function [im,snrP,imS] = textureSynthesis(params, im0, Niter, cmask, imask) % [res,snrP,imS] = textureSynthesis(params, initialIm, Niter, cmask, imask) % % Synthesize texture applying Portilla-Simoncelli model/algorithm. % % params: structure containing texture parameters (as returned by textureAnalysis). % % im0: initial image, OR a vector (Ydim, Xdim, [SEED]) containing % dimensions of desired image and an optional seed for the random % number generator. If dimensions are passed, initial image is % Gaussian white noise. % % Niter (optional): Number of iterations. Default = 50. % % cmask (optional): binary column vector (4x1) indicating which sets of % constraints we want to apply in the synthesis. The four sets are: % 1) Marginal statistics (mean, var, skew, kurt, range) % 2) Correlation of subbands (space, orientation, scale) % 3) Correlation of magnitude responses (sp, or, sc) % 4) Relative local phase % % imask (optional): imsizex2 matrix. First column is a mask, second % column contains the image values to be imposed. If only one column is % provided, it assumes it corresponds to the image values, and it uses % a raised cosine square for the mask. % snrP (optional): Set of adjustment values (in dB) of the parameters. % imS (optional): Sequence of synthetic images, from niter = 1 to 2^n, being % n = floor(log2(Niter)). % Javier Portilla and Eero Simoncelli. % Work described in: % "A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficients". % J Portilla and E P Simoncelli. Int'l Journal of Computer Vision, % vol.40(1), pp. 49-71, Dec 2000. % % Please refer to this publication if you use the program for research or % for technical applications. Thank you. % % Copyright, Center for Neural Science, New York University, January 2001. % All rights reserved. Warn = 0; % Set to 1 if you want to see warning messages %% Check required args are passed: if (nargin < 2) error('Function called with too few input arguments'); end if ( ~exist('Niter') | isempty(Niter) ) Niter = 50; end if (exist('cmask') & ~isempty(cmask) ) cmask = (cmask > 0.5); % indices of ones in mask else cmask = ones(4,1); end %% Extract parameters statg0 = params.pixelStats; mean0 = statg0(1); var0 = statg0(2); skew0 = statg0(3); kurt0 = statg0(4); mn0 = statg0(5); mx0 = statg0(6); statsLPim = params.pixelLPStats; skew0p = statsLPim(:,1); kurt0p = statsLPim(:,2); vHPR0 = params.varianceHPR; acr0 = params.autoCorrReal; ace0 = params.autoCorrMag; magMeans0 = params.magMeans; C0 = params.cousinMagCorr; Cx0 = params.parentMagCorr; Crx0 = params.parentRealCorr; %% Extract {Nsc, Nor, Na} from params tmp = size(params.autoCorrMag); Na = tmp(1); Nsc = tmp(3); Nor = tmp(length(tmp))*(length(tmp)==4) + (length(tmp)<4); la = (Na-1)/2; %% If im0 is a vector of length 2, create Gaussian white noise image of this %% size, with desired pixel mean and variance. If vector length is %% 3, use the 3rd element to seed the random number generator. if ( length(im0) <= 3 ) if ( length(im0) == 3) randn('state', im0(3)); % Reset Seed im0 = im0(1:2); end im = mean0 + sqrt(var0)*randn(im0); else