ctx->init_cmd_num_entries *
sizeof(struct nvgpu_gpfifo_entry);
unsigned long conv_bytes = cde_ctx->convert_cmd_num_entries *
sizeof(struct nvgpu_gpfifo_entry);
unsigned long total_bytes = init_bytes + conv_bytes;
struct nvgpu_gpfifo_entry *combined_cmd;
/* allocate buffer that has space for both */
combined_cmd = nvgpu_kzalloc(g, total_bytes);
if (!combined_cmd) {
nvgpu_warn(g,
"cde: could not allocate memory for gpfifo entries");
return -ENOMEM;
}
/* move the original init here and append convert */
memcpy(combined_cmd, cde_ctx->init_convert_cmd, init_bytes);
memcpy(combined_cmd + cde_ctx->init_cmd_num_entries,
cde_ctx->convert_cmd, conv_bytes);
nvgpu_kfree(g, cde_ctx->init_convert_cmd);
nvgpu_kfree(g, cde_ctx->convert_cmd);
cde_ctx->init_convert_cmd = combined_cmd;
cde_ctx->convert_cmd = combined_cmd
+ cde_ctx->init_cmd_num_entries;
return 0;
}
static int gk20a_init_cde_img(struct gk20a_cde_ctx *cde_ctx,
struct nvgpu_firmware *img)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
struct gk20a_cde_app *cde_app = &l->cde_app;
u32 *data = (u32 *)img->data;
u32 num_of_elems;
struct gk20a_cde_hdr_elem *elem;
u32 min_size = 0;
int err = 0;
unsigned int i;
min_size += 2 * sizeof(u32);
if (img->size < min_size) {
nvgpu_warn(g, "cde: invalid image header");
return -EINVAL;
}
cde_app->firmware_version = data[0];
num_of_elems = data[1];
min_size += num_of_elems * sizeof(*elem);
if (img->size < min_size) {
nvgpu_warn(g, "cde: bad image");
return -EINVAL;
}
elem = (struct gk20a_cde_hdr_elem *)&data[2];
for (i = 0; i < num_of_elems; i++) {
int err = 0;
switch (elem->type) {
case TYPE_BUF:
err = gk20a_init_cde_buf(cde_ctx, img, &elem->buf);
break;
case TYPE_REPLACE:
err = gk20a_init_cde_replace(cde_ctx, img,
&elem->replace);
break;
case TYPE_PARAM:
err = gk20a_init_cde_param(cde_ctx, img, &elem->param);
break;
case TYPE_REQUIRED_CLASS:
err = gk20a_init_cde_required_class(cde_ctx, img,
elem->required_class);
break;
case TYPE_COMMAND:
{
struct gk20a_cde_cmd_elem *cmd = (void *)
&img->data[elem->command.data_byte_offset];
err = gk20a_init_cde_command(cde_ctx, img,
elem->command.op, cmd,
elem->command.num_entries);
break;
}
case TYPE_ARRAY:
memcpy(&cde_app->arrays[elem->array.id][0],
elem->array.data,
MAX_CDE_ARRAY_ENTRIES*sizeof(u32));
break;
default:
nvgpu_warn(g, "cde: unknown header element");
err = -EINVAL;
}
if (err)
goto deinit_image;
elem++;
}
if (!cde_ctx->init_convert_cmd || !cde_ctx->init_cmd_num_entries) {
nvgpu_warn(g, "cde: convert command not defined");
err = -EINVAL;
goto deinit_image;
}
if (!cde_ctx->convert_cmd || !cde_ctx->convert_cmd_num_entries) {
nvgpu_warn(g, "cde: convert command not defined");
err = -EINVAL;
goto deinit_image;
}
err = gk20a_cde_pack_cmdbufs(cde_ctx);
if (err)
goto deinit_image;
return 0;
deinit_image:
gk20a_deinit_cde_img(cde_ctx);
return err;
}
static int gk20a_cde_execute_buffer(struct gk20a_cde_ctx *cde_ctx,
u32 op, struct nvgpu_channel_fence *fence,
u32 flags, struct gk20a_fence **fence_out)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
struct nvgpu_gpfifo_entry *gpfifo = NULL;
int num_entries = 0;
/* check command type */
if (op == TYPE_BUF_COMMAND_INIT) {
/* both init and convert combined */
gpfifo = cde_ctx->init_convert_cmd;
num_entries = cde_ctx->init_cmd_num_entries
+ cde_ctx->convert_cmd_num_entries;
} else if (op == TYPE_BUF_COMMAND_CONVERT) {
gpfifo = cde_ctx->convert_cmd;
num_entries = cde_ctx->convert_cmd_num_entries;
} else if (op == TYPE_BUF_COMMAND_NOOP) {
/* Any non-null gpfifo will suffice with 0 num_entries */
gpfifo = cde_ctx->init_convert_cmd;
num_entries = 0;
} else {
nvgpu_warn(g, "cde: unknown buffer");
return -EINVAL;
}
if (gpfifo == NULL) {
nvgpu_warn(g, "cde: buffer not available");
return -ENOSYS;
}
return nvgpu_submit_channel_gpfifo_kernel(cde_ctx->ch, gpfifo,
num_entries, flags, fence, fence_out);
}
static void gk20a_cde_ctx_release(struct gk20a_cde_ctx *cde_ctx)
__acquires(&cde_app->mutex)
__releases(&cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &cde_ctx->l->cde_app;
struct gk20a *g = &cde_ctx->l->g;
nvgpu_log(g, gpu_dbg_cde_ctx, "releasing use on %p", cde_ctx);
trace_gk20a_cde_release(cde_ctx);
nvgpu_mutex_acquire(&cde_app->mutex);
if (cde_ctx->in_use) {
cde_ctx->in_use = false;
nvgpu_list_move(&cde_ctx->list, &cde_app->free_contexts);
cde_app->ctx_usecount--;
} else {
nvgpu_log_info(g, "double release cde context %p", cde_ctx);
}
nvgpu_mutex_release(&cde_app->mutex);
}
static void gk20a_cde_ctx_deleter_fn(struct work_struct *work)
__acquires(&cde_app->mutex)
__releases(&cde_app->mutex)
{
