% Sample code for detecting Harris corners, following % Brown et al, CVPR 2005 % by Alyosha Efros, so probably buggy... function [x,y,v] = harris(im, dataDir); g1 = [1,4,6,4,1; 4,16,24,16,4;6,24,36,24,6;4,16,24,16,4;1,4,6,4,1]/256; g2 = [1,2,1;2,4,2;1,2,1]/16; img1 = conv2(im,g1,'same'); % blur image with sigma_d Ix = conv2(img1,[-0.5 0 0.5],'same'); % take x derivative Iy = conv2(img1,[-0.5;0;0.5],'same'); % take y derivative % Compute elements of the Harris matrix H %%% we can use blur instead of the summing window Ix2 = conv2(Ix.*Ix,g2,'same'); Iy2 = conv2(Iy.*Iy,g2,'same'); IxIy = conv2(Ix.*Iy,g2,'same'); R = (Ix2.*Iy2 - IxIy.*IxIy) ... % det(H) ./ (Ix2 + Iy2 + eps); % trace(H) + epsilon % don't want corners close to image border [rows, cols] = size(im); % non-maxima supression within 3x3 windows nonmax = inline('max(x)'); Rmax = colfilt(R,[3 3],'sliding',nonmax); % find neighbrhood max Rnm = R.*(R == Rmax); % supress non-max % extract all interest points [y,x,v] = find(Rnm);