/* file: siftlocalmax.c ** author: Andrea Vedaldi ** description: Find local maximizer of multi-dimensional array. **/ /* AUTORIGHTS Copyright (c) 2006 The Regents of the University of California. All Rights Reserved. Created by Andrea Vedaldi UCLA Vision Lab - Department of Computer Science Permission to use, copy, modify, and distribute this software and its documentation for educational, research and non-profit purposes, without fee, and without a written agreement is hereby granted, provided that the above copyright notice, this paragraph and the following three paragraphs appear in all copies. This software program and documentation are copyrighted by The Regents of the University of California. The software program and documentation are supplied "as is", without any accompanying services from The Regents. The Regents does not warrant that the operation of the program will be uninterrupted or error-free. The end-user understands that the program was developed for research purposes and is advised not to rely exclusively on the program for any reason. This software embodies a method for which the following patent has been issued: "Method and apparatus for identifying scale invariant features in an image and use of same for locating an object in an image," David G. Lowe, US Patent 6,711,293 (March 23, 2004). Provisional application filed March 8, 1999. Asignee: The University of British Columbia. IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS. */ #include"mex.h" #include #include /** Matlab driver. **/ #define greater(a,b) ((a) > (b)+threshold) void mexFunction(int nout, mxArray *out[], int nin, const mxArray *in[]) { int M, N ; const double* F_pt ; int ndims ; int pdims = -1 ; int* offsets ; int* midx ; int* neighbors ; int nneighbors ; int* dims ; enum {F=0,THRESHOLD,P} ; enum {MAXIMA=0} ; double threshold = - mxGetInf() ; /* ------------------------------------------------------------------ * Check the arguments * --------------------------------------------------------------- */ if(nin > 1) { if(!uIsRealScalar(in[THRESHOLD])) { mexErrMsgTxt("THRESHOLD must be a real scalar.") ; } threshold = *mxGetPr(in[THRESHOLD]) ; } ndims = mxGetNumberOfDimensions(in[F]) ; if(ndims !=3) printf("Error Error: NDIMS not equal to 3. Not handled by C version\n"); { /* We need to make a copy because in one special case (see below) we need to adjust dims[]. */ int d ; const int* const_dims = (int*) mxGetDimensions(in[F]) ; dims = mxMalloc(sizeof(int)*ndims) ; for(d=0 ; d < ndims ; ++d) { /* printf("Const Dimensions = %d\n", const_dims[d]); */ dims[d] = const_dims[d] ; } } M = dims[0] ; N = dims[1] ; F_pt = mxGetPr(in[F]) ; /* If there are only two dimensions and if one is singleton, then assume that a vector has been provided as input (and treat this as a COLUMN matrix with p=1). We do this because Matlab does not distinguish between vectors and 1xN or Mx1 matrices and because the cases 1xN and Mx1 are trivial (the result is alway empty). */ if((ndims == 2) && (pdims < 0) && (M == 1 || N == 1)) { printf("ERROR ERROR: Entered a different loop here. Not handled by C version"); pdims = 1 ; M = (M>N)?M:N ; N = 1 ; dims[0]=M ; dims[1]=N ; } /* search the local maxima along the first p dimensions only */ if(pdims < 0) { pdims = ndims ; } if(pdims > ndims) { mxFree(dims) ; mexErrMsgTxt("P must not be greater than the number of dimensions") ; } /* ------------------------------------------------------------------ * Do the job * --------------------------------------------------------------- */ { int maxima_size = M*N ; int* maxima_start = (int*) mxMalloc(sizeof(int) * maxima_size) ; int* maxima_iterator = maxima_start ; int* maxima_end = maxima_start + maxima_size ; int i,j,h,o ; const double* pt = F_pt ; /* Compute the offsets between dimensions. */ offsets = (int*) mxMalloc(sizeof(int) * ndims) ; offsets[0] = 1 ; for(h = 1 ; h < ndims ; ++h) { offsets[h] = offsets[h-1]*dims[h-1] ; /* printf("%d:%d\t%d\n", h, offsets[h], dims[h-1]); */ } /* Multi-index. */ midx = (int*) mxMalloc(sizeof(int) * ndims) ; for(h = 0 ; h < ndims ; ++h) midx[h] = 1 ; /* Neighbors. */ nneighbors = 1 ; o=0 ; for(h = 0 ; h < pdims ; ++h) { nneighbors *= 3 ; midx[h] = -1