struct delayed_work *delay_work = to_delayed_work(work);
struct gk20a_cde_ctx *cde_ctx = container_of(delay_work,
struct gk20a_cde_ctx, ctx_deleter_work);
struct gk20a_cde_app *cde_app = &cde_ctx->l->cde_app;
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
int err;
/* someone has just taken it? engine deletion started? */
if (cde_ctx->in_use || !cde_app->initialised)
return;
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_cde_ctx,
"cde: attempting to delete temporary %p", cde_ctx);
err = gk20a_busy(g);
if (err) {
/* this context would find new use anyway later, so not freeing
* here does not leak anything */
nvgpu_warn(g, "cde: cannot set gk20a on, postponing"
" temp ctx deletion");
return;
}
nvgpu_mutex_acquire(&cde_app->mutex);
if (cde_ctx->in_use || !cde_app->initialised) {
nvgpu_log(g, gpu_dbg_cde_ctx,
"cde: context use raced, not deleting %p",
cde_ctx);
goto out;
}
WARN(delayed_work_pending(&cde_ctx->ctx_deleter_work),
"double pending %p", cde_ctx);
gk20a_cde_remove_ctx(cde_ctx);
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_cde_ctx,
"cde: destroyed %p count=%d use=%d max=%d",
cde_ctx, cde_app->ctx_count, cde_app->ctx_usecount,
cde_app->ctx_count_top);
out:
nvgpu_mutex_release(&cde_app->mutex);
gk20a_idle(g);
}
static struct gk20a_cde_ctx *gk20a_cde_do_get_context(struct nvgpu_os_linux *l)
__must_hold(&cde_app->mutex)
{
struct gk20a *g = &l->g;
struct gk20a_cde_app *cde_app = &l->cde_app;
struct gk20a_cde_ctx *cde_ctx;
/* exhausted? */
if (cde_app->ctx_usecount >= MAX_CTX_USE_COUNT)
return ERR_PTR(-EAGAIN);
/* idle context available? */
if (!nvgpu_list_empty(&cde_app->free_contexts)) {
cde_ctx = nvgpu_list_first_entry(&cde_app->free_contexts,
gk20a_cde_ctx, list);
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_cde_ctx,
"cde: got free %p count=%d use=%d max=%d",
cde_ctx, cde_app->ctx_count,
cde_app->ctx_usecount,
cde_app->ctx_count_top);
trace_gk20a_cde_get_context(cde_ctx);
/* deleter work may be scheduled, but in_use prevents it */
cde_ctx->in_use = true;
nvgpu_list_move(&cde_ctx->list, &cde_app->used_contexts);
cde_app->ctx_usecount++;
/* cancel any deletions now that ctx is in use */
gk20a_cde_cancel_deleter(cde_ctx, true);
return cde_ctx;
}
/* no free contexts, get a temporary one */
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_cde_ctx,
"cde: no free contexts, count=%d",
cde_app->ctx_count);
cde_ctx = gk20a_cde_allocate_context(l);
if (IS_ERR(cde_ctx)) {
nvgpu_warn(g, "cde: cannot allocate context: %ld",
PTR_ERR(cde_ctx));
return cde_ctx;
}
trace_gk20a_cde_get_context(cde_ctx);
cde_ctx->in_use = true;
cde_ctx->is_temporary = true;
cde_app->ctx_usecount++;
cde_app->ctx_count++;
if (cde_app->ctx_count > cde_app->ctx_count_top)
cde_app->ctx_count_top = cde_app->ctx_count;
nvgpu_list_add(&cde_ctx->list, &cde_app->used_contexts);
return cde_ctx;
}
static struct gk20a_cde_ctx *gk20a_cde_get_context(struct nvgpu_os_linux *l)
__releases(&cde_app->mutex)
__acquires(&cde_app->mutex)
{
struct gk20a *g = &l->g;
struct gk20a_cde_app *cde_app = &l->cde_app;
struct gk20a_cde_ctx *cde_ctx = NULL;
struct nvgpu_timeout timeout;
nvgpu_timeout_init(g, &timeout, MAX_CTX_RETRY_TIME,
NVGPU_TIMER_CPU_TIMER);
do {
cde_ctx = gk20a_cde_do_get_context(l);
if (PTR_ERR(cde_ctx) != -EAGAIN)
break;
/* exhausted, retry */
nvgpu_mutex_release(&cde_app->mutex);
cond_resched();
nvgpu_mutex_acquire(&cde_app->mutex);
} while (!nvgpu_timeout_expired(&timeout));
return cde_ctx;
}
static struct gk20a_cde_ctx *gk20a_cde_allocate_context(struct nvgpu_os_linux *l)
{
struct gk20a *g = &l->g;
struct gk20a_cde_ctx *cde_ctx;
int ret;
cde_ctx = nvgpu_kzalloc(g, sizeof(*cde_ctx));
if (!cde_ctx)
return ERR_PTR(-ENOMEM);
cde_ctx->l = l;
cde_ctx->dev = dev_from_gk20a(g);
ret = gk20a_cde_load(cde_ctx);
if (ret) {
nvgpu_kfree(g, cde_ctx);
return ERR_PTR(ret);
}
nvgpu_init_list_node(&cde_ctx->list);
cde_ctx->is_temporary = false;
cde_ctx->in_use = false;
INIT_DELAYED_WORK(&cde_ctx->ctx_deleter_work,
gk20a_cde_ctx_deleter_fn);
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_cde_ctx, "cde: allocated %p", cde_ctx);
trace_gk20a_cde_allocate_context(cde_ctx);
return cde_ctx;
}
static u32 gk20a_cde_mapping_page_size(struct vm_gk20a *vm,
u32 map_offset, u32 map_size)
{
struct gk20a *g = gk20a_from_vm(vm);
/*
* To be simple we will just make the map size depend on the
* iommu'ability of the driver. If there's an IOMMU we can rely on
* buffers being contiguous. If not, then we'll use 4k pages since we
* know that will work for any buffer.