im = im0; end %% If the spatial neighborhood Na is too big for the lower scales, %% "modacor22.m" will make it as big as the spatial support at %% each scale: [Ny,Nx] = size(im); nth = log2(min(Ny,Nx)/Na); if nth 1e-4, [im, snr2(niter,Nsc+1)] = ... modacor22(im, acr0(la-le+1:la+le+1,la-le+1:la+le+1,Nsc+1),p); else im = im*sqrt(vari/var2(im)); end if (var2(imag(ch))/var2(real(ch)) > 1e-6) fprintf(1,'Discarding non-trivial imaginary part, lowPass autoCorr!'); end im = real(im); end % cmask(2) if cmask(1), if vari/var0 > 1e-4, [im,snr7(niter,2*(Nsc+1)-1)] = modskew(im,skew0p(Nsc+1),p); % Adjusts skewness [im,snr7(niter,2*(Nsc+1))] = modkurt(im,kurt0p(Nsc+1),p); % Adjusts kurtosis end end % cmask(2) %% Subtract mean of magnitude if cmask(3), magMeans = zeros(size(pind,1), 1); for nband = 1:size(pind,1) indices = pyrBandIndices(pind,nband); magMeans(nband) = mean2(apyr(indices)); apyr(indices) = apyr(indices) - magMeans(nband); end end % cmask(3) %% Coarse-to-fine loop: for nsc = Nsc:-1:1 firstBnum = (nsc-1)*Nor+2; cousinSz = prod(pind(firstBnum,:)); ind = pyrBandIndices(pind,firstBnum); cousinInd = ind(1) + [0:Nor*cousinSz-1]; %% Interpolate parents if (cmask(3) | cmask(4)), if (nsc 1e-6) fprintf(1,'Non-trivial imaginary part, mag crossCorr, lev=%d!\n',nsc); else cousins = real(cousins); ind = cousinInd; apyr(ind) = vector(cousins); end %% Adjust autoCorr of mag responses nband = (nsc-1)*Nor+2; Sch = min(pind(nband,:)/2); nz = sum(sum(~isnan(ace0(:,:,nsc,1)))); lz = (sqrt(nz)-1)/2; le = min(Sch/2-1,lz); for nor = 1:Nor, nband = (nsc-1)*Nor+nor+1; ch = pyrBand(apyr,pind,nband); [ch, snr1(niter,nband-1)] = modacor22(ch,... ace0(la-le+1:la+le+1,la-le+1:la+le+1,nsc,nor), p); ch = real(ch); ind = pyrBandIndices(pind,nband); apyr(ind) = ch; %% Impose magnitude: mag = apyr(ind) + magMeans0(nband); mag = mag .* (mag>0); pyr(ind) = pyr(ind) .* (mag./(abs(pyr(ind))+(abs(pyr(ind)) 1e-6) fprintf(1,'Non-trivial imaginary part, real crossCorr, lev=%d!\n',nsc); else %%% NOTE: THIS SETS REAL PART ONLY - signal is now NONANALYTIC! pyr(cousinInd) = vector(cousins(1:Nor*cousinSz)); end %% Re-create analytic subbands dims = pind(firstBnum,:); ctr = ceil((dims+0.5)/2); ang = mkAngle(dims, 0, ctr); ang(ctr(1),ctr(2)) = -pi/2; for nor = 1:Nor, nband = (nsc-1)*Nor+nor+1; ind = pyrBandIndices(pind,nband); ch = pyrBand(pyr, pind, nband); ang0 = pi*(nor-1)/Nor; xang = mod(ang-ang0+pi, 2*pi) - pi; amask = 2*(abs(xang) < pi/2) + (abs(xang) == pi/2); amask(ctr(1),ctr(2)) = 1; amask(:,1) = 1; amask(1,:) = 1; amask = fftshift(amask); ch = ifft2(amask.*fft2(ch)); % "Analytic" version pyr(ind) = ch; end %% Combine ori bands bandNums = [1:Nor] + (nsc-1)*Nor+1; %ori bands only ind1 = pyrBandIndices(pind, bandNums(1)); indN = pyrBandIndices(pind, bandNums(Nor)); bandInds = [ind1(1):indN(length(indN))]; %% Make fake pyramid, containing dummy hi, ori, lo fakePind = pind([bandNums(1), bandNums, bandNums(Nor)+1],:); fakePyr = [zeros(prod(fakePind(1,:)),1);... real(pyr(bandInds)); zeros(prod(fakePind(size(fakePind,1),:)),1)]; ch = reconSFpyr(fakePyr, fakePind, [1]); % recon