% Sample code for detecting Harris corners, following % Brown et al, CVPR 2005 % by Alyosha Efros, so probably buggy... % slightly modified by ikkjin function [x,y,v] = harris(imrgb); [nr nc nb]=size(imrgb); if nb==3 im=rgb2gray(imrgb); else im=imrgb; end im = im2double(im); g1 = fspecial('gaussian', 9,1); % Gaussian with sigma_d g2 = fspecial('gaussian', 11,1.5); % Gaussian with sigma_i img1 = conv2(im,g1,'same'); % blur image with sigma_d Ix = conv2(img1,[-1 0 1],'same'); % take x derivative Iy = conv2(img1,[-1;0;1],'same'); % take y derivative % Compute elements of the Harris matrix H %%% we can use blur instead of the summing window Ix2 = conv2(Ix.*Ix,g2,'same'); Iy2 = conv2(Iy.*Iy,g2,'same'); IxIy = conv2(Ix.*Iy,g2,'same'); R = (Ix2.*Iy2 - IxIy.*IxIy) ... % det(H) ./ (Ix2 + Iy2 + eps); % trace(H) + epsilon % don't want corners close to image border R([1:15, end-16:end], :) = 0; R(:,[1:15,end-16:end]) = 0; % non-maxima supression within 3x3 windows nonmax = inline('max(x)'); Rmax = colfilt(R,[3 3],'sliding',nonmax); % find neighbrhood max Rnm = R.*(R == Rmax); % supress non-max % extract all interest points [y,x,v] = find(Rnm);