*/
if (!nvgpu_iommuable(g))
return SZ_4K;
/*
* If map size or offset is not 64K aligned then use small pages.
*/
if (map_size & (vm->big_page_size - 1) ||
map_offset & (vm->big_page_size - 1))
return SZ_4K;
return vm->big_page_size;
}
int gk20a_cde_convert(struct nvgpu_os_linux *l,
struct dma_buf *compbits_scatter_buf,
u64 compbits_byte_offset,
u64 scatterbuffer_byte_offset,
struct nvgpu_channel_fence *fence,
u32 __flags, struct gk20a_cde_param *params,
int num_params, struct gk20a_fence **fence_out)
__acquires(&l->cde_app->mutex)
__releases(&l->cde_app->mutex)
{
struct gk20a *g = &l->g;
struct gk20a_cde_ctx *cde_ctx = NULL;
struct gk20a_comptags comptags;
struct nvgpu_os_buffer os_buf = {
compbits_scatter_buf,
NULL,
dev_from_gk20a(g)
};
u64 mapped_compbits_offset = 0;
u64 compbits_size = 0;
u64 mapped_scatterbuffer_offset = 0;
u64 scatterbuffer_size = 0;
u64 map_vaddr = 0;
u64 map_offset = 0;
u64 map_size = 0;
u8 *surface = NULL;
u64 big_page_mask = 0;
u32 flags;
int err, i;
const s16 compbits_kind = 0;
u32 submit_op;
struct dma_buf_attachment *attachment;
nvgpu_log(g, gpu_dbg_cde, "compbits_byte_offset=%llu scatterbuffer_byte_offset=%llu",
compbits_byte_offset, scatterbuffer_byte_offset);
/* scatter buffer must be after compbits buffer */
if (scatterbuffer_byte_offset &&
scatterbuffer_byte_offset < compbits_byte_offset)
return -EINVAL;
err = gk20a_busy(g);
if (err)
return err;
nvgpu_mutex_acquire(&l->cde_app.mutex);
cde_ctx = gk20a_cde_get_context(l);
nvgpu_mutex_release(&l->cde_app.mutex);
if (IS_ERR(cde_ctx)) {
err = PTR_ERR(cde_ctx);
goto exit_idle;
}
/* First, map the buffer to local va */
/* ensure that the compbits buffer has drvdata */
err = gk20a_dmabuf_alloc_drvdata(compbits_scatter_buf,
dev_from_gk20a(g));
if (err)
goto exit_idle;
/* compbits don't start at page aligned offset, so we need to align
the region to be mapped */
big_page_mask = cde_ctx->vm->big_page_size - 1;
map_offset = compbits_byte_offset & ~big_page_mask;
map_size = compbits_scatter_buf->size - map_offset;
/* compute compbit start offset from the beginning of the mapped
area */
mapped_compbits_offset = compbits_byte_offset - map_offset;
if (scatterbuffer_byte_offset) {
compbits_size = scatterbuffer_byte_offset -
compbits_byte_offset;
mapped_scatterbuffer_offset = scatterbuffer_byte_offset -
map_offset;
scatterbuffer_size = compbits_scatter_buf->size -
scatterbuffer_byte_offset;
} else {
compbits_size = compbits_scatter_buf->size -
compbits_byte_offset;
}
nvgpu_log(g, gpu_dbg_cde, "map_offset=%llu map_size=%llu",
map_offset, map_size);
nvgpu_log(g, gpu_dbg_cde, "mapped_compbits_offset=%llu compbits_size=%llu",
mapped_compbits_offset, compbits_size);
nvgpu_log(g, gpu_dbg_cde, "mapped_scatterbuffer_offset=%llu scatterbuffer_size=%llu",
mapped_scatterbuffer_offset, scatterbuffer_size);
/* map the destination buffer */
get_dma_buf(compbits_scatter_buf); /* a ref for nvgpu_vm_map_linux */
err = nvgpu_vm_map_linux(cde_ctx->vm, compbits_scatter_buf, 0,
NVGPU_VM_MAP_CACHEABLE |
NVGPU_VM_MAP_DIRECT_KIND_CTRL,
gk20a_cde_mapping_page_size(cde_ctx->vm,
map_offset,
map_size),
NV_KIND_INVALID,
compbits_kind, /* incompressible kind */
gk20a_mem_flag_none,
map_offset, map_size,
NULL,
&map_vaddr);
if (err) {
nvgpu_warn(g, "cde: failed to map compbits scatter buf at %lld size %lld",
