% function [v,s] = quickNcutHardBiais(W,U,nbEigenValues,dataGraphCut) %ligne 35 : changement tim %[v,s] = ncut(W,nbEigenValues,[],offset); %devient : %[v,s] = tim_ncut_rapide(W,nbEigenValues,[],offset); %et eigs devient tim_eigs % Input: % W = affinity matrix % U = hard constraint matrix, could be a cell of partial grouping % nbEigenValues = number of eigenvectors % offset = regularization factor, default = 0 % Output: % v = eigenvector % s = eigenvalue of (W,d), s.t. U' * x = 0. % call eigs using my own * operation % Stella X. Yu, Jan 2002. function [v,s] = quickNcutHardBiais2(W,U,nbEigenValues,dataGraphCut)%voir : rajouter sigma n = size(W,1); nbEigenValues = min(nbEigenValues,n); offset = dataGraphCut.offset; %offset = 2; % degrees and regularization d = sum(abs(W),2); dr = 0.5 * (d - sum(W,2)); d = d + offset * 2; dr = dr + offset; W = W + spdiags(dr,0,n,n); clear dr % normalize Dinvsqrt = 1./sqrt(d+eps); P = spmtimesd(W,Dinvsqrt,Dinvsqrt); clear W; % if max(max(P-P')) < 1e-10 %ou eps % %S = sparse(1:n,1:n,0.5); % P =max(P,P'); % % P=S*(P+P'); % %P=0.5*(P+P'); % options.issym = 1; % end P = sparsifyc(P,dataGraphCut.valeurMin); options.issym = 1; Ubar = spmtimesd(U,Dinvsqrt,[]); %Ubar = sparsifyc(Ubar,dataGraphCut.valeurMin); %voir options.disp = dataGraphCut.verbose; options.maxit = dataGraphCut.maxiterations; options.tol = dataGraphCut.eigsErrorTolerance; options.v0 = ones(size(P,1),1);%voir options.p = max(35,2*nbEigenValues); %voir options.p = min(options.p , n); % nouvelle idee : factorisation de Cholesky C=Ubar'*Ubar; %permutation = symamd(C); %R = cholinc(C(permutation,permutation)); t_chol_Ubar = cputime; [R,ooo] = cholinc(C,'0'); t_chol_Ubar = cputime - t_chol_Ubar; %if error occurs, check if Ubar = sparsifyc(Ubar,dataGraphCut.valeurMin); %sparsifies too much % compute H = (Ubar'*Ubar)^(-1) % t_inv_H = cputime; % H = inv(sparsifyc(Ubar' * Ubar,dataGraphCut.valeurMin)); %changer % t_inv_H = cputime - t_inv_H; % H = sparsifyc(H,dataGraphCut.valeurMin); % tEigs = cputime; % if options.issym & max(max(H-H')) < 1e-10 % [vbar,s,convergence] = tim_eigs(@mex_projection_inv_symmetric,n,nbEigenValues,'lm',options,triu(P),Ubar,triu(H)); % else % [vbar,s,convergence] = tim_eigs(@mex_projection_inv,n,nbEigenValues,'lm',options,P,Ubar,H); % end % tEigs = cputime - tEigs; % R = sparsifyc(R,dataGraphCut.valeurMin); tEigs = cputime; if options.issym [vbar,s,convergence] = tim_eigs(@mex_projection_QR_symmetric,n,nbEigenValues,'lm',options,tril(P),Ubar,R); else [vbar,s,convergence] = tim_eigs(@mex_projection_QR,n,nbEigenValues,'lm',options,P,Ubar,R); end tEigs = cputime - tEigs; %afficheTexte(sprintf('\n\nTemps ecoule pendant eigs : %g',tEigs),dataGraphCut.verbose,2); %afficheTexte(sprintf('\nTemps ecoule pendant