function [centers,label,post,d2]=find_textons(fv,ncenters,centers_in,n_iter); % [centers,label,post,d2]=find_textons(FIw,ncenters,centers_in,n_iter); % % find textons using kmeans for windowed portion FIw of filtered image % % to start with centers pulled randomly from image, set centers_in=[] [N1,N2] =size(fv); % take centers randomly from within image if isempty(centers_in) rndnum=1+floor(N1*rand(1,ncenters)); centers_in=fv(rndnum,:); end options = foptions; options(1)=1; % Prints out error values. options(5) = 0; if nargin<4 n_iter=15; end options(14) = n_iter; % Number of iterations. [centers,options,d2,post]=kmeans2(centers_in,fv,options); % retrieve cluster number assigned to each feature vector [minval,label]=min(d2,[],2); h = hist(label(:),[1:max(label(:))]); a = h>0; a = cumsum(a); [nr,nc] = size(label); label = reshape(a(label(:)),nr,nc);