map_offset, map_size);
dma_buf_put(compbits_scatter_buf);
err = -EINVAL;
goto exit_idle;
}
if (scatterbuffer_byte_offset &&
l->ops.cde.need_scatter_buffer &&
l->ops.cde.need_scatter_buffer(g)) {
struct sg_table *sgt;
void *scatter_buffer;
surface = dma_buf_vmap(compbits_scatter_buf);
if (IS_ERR(surface)) {
nvgpu_warn(g,
"dma_buf_vmap failed");
err = -EINVAL;
goto exit_unmap_vaddr;
}
scatter_buffer = surface + scatterbuffer_byte_offset;
nvgpu_log(g, gpu_dbg_cde, "surface=0x%p scatterBuffer=0x%p",
surface, scatter_buffer);
sgt = gk20a_mm_pin(dev_from_gk20a(g), compbits_scatter_buf,
&attachment);
if (IS_ERR(sgt)) {
nvgpu_warn(g,
"mm_pin failed");
err = -EINVAL;
goto exit_unmap_surface;
} else {
err = l->ops.cde.populate_scatter_buffer(g, sgt,
compbits_byte_offset, scatter_buffer,
scatterbuffer_size);
WARN_ON(err);
gk20a_mm_unpin(dev_from_gk20a(g), compbits_scatter_buf,
attachment, sgt);
if (err)
goto exit_unmap_surface;
}
__cpuc_flush_dcache_area(scatter_buffer, scatterbuffer_size);
dma_buf_vunmap(compbits_scatter_buf, surface);
surface = NULL;
}
/* store source buffer compression tags */
gk20a_get_comptags(&os_buf, &comptags);
cde_ctx->surf_param_offset = comptags.offset;
cde_ctx->surf_param_lines = comptags.lines;
/* store surface vaddr. This is actually compbit vaddr, but since
compbits live in the same surface, and we can get the alloc base
address by using gpuva_to_iova_base, this will do */
cde_ctx->surf_vaddr = map_vaddr;
/* store information about destination */
cde_ctx->compbit_vaddr = map_vaddr + mapped_compbits_offset;
cde_ctx->compbit_size = compbits_size;
cde_ctx->scatterbuffer_vaddr = map_vaddr + mapped_scatterbuffer_offset;
cde_ctx->scatterbuffer_size = scatterbuffer_size;
/* remove existing argument data */
memset(cde_ctx->user_param_values, 0,
sizeof(cde_ctx->user_param_values));
/* read user space arguments for the conversion */
for (i = 0; i < num_params; i++) {
struct gk20a_cde_param *param = params + i;
int id = param->id - NUM_RESERVED_PARAMS;
if (id < 0 || id >= MAX_CDE_USER_PARAMS) {
nvgpu_warn(g, "cde: unknown user parameter");
err = -EINVAL;
goto exit_unmap_surface;
}
cde_ctx->user_param_values[id] = param->value;
}
/* patch data */
err = gk20a_cde_patch_params(cde_ctx);
if (err) {
nvgpu_warn(g, "cde: failed to patch parameters");
goto exit_unmap_surface;
}
nvgpu_log(g, gpu_dbg_cde, "cde: buffer=cbc, size=%zu, gpuva=%llx\n",
g->gr.compbit_store.mem.size, cde_ctx->backing_store_vaddr);
nvgpu_log(g, gpu_dbg_cde, "cde: buffer=compbits, size=%llu, gpuva=%llx\n",
cde_ctx->compbit_size, cde_ctx->compbit_vaddr);
nvgpu_log(g, gpu_dbg_cde, "cde: buffer=scatterbuffer, size=%llu, gpuva=%llx\n",
cde_ctx->scatterbuffer_size, cde_ctx->scatterbuffer_vaddr);
/* take always the postfence as it is needed for protecting the
* cde context */
flags = __flags | NVGPU_SUBMIT_FLAGS_FENCE_GET;
/* gk20a_cde_execute_buffer() will grab a power reference of it's own */
gk20a_idle(g);
if (comptags.lines == 0) {
/*
* Nothing to do on the buffer, but do a null kickoff for
* managing the pre and post fences.
*/
submit_op = TYPE_BUF_COMMAND_NOOP;
} else if (!cde_ctx->init_cmd_executed) {
/*
* First time, so include the init pushbuf too in addition to
* the conversion code.
*/
submit_op = TYPE_BUF_COMMAND_INIT;
} else {
/*
* The usual condition: execute just the conversion.