chol(Ubar''*Ubar) : %g',t_chol_Ubar),dataGraphCut.verbose); if convergence~=0 afficheTexte(sprintf(' (Non-convergence)'),dataGraphCut.verbose); end %disp(sprintf('nnz(P) : %f\n',nnz(P))); %disp(sprintf('nnz(Ubar) : %f\n',nnz(Ubar))); %disp(sprintf('nnz(R) : %f\n',nnz(R))); %disp(sprintf('nnz(global) : %f\n',nnz(P) + 4 * nnz(Ubar) + 4*nnz(R))); s = real(diag(s)); [x,y] = sort(-s); s = -x; vbar = vbar(:,y); v = spdiags(Dinvsqrt,0,n,n) * vbar; for i=1:size(v,2) %v(:,i) = v(:,i) / max(abs(v(:,i))); v(:,i) = (v(:,i) / norm(v(:,i)) )*norm(ones(n,1)); if v(1,i)~=0 v(:,i) = - v(:,i) * sign(v(1,i)); end end % % nouvelle idee : factorisation de Cholesky % t_chol_Ubar = cputime; % R = chol(Ubar' * Ubar); % t_chol_Ubar = cputime - t_chol_Ubar; % R = sparsifyc(R,dataGraphCut.valeurMin); % tEigs = cputime; % if options.issym % [vbar,s,convergence] = tim_eigs(@mex_projection_QR_symmetric,n,nbEigenValues,'lm',options,triu(P),Ubar,R); % else % [vbar,s,convergence] = tim_eigs(@mex_projection_QR,n,nbEigenValues,'lm',options,P,Ubar,R); % end % tEigs = cputime - tEigs; % % compute H = (Ubar'*Ubar)^(-1) % t_inv_H = cputime; % H = inv(sparsifyc(Ubar' * Ubar,dataGraphCut.valeurMin)); %changer % t_inv_H = cputime - t_inv_H; % H = sparsifyc(H,dataGraphCut.valeurMin); % tEigs = cputime; % if options.issym & max(max(H-H')) < 1e-10 % [vbar,s,convergence] = tim_eigs(@mex_projection_inv_symmetric,n,nbEigenValues,'lm',options,triu(P),Ubar,triu(H)); % else % [vbar,s,convergence] = tim_eigs(@mex_projection_inv,n,nbEigenValues,'lm',options,P,Ubar,H); % end % tEigs = cputime - tEigs; % % idee de mon rapport... semble pas marcher car R = qr(Ubar,0) est plus % % lent que H = inv(sparsifyc(Ubar' * Ubar,dataGraphCut.valeurMin)); % t_qr_Ubar = cputime; % R = qr(Ubar,0); % t_qr_Ubar = cputime - t_qr_Ubar; % R = sparsifyc(R,dataGraphCut.valeurMin); % tEigs2 = cputime; % if options.issym % [vbar2,s2,convergence] = tim_eigs(@mex_projection_QR_symmetric,n,nbEigenValues,'lm',options,triu(P),Ubar,R); % else % [vbar2,s2,convergence] = tim_eigs(@mex_projection_QR,n,nbEigenValues,'lm',options,P,Ubar,R); % end % tEigs2 = cputime - tEigs2; % idee de Jianbo... semble pas marcher car on a besoin de prendre k maximal % dans [A,S,B] = svds(Ubar,k); % % [A,S,B] = svds(Ubar,300); % A = sparsifyc(A,dataGraphCut.valeurMin); % tEigs = cputime; % [vbar,s,convergence] = tim_eigs(@mex_projection_svd,n,nbEigenValues,'lm',options,P,A); % afficheTexte(sprintf('\ninv(H) : %g',t_inv_H),dataGraphCut.verbose); % afficheTexte(sprintf('\n\nTemps ecoule pendant eigs : %g',tEigs2),dataGraphCut.verbose,2); % afficheTexte(sprintf('\nqr(Ubar) : %g',t_qr_Ubar),dataGraphCut.verbose); % disp(sprintf('nnz(H) : %f\n',nnz(H))); % disp(sprintf('nnz(global) : %f\n',nnz(P) + 4 * nnz(Ubar) + 2*nnz(H)));