#!/usr/bin/python3 import numpy as np import sys import plotille.plotille as plt from libSMT import * TIMING_ERROR = 1000 #ns ASYNC_FORMAT = False def print_usage(): print("This program takes in the all-pairs and baseline SMT data and computes the worst-case slowdown against any other task when SMT is enabled.", file=sys.stderr) print("Level-A/B usage: {} ".format(sys.argv[0]), file=sys.stderr) print("Level-C usage: {} ".format(sys.argv[0]), file=sys.stderr) # Check that we got the right number of parameters if len(sys.argv) < 3: print_usage() exit() if len(sys.argv) > 3: print("Reading file using synchronous pair format...") print("Are you sure you want to do this? For the RTAS'21 paper, L-A/-B pairs should use the other script.") input("Press enter to continue, Ctrl+C to exit...") else: print("Reading file using asynchronous pair format...") ASYNC_FORMAT = True assert_valid_input_files(sys.argv[1:-1], print_usage) # Pull in the data if not ASYNC_FORMAT: baseline_times, baseline_sample_cnt, baseline_max_times = load_baseline(sys.argv[3]) paired_times, paired_offsets, name_to_idx, idx_to_name = load_paired(sys.argv[1], sys.argv[2], len(list(baseline_times.keys()))) for key in baseline_times: print(key,max(baseline_times[key])) else: baseline_times, baseline_sample_cnt, baseline_max_times = load_baseline(sys.argv[2]) paired_times, name_to_idx, idx_to_name = load_fake_paired(sys.argv[1]) # We work iff the baseline was run for the same set of benchmarks as the pairs were assert_base_and_pair_keys_match(baseline_times, name_to_idx) # Only consider benchmarks that are at least an order of magnitude longer than the timing error reliableNames = [] for i in range(0, len(name_to_idx)): benchmark = idx_to_name[i] if min(baseline_times[benchmark]) > TIMING_ERROR * 10: reliableNames.append(benchmark) # Compute worst-case SMT slowdown for each benchmark print("Bench Mi") # Print rows sample_f = np.mean # Change this to np.mean to use mean values in Mi generation M_vals = [] for b1 in reliableNames: print("{:<14.14}:".format(b1), end=" ") max_mi = 0 # Scan through everyone we ran against and find our maximum slowdown for b2 in reliableNames: time_with_smt = sample_f(paired_times[name_to_idx[b1]][name_to_idx[b2]]) time_wout_smt = sample_f(baseline_times[b1]) M = time_with_smt / time_wout_smt max_mi = max(max_mi, M) print("{:>10.3}".format(max_mi), end=" ") M_vals.append(max_mi) print("") # Print some statistics about the distribution print("Average: {:>5.3} with standard deviation {:>5.3} using `{}`".format(np.mean(M_vals), np.std(M_vals), sample_f.__name__)) Ms = np.asarray(M_vals, dtype=np.float32) print(np.sum(Ms <= 1), "of", len(M_vals), "M_i values are at most one -", 100*np.sum(Ms <= 1)/len(M_vals), "percent") print(np.sum(Ms > 2), "of", len(M_vals), "M_i values are greater than two -", 100*np.sum(Ms > 2)/len(M_vals), "percent") M_vals_to_plot = Ms print(plt.hist(M_vals_to_plot, bins=10))