*/
submit_op = TYPE_BUF_COMMAND_CONVERT;
}
err = gk20a_cde_execute_buffer(cde_ctx, submit_op,
fence, flags, fence_out);
if (comptags.lines != 0 && !err)
cde_ctx->init_cmd_executed = true;
/* unmap the buffers - channel holds references to them now */
nvgpu_vm_unmap(cde_ctx->vm, map_vaddr, NULL);
return err;
exit_unmap_surface:
if (surface)
dma_buf_vunmap(compbits_scatter_buf, surface);
exit_unmap_vaddr:
nvgpu_vm_unmap(cde_ctx->vm, map_vaddr, NULL);
exit_idle:
gk20a_idle(g);
return err;
}
static void gk20a_cde_finished_ctx_cb(struct channel_gk20a *ch, void *data)
__acquires(&cde_app->mutex)
__releases(&cde_app->mutex)
{
struct gk20a_cde_ctx *cde_ctx = data;
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
struct gk20a_cde_app *cde_app = &l->cde_app;
bool channel_idle;
channel_gk20a_joblist_lock(ch);
channel_idle = channel_gk20a_joblist_is_empty(ch);
channel_gk20a_joblist_unlock(ch);
if (!channel_idle)
return;
trace_gk20a_cde_finished_ctx_cb(cde_ctx);
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_cde_ctx, "cde: finished %p", cde_ctx);
if (!cde_ctx->in_use)
nvgpu_log_info(g, "double finish cde context %p on channel %p",
cde_ctx, ch);
if (gk20a_channel_check_timedout(ch)) {
if (cde_ctx->is_temporary) {
nvgpu_warn(g,
"cde: channel had timed out"
" (temporary channel)");
/* going to be deleted anyway */
} else {
nvgpu_warn(g,
"cde: channel had timed out"
", reloading");
/* mark it to be deleted, replace with a new one */
nvgpu_mutex_acquire(&cde_app->mutex);
cde_ctx->is_temporary = true;
if (gk20a_cde_create_context(l)) {
nvgpu_err(g, "cde: can't replace context");
}
nvgpu_mutex_release(&cde_app->mutex);
}
}
/* delete temporary contexts later (watch for doubles) */
if (cde_ctx->is_temporary && cde_ctx->in_use) {
WARN_ON(delayed_work_pending(&cde_ctx->ctx_deleter_work));
schedule_delayed_work(&cde_ctx->ctx_deleter_work,
msecs_to_jiffies(CTX_DELETE_TIME));
}
if (!gk20a_channel_check_timedout(ch)) {
gk20a_cde_ctx_release(cde_ctx);
}
}
static int gk20a_cde_load(struct gk20a_cde_ctx *cde_ctx)
{
struct nvgpu_os_linux *l = cde_ctx->l;
struct gk20a *g = &l->g;
struct nvgpu_firmware *img;
struct channel_gk20a *ch;
struct tsg_gk20a *tsg;
struct gr_gk20a *gr = &g->gr;
struct nvgpu_setup_bind_args setup_bind_args;
int err = 0;
u64 vaddr;
img = nvgpu_request_firmware(g, "gpu2cde.bin", 0);
if (!img) {
nvgpu_err(g, "cde: could not fetch the firmware");
return -ENOSYS;
}
tsg = gk20a_tsg_open(g, nvgpu_current_pid(g));
if (!tsg) {
nvgpu_err(g, "cde: could not create TSG");
err = -ENOMEM;
goto err_get_gk20a_channel;
}
ch = gk20a_open_new_channel_with_cb(g, gk20a_cde_finished_ctx_cb,
cde_ctx,
-1,
false);
if (!ch) {
nvgpu_warn(g, "cde: gk20a channel not available");
err = -ENOMEM;
goto err_get_gk20a_channel;
}
ch->timeout.enabled = false;
/* bind the channel to the vm */
err = g->ops.mm.vm_bind_channel(g->mm.cde.vm, ch);
if (err) {
nvgpu_warn(g, "cde: could not bind vm");
goto err_commit_va;
}
err = gk20a_tsg_bind_channel(tsg, ch);
if (err) {
nvgpu_err(g, "cde: unable to bind to tsg");
goto err_setup_bind;
}
setup_bind_args.num_gpfifo_entries = 1024;
setup_bind_args.num_inflight_jobs = 0;
setup_bind_args.flags = 0;
err = nvgpu_channel_setup_bind(ch, &setup_bind_args);
if (err) {
nvgpu_warn(g, "cde: unable to setup channel");
goto err_setup_bind;
}
/* map backing store to gpu virtual space */
vaddr = nvgpu_gmmu_map(ch->vm, &gr->compbit_store.mem,
g->gr.compbit_store.mem.size,
NVGPU_VM_MAP_CACHEABLE,
gk20a_mem_flag_read_only,
false,
gr->compbit_store.mem.aperture);
if (!vaddr) {
nvgpu_warn(g, "cde: cannot map compression bit backing store");
err = -ENOMEM;
goto err_map_backingstore;
}
/* store initialisation data */
cde_ctx->ch = ch;
cde_ctx->tsg = tsg;
cde_ctx->vm = ch->vm;
cde_ctx->backing_store_vaddr = vaddr;
/* initialise the firmware */
err = gk20a_init_cde_img(cde_ctx, img);