ori bands only im = real(expand(im,2))/4; im = im + ch; vari = acr0(la+1:la+1,la+1:la+1,nsc); if cmask(2), if vari/var0 > 1e-4, [im, snr2(niter,nsc)] = ... modacor22(im, acr0(la-le+1:la+le+1,la-le+1:la+le+1,nsc), p); else im = im*sqrt(vari/var2(im)); end end % cmask(2) im = real(im); if cmask(1), %% Fix marginal stats if vari/var0 > 1e-4, [im,snr7(niter,2*nsc-1)] = modskew(im,skew0p(nsc),p); % Adjusts skewness [im,snr7(niter,2*nsc)] = modkurt(im,kurt0p(nsc),p); % Adjusts kurtosis end end % cmask(1) end %END Coarse-to-fine loop %% Adjust variance in HP, if higher than desired if (cmask(2)|cmask(3)|cmask(4)), ind = pyrBandIndices(pind,1); ch = pyr(ind); vHPR = mean2(ch.^2); if vHPR > vHPR0, ch = ch * sqrt(vHPR0/vHPR); pyr(ind) = ch; end end % cmask im = im + reconSFpyr(real(pyr), pind, [0]); %recon hi only %% Pixel statistics means = mean2(im); vars = var2(im, means); snr7(niter,2*(Nsc+1)+1) = snr(var0,var0-vars); im = im-means; % Adjusts mean and variance [mns mxs] = range2(im + mean0); snr7(niter,2*(Nsc+1)+2) = snr(mx0-mn0,sqrt((mx0-mxs)^2+(mn0-mns)^2)); if cmask(1), im = im*sqrt(((1-p)*vars + p*var0)/vars); end % cmaks(1) im = im+mean0; if cmask(1), [im, snr7(niter,2*(Nsc+1)+3)] = modskew(im,skew0,p); % Adjusts skewness (keep mean and variance) [im, snr7(niter,2*(Nsc+1)+4)] = modkurt(im,kurt0,p); % Adjusts kurtosis (keep mean and variance, % but not skewness) im = max(min(im,(1-p)*max(max(im))+p*mx0),... (1-p)*min(min(im))+p*mn0); % Adjusts range (affects everything) else snr7(niter,2*(Nsc+1)+3) = snr(skew0,skew0-skew2(im)); snr7(niter,2*(Nsc+1)+4) = snr(kurt0,kurt0-kurt2(im)); end % cmask(1) %% Force pixels specified by image mask if (exist('imask') & ~isempty(imask) ) im = mask.*reshape(imask(:,2 - (size(imask,2)==1)),size(im)) + ... (1-mask).*im; end snr6(niter,1) = snr(im-mean0,im-prev_im); if floor(log2(niter))==log2(niter), nq = nq + 1; imS(:,:,nq) = im; end tmp = prev_im; prev_im=im; figure(imf); subplot(1,2,1); showIm(im-tmp,'auto',1); title('Change'); subplot(1,2,2); showIm(im,'auto',1); title(sprintf('iteration %d/%d',niter,Niter)); drawnow % accelerator alpha = 0.8; im = im + alpha*(im - tmp); commented = 1; % set it to 0 for displaying convergence of parameters in SNR (dB) if ~commented, % The graphs that appear reflect % the relative distance of each parameter or group % of parametersi, to the original's, in decibels. % Note, however, that when the original parameters % are close to zero, this measurement is meaningless. % This is why in some cases it seems that some of % the parameters do not converge at all. figure(snrf); if cmask(1) subplot(171); plot(snr7); title('Mrgl stats'); end if cmask(2), subplot(172); plot(snr2); title('Raw auto'); end if cmask(3), subplot(173); plot(snr1); title('Mag auto'); subplot(174); plot(snr3); title('Mag ori'); subplot(175); plot(snr4); title('Mag scale'); end if (Nrp > 0) & cmask(4), subplot(176); plot(snr4r); title('Phs scale'); end subplot(177); plot(snr6); title('Im change'); drawnow end % if ~commented end %END MAIN LOOP im = prev_im; snrP = [snr7 snr2 snr1 snr3 snr4 snr4r snr6];