aboutsummaryrefslogblamecommitdiffstats
path: root/bus.c
blob: 802b6df59863d8f995650c23450860fbc1f35ad8 (plain) (tree)

































































































































                                                                                                                                                                                                         
/* Copyright 2024 Joshua Bakita
 * Helpers for dealing with the PCIe and platform bus
 *
 * = Design Notes =
 * We have to use PRAMIN to access the BAR2 page table. While it's typically also
 * mapped into BAR2, we have no way to know where without the table. If the table
 * changes, the new sections will have new mappings in BAR2, repeating the
 * problem, and making caching insufficient.
 *
 * = Terms =
 * VRAM/VID_MEM: Video RAM; Addresses to physical frames in the on-GPU RAM.
 * SYS_MEM: System Memory; "Bus addresses"; Addresses which can be presented to
 *          the PCIe Host for resolution. On x86_64 without an IOMMU, these are
 *          just physical addresses, but may be I/O Virtual Addresses (IOVAs)
 *          or translated via an I/O MMU on other platforms; DMA Addresses.
 * PEER: Addresses to RAM on another GPU.
 */
#include <linux/printk.h> // For printk()
#include <asm/errno.h> // For error defines
#include <asm/io.h> // For readl()

#include "nvdebug.h"

/* Obtain the PRAMIN offset at which `addr` can be accessed
  @param addr   Address to find
  @param target Which address space to use (VRAM, SYS_MEM, PEER(?))
  @return positive offset or -EINVAL on invalid arguments

  Note: Will move the PRAMIN window to accomodate the request. Only guarantees
        that the surrounding 64KiB window will be accessible.
  Note: Moving the PRAMIN window will cause problems if it races with driver
        code that tries to do the same, or expects the window not to move.
  Bugs: Untested on PEER.
*/
int addr_to_pramin_mut(struct nvdebug_state *g,
                       uint64_t addr, enum INST_TARGET target) {
	bar0_window_t window;
	uint64_t pramin_base;
	// For us, accuracy and robustness is more important than speed
	// Check that the address is valid (49 bits are addressable on-GPU, but
	// PRAMIN only supports up to 40 bits).
	if (addr & ~0x000000ffffffffff) {
		printk(KERN_ERR "[nvdebug] Invalid address %llx passed to %s!\n",
		       addr, __func__);
		return -EINVAL;
	}
	window.raw = nvdebug_readl(g, NV_PBUS_BAR0_WINDOW);
	if (window.target != target)
		goto relocate;
	pramin_base = ((uint64_t)window.base) << 16;
	if (addr < pramin_base || addr > pramin_base + NV_PRAMIN_LEN)
		goto relocate;
	return addr - pramin_base; // Guaranteed to be < 1MiB, so safe for int
relocate:
	printk(KERN_INFO "[nvdebug] Moving PRAMIN win from base %llx to %llx to accomodate %#018llx\n", pramin_base, (addr >> 16) << 16, addr);
	// Move PRAMIN window to a 64KiB-aligned address
	window.base = (u32)(addr >> 16); // Safe, due to above range check
	window.target = target;
	nvdebug_writel(g, NV_PBUS_BAR0_WINDOW, window.raw);
	return (int)(addr & 0xffffull);
}


/* Get a persistent pointer to the page directory base
  @param pdb Dereferencable pointer to the zeroeth entry of top-level page
             directory (PD3) for the BAR2 register region.
  Note: The returned pointer will be into the PRAMIN space. If the PRAMIN
        window is moved to a region that does not cover the BAR2 page table,
        this ***will move the window***.
  Note: Even if the page table is located in SYS_MEM, we route reads/writes via
        PRAMIN. This ensures that we always see what the GPU sees, and that
        includes any passes through I/O MMUs or IOVA spaces.
*/
int get_bar2_pdb(struct nvdebug_state *g, void **pdb, bool *is_v2_pdb) {
	static void* cached_pdb = NULL;
	static bool cached_is_v2_pdb = false;
	static long pd_hash = 0;
	int ret;
	bar_config_block_t bar2_block;
	page_dir_config_t pd_config;
	uint64_t pdb_vram;

	// Use cached base as long as it's still pointing to the same thing
	if (cached_pdb && readl(cached_pdb) == pd_hash) {
		*pdb = cached_pdb;
		*is_v2_pdb = cached_is_v2_pdb;
		return 0;
	}

	if (!g->bar2)
		return -ENXIO;

	// BAR2 has its own instance block (typically in VRAM) which contains the
	// Page Directory Base (PDB), a pointer to a page directory/table
	// hierarchy used to translate BAR2 offsets to VRAM or SYS_MEM addresses.

	// Determine location of BAR2 instance block
	if ((bar2_block.raw = nvdebug_readl(g, NV_PBUS_BAR2_BLOCK)) == -1) {
		printk(KERN_ERR "[nvdebug] Unable to read BAR2/3 configuration! BAR2/3 inaccessible.\n");
		return -ENOTSUPP;
	}
	printk(KERN_INFO "[nvdebug] BAR2 inst block @ %llx in %s's %s address space.\n", ((u64)bar2_block.ptr) << 12, target_to_text(bar2_block.target), bar2_block.is_virtual ? "virtual" : "physical");
	// Setup PRAMIN to point at the BAR2 instance block
	if ((ret = addr_to_pramin_mut(g, (uint64_t)bar2_block.ptr << 12, bar2_block.target)) < 0) {
		printk(KERN_ERR "[nvdebug] Invalid BAR2/3 Instance Block configuration! BAR2/3 inaccessible.\n");
		return ret;
	}
	printk(KERN_INFO "[nvdebug] BAR2 inst block at off %x in PRAMIN\n", ret);
	// Pull the page directory base configuration from the instance block
	if ((pd_config.raw = nvdebug_readq(g, NV_PRAMIN + ret + NV_PRAMIN_PDB_CONFIG_OFF)) == -1) {
		printk(KERN_ERR "[nvdebug] Unable to read BAR2/3 PDB configuration! BAR2/3 inaccessible.\n");
		return -ENOTSUPP;
	}
	pdb_vram = pd_config.page_dir_hi;
	pdb_vram <<= 20;
	pdb_vram |= pd_config.page_dir_lo;
	pdb_vram <<= 12;
	printk(KERN_INFO "[nvdebug] BAR2 PDB @ %llx (config raw: %llx)\n", pdb_vram, pd_config.raw);
	// Setup PRAMIN to point at the page directory
	if ((ret = addr_to_pramin_mut(g, pdb_vram, pd_config.target)) < 0) {
		printk(KERN_ERR "[nvdebug] Invalid BAR2/3 PDB configuration! BAR2/3 inaccessible.\n");
		return ret;
	}

	*pdb = cached_pdb = g->regs + NV_PRAMIN + ret;
	pd_hash = readl(cached_pdb);
	*is_v2_pdb = cached_is_v2_pdb = pd_config.is_ver2;

	return 0;
}