if (err) {
nvgpu_warn(g, "cde: image initialisation failed");
goto err_init_cde_img;
}
/* initialisation done */
nvgpu_release_firmware(g, img);
return 0;
err_init_cde_img:
nvgpu_gmmu_unmap(ch->vm, &g->gr.compbit_store.mem, vaddr);
err_map_backingstore:
err_setup_bind:
nvgpu_vm_put(ch->vm);
err_commit_va:
err_get_gk20a_channel:
nvgpu_release_firmware(g, img);
nvgpu_err(g, "cde: couldn't initialise buffer converter: %d", err);
return err;
}
int gk20a_cde_reload(struct nvgpu_os_linux *l)
__acquires(&l->cde_app->mutex)
__releases(&l->cde_app->mutex)
{
struct gk20a *g = &l->g;
struct gk20a_cde_app *cde_app = &l->cde_app;
int err;
if (!cde_app->initialised)
return -ENOSYS;
err = gk20a_busy(g);
if (err)
return err;
nvgpu_mutex_acquire(&cde_app->mutex);
gk20a_cde_stop(l);
err = gk20a_cde_create_contexts(l);
if (!err)
cde_app->initialised = true;
nvgpu_mutex_release(&cde_app->mutex);
gk20a_idle(g);
return err;
}
int gk20a_init_cde_support(struct nvgpu_os_linux *l)
__acquires(&cde_app->mutex)
__releases(&cde_app->mutex)
{
struct gk20a_cde_app *cde_app = &l->cde_app;
struct gk20a *g = &l->g;
int err;
if (cde_app->initialised)
return 0;
nvgpu_log(g, gpu_dbg_fn | gpu_dbg_cde_ctx, "cde: init");
err = nvgpu_mutex_init(&cde_app->mutex);
if (err)
return err;
nvgpu_mutex_acquire(&cde_app->mutex);
nvgpu_init_list_node(&cde_app->free_contexts);
nvgpu_init_list_node(&cde_app->used_contexts);
cde_app->ctx_count = 0;
cde_app->ctx_count_top = 0;
cde_app->ctx_usecount = 0;
err = gk20a_cde_create_contexts(l);
if (!err)
cde_app->initialised = true;
nvgpu_mutex_release(&cde_app->mutex);
nvgpu_log(g, gpu_dbg_cde_ctx, "cde: init finished: %d", err);
if (err)
nvgpu_mutex_destroy(&cde_app->mutex);
return err;
}
enum cde_launch_patch_id {
PATCH_H_QMD_CTA_RASTER_WIDTH_ID = 1024,
PATCH_H_QMD_CTA_RASTER_HEIGHT_ID = 1025,
PATCH_QMD_CTA_RASTER_DEPTH_ID = 1026, /* for firmware v0 only */
PATCH_QMD_CTA_THREAD_DIMENSION0_ID = 1027,
PATCH_QMD_CTA_THREAD_DIMENSION1_ID = 1028,
PATCH_QMD_CTA_THREAD_DIMENSION2_ID = 1029, /* for firmware v0 only */
PATCH_USER_CONST_XTILES_ID = 1030, /* for firmware v0 only */
PATCH_USER_CONST_YTILES_ID = 1031, /* for firmware v0 only */
PATCH_USER_CONST_BLOCKHEIGHTLOG2_ID = 1032,
PATCH_USER_CONST_DSTPITCH_ID = 1033, /* for firmware v0 only */
PATCH_H_USER_CONST_FLAGS_ID = 1034, /* for firmware v0 only */
PATCH_H_VPC_CURRENT_GRID_SIZE_X_ID = 1035,
PATCH_H_VPC_CURRENT_GRID_SIZE_Y_ID = 1036,
PATCH_H_VPC_CURRENT_GRID_SIZE_Z_ID = 1037,
PATCH_VPC_CURRENT_GROUP_SIZE_X_ID = 1038,
PATCH_VPC_CURRENT_GROUP_SIZE_Y_ID = 1039,
PATCH_VPC_CURRENT_GROUP_SIZE_Z_ID = 1040,
PATCH_USER_CONST_XBLOCKS_ID = 1041,
PATCH_H_USER_CONST_DSTOFFSET_ID = 1042,
PATCH_V_QMD_CTA_RASTER_WIDTH_ID = 1043,
PATCH_V_QMD_CTA_RASTER_HEIGHT_ID = 1044,
PATCH_V_USER_CONST_DSTOFFSET_ID = 1045,
PATCH_V_VPC_CURRENT_GRID_SIZE_X_ID = 1046,
PATCH_V_VPC_CURRENT_GRID_SIZE_Y_ID = 1047,
PATCH_V_VPC_CURRENT_GRID_SIZE_Z_ID = 1048,
PATCH_H_LAUNCH_WORD1_ID = 1049,
PATCH_H_LAUNCH_WORD2_ID = 1050,
PATCH_V_LAUNCH_WORD1_ID = 1051,
PATCH_V_LAUNCH_WORD2_ID = 1052,
PATCH_H_QMD_PROGRAM_OFFSET_ID = 1053,
PATCH_H_QMD_REGISTER_COUNT_ID = 1054,
PATCH_V_QMD_PROGRAM_OFFSET_ID = 1055,
PATCH_V_QMD_REGISTER_COUNT_ID = 1056,
};
/* maximum number of WRITE_PATCHes in the below function */
#define MAX_CDE_LAUNCH_PATCHES 32
static int gk20a_buffer_convert_gpu_to_cde_v1(
struct nvgpu_os_linux *l,
struct dma_buf *dmabuf, u32 consumer,
u64 offset, u64 compbits_hoffset, u64 compbits_voffset,
u64 scatterbuffer_offset,
u32 width, u32 height, u32 block_height_log2,
u32 submit_flags, struct nvgpu_channel_fence *fence_in,
struct gk20a_buffer_state *state)
{
struct gk20a *g = &l->g;
struct gk20a_cde_param params[MAX_CDE_LAUNCH_PATCHES];
int param = 0;
int err = 0;
struct gk20a_fence *new_fence = NULL;
const int wgx = 8;
const int wgy = 8;
const int compbits_per_byte = 4; /* one byte stores 4 compbit pairs */
const int xalign = compbits_per_byte * wgx;
const int yalign = wgy;
/* Compute per launch parameters */
const int xtiles = (width + 7) >> 3;
const int ytiles = (height + 7) >> 3;
const int gridw_h = roundup(xtiles, xalign) / xalign;
const int gridh_h = roundup(ytiles, yalign) / yalign;
const int gridw_v = roundup(ytiles, xalign) / xalign;
const int gridh_v = roundup(xtiles, yalign) / yalign;
const int xblocks = (xtiles + 1) >> 1;
const int voffset = compbits_voffset - compbits_hoffset;
int hprog = -1;
int vprog = -1;
if (l->ops.cde.get_program_numbers)
l->ops.cde.get_program_numbers(g, block_height_log2,
l->cde_app.shader_parameter,
&hprog, &vprog);
else {
nvgpu_warn(g, "cde: chip not supported");
return -ENOSYS;
}
if (hprog < 0 || vprog < 0) {
nvgpu_warn(g, "cde: could not determine programs");
return -ENOSYS;
}
if (xtiles > 8192 / 8 || ytiles > 8192 / 8)
nvgpu_warn(g, "cde: surface is exceptionally large (xtiles=%d, ytiles=%d)",
xtiles, ytiles);
nvgpu_log(g, gpu_dbg_cde, "w=%d, h=%d, bh_log2=%d, compbits_hoffset=0x%llx, compbits_voffset=0x%llx, scatterbuffer_offset=0x%llx",
width, height, block_height_log2,
compbits_hoffset, compbits_voffset, scatterbuffer_offset);
nvgpu_log(g, gpu_dbg_cde, "resolution (%d, %d) tiles (%d, %d)",
width, height, xtiles, ytiles);
nvgpu_log(g, gpu_dbg_cde, "group (%d, %d) gridH (%d, %d) gridV (%d, %d)",
wgx, wgy, gridw_h, gridh_h, gridw_v, gridh_v);
nvgpu_log(g, gpu_dbg_cde, "hprog=%d, offset=0x%x, regs=%d, vprog=%d, offset=0x%x, regs=%d",
hprog,
l->cde_app.arrays[ARRAY_PROGRAM_OFFSET][hprog],
l->cde_app.arrays[ARRAY_REGISTER_COUNT][hprog],
vprog,
l->cde_app.arrays[ARRAY_PROGRAM_OFFSET][vprog],
l->cde_app.arrays[ARRAY_REGISTER_COUNT][vprog]);
/* Write parameters */
#define WRITE_PATCH(NAME, VALUE) \
params[param++] = (struct gk20a_cde_param){NAME##_ID, 0, VALUE}
WRITE_PATCH(PATCH_USER_CONST_XBLOCKS, xblocks);
WRITE_PATCH(PATCH_USER_CONST_BLOCKHEIGHTLOG2,
block_height_log2);
WRITE_PATCH(PATCH_QMD_CTA_THREAD_DIMENSION0, wgx);
WRITE_PATCH(PATCH_QMD_CTA_THREAD_DIMENSION1, wgy);
WRITE_PATCH(PATCH_VPC_CURRENT_GROUP_SIZE_X, wgx);
WRITE_PATCH(PATCH_VPC_CURRENT_GROUP_SIZE_Y, wgy);
WRITE_PATCH(PATCH_VPC_CURRENT_GROUP_SIZE_Z, 1);
WRITE_PATCH(PATCH_H_QMD_CTA_RASTER_WIDTH, gridw_h);
WRITE_PATCH(PATCH_H_QMD_CTA_RASTER_HEIGHT, gridh_h);
WRITE_PATCH(PATCH_H_USER_CONST_DSTOFFSET, 0);
WRITE_PATCH(PATCH_H_VPC_CURRENT_GRID_SIZE_X, gridw_h);
WRITE_PATCH(PATCH_H_VPC_CURRENT_GRID_SIZE_Y, gridh_h);
WRITE_PATCH(PATCH_H_VPC_CURRENT_GRID_SIZE_Z, 1);
WRITE_PATCH(PATCH_V_QMD_CTA_RASTER_WIDTH, gridw_v);
WRITE_PATCH(PATCH_V_QMD_CTA_RASTER_HEIGHT, gridh_v);
WRITE_PATCH(PATCH_V_USER_CONST_DSTOFFSET, voffset);
WRITE_PATCH(PATCH_V_VPC_CURRENT_GRID_SIZE_X, gridw_v);
WRITE_PATCH(PATCH_V_VPC_CURRENT_GRID_SIZE_Y, gridh_v);
WRITE_PATCH(PATCH_V_VPC_CURRENT_GRID_SIZE_Z, 1);
WRITE_PATCH(PATCH_H_QMD_PROGRAM_OFFSET,
l->cde_app.arrays[ARRAY_PROGRAM_OFFSET][hprog]);
WRITE_PATCH(PATCH_H_QMD_REGISTER_COUNT,
l->cde_app.arrays[ARRAY_REGISTER_COUNT][hprog]);
WRITE_PATCH(PATCH_V_QMD_PROGRAM_OFFSET,
l->cde_app.arrays[ARRAY_PROGRAM_OFFSET][vprog]);
WRITE_PATCH(PATCH_V_QMD_REGISTER_COUNT,
l->cde_app.arrays[ARRAY_REGISTER_COUNT][vprog]);
if (consumer & NVGPU_GPU_COMPBITS_CDEH) {
WRITE_PATCH(PATCH_H_LAUNCH_WORD1,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][0]);
WRITE_PATCH(PATCH_H_LAUNCH_WORD2,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][1]);
} else {
WRITE_PATCH(PATCH_H_LAUNCH_WORD1,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][2]);
WRITE_PATCH(PATCH_H_LAUNCH_WORD2,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][3]);
}
if (consumer & NVGPU_GPU_COMPBITS_CDEV) {
WRITE_PATCH(PATCH_V_LAUNCH_WORD1,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][0]);
WRITE_PATCH(PATCH_V_LAUNCH_WORD2,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][1]);
} else {
WRITE_PATCH(PATCH_V_LAUNCH_WORD1,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][2]);
WRITE_PATCH(PATCH_V_LAUNCH_WORD2,
l->cde_app.arrays[ARRAY_LAUNCH_COMMAND][3]);
}
#undef WRITE_PATCH
err = gk20a_cde_convert(l, dmabuf,
compbits_hoffset,
scatterbuffer_offset,
fence_in, submit_flags,
params, param, &new_fence);
if (err)
goto out;
/* compbits generated, update state & fence */
gk20a_fence_put(state->fence);
state->fence = new_fence;
state->valid_compbits |= consumer &
(NVGPU_GPU_COMPBITS_CDEH | NVGPU_GPU_COMPBITS_CDEV);
out:
return err;
}
static int gk20a_buffer_convert_gpu_to_cde(
struct nvgpu_os_linux *l, struct dma_buf *dmabuf, u32 consumer,
u64 offset, u64 compbits_hoffset, u64 compbits_voffset,
u64 scatterbuffer_offset,
u32 width, u32 height, u32 block_height_log2,
u32 submit_flags, struct nvgpu_channel_fence *fence_in,
struct gk20a_buffer_state *state)
{
struct gk20a *g = &l->g;
int err = 0;
if (!l->cde_app.initialised)
return -ENOSYS;
nvgpu_log(g, gpu_dbg_cde, "firmware version = %d\n",
l->cde_app.firmware_version);
if (l->cde_app.firmware_version == 1) {
err = gk20a_buffer_convert_gpu_to_cde_v1(
l, dmabuf, consumer, offset, compbits_hoffset,
compbits_voffset, scatterbuffer_offset,
width, height, block_height_log2,
submit_flags, fence_in, state);
} else {
nvgpu_err(g, "unsupported CDE firmware version %d",
l->cde_app.firmware_version);
err = -EINVAL;
}
return err;
}
int gk20a_prepare_compressible_read(
struct nvgpu_os_linux *l, u32 buffer_fd, u32 request, u64 offset,
u64 compbits_hoffset, u64 compbits_voffset,
u64 scatterbuffer_offset,
u32 width, u32 height, u32 block_height_log2,
u32 submit_flags, struct nvgpu_channel_fence *fence,
u32 *valid_compbits, u32 *zbc_color,
struct gk20a_fence **fence_out)
{
struct gk20a *g = &l->g;
int err = 0;
struct gk20a_buffer_state *state;
struct dma_buf *dmabuf;
u32 missing_bits;
dmabuf = dma_buf_get(buffer_fd);
if (IS_ERR(dmabuf))
return -EINVAL;
err = gk20a_dmabuf_get_state(dmabuf, g, offset, &state);
if (err) {
dma_buf_put(dmabuf);
return err;
}
missing_bits = (state->valid_compbits ^ request) & request;
nvgpu_mutex_acquire(&state->lock);
if (state->valid_compbits && request == NVGPU_GPU_COMPBITS_NONE) {
gk20a_fence_put(state->fence);
state->fence = NULL;
/* state->fence = decompress();
state->valid_compbits = 0; */
err = -EINVAL;
goto out;
} else if (missing_bits) {
u32 missing_cde_bits = missing_bits &
(NVGPU_GPU_COMPBITS_CDEH | NVGPU_GPU_COMPBITS_CDEV);
if ((state->valid_compbits & NVGPU_GPU_COMPBITS_GPU) &&
missing_cde_bits) {
err = gk20a_buffer_convert_gpu_to_cde(
l, dmabuf,
missing_cde_bits,
offset, compbits_hoffset,
compbits_voffset, scatterbuffer_offset,
width, height, block_height_log2,
submit_flags, fence,
state);
if (err)
goto out;
}
}
if (state->fence && fence_out)
*fence_out = gk20a_fence_get(state->fence);
if (valid_compbits)
*valid_compbits = state->valid_compbits;
if (zbc_color)
*zbc_color = state->zbc_color;
out:
nvgpu_mutex_release(&state->lock);
dma_buf_put(dmabuf);
return err;
}
int gk20a_mark_compressible_write(struct gk20a *g, u32 buffer_fd,
u32 valid_compbits, u64 offset, u32 zbc_color)
{
int err;
struct gk20a_buffer_state *state;
struct dma_buf *dmabuf;
dmabuf = dma_buf_get(buffer_fd);
if (IS_ERR(dmabuf)) {
nvgpu_err(g, "invalid dmabuf");
return -EINVAL;
}
err = gk20a_dmabuf_get_state(dmabuf, g, offset, &state);
if (err) {
nvgpu_err(g, "could not get state from dmabuf");
dma_buf_put(dmabuf);
return err;
}
nvgpu_mutex_acquire(&state->lock);
/* Update the compbits state. */
state->valid_compbits = valid_compbits;
state->zbc_color = zbc_color;
/* Discard previous compbit job fence. */
gk20a_fence_put(state->fence);
state->fence = NULL;
nvgpu_mutex_release(&state->lock);
dma_buf_put(dmabuf);
return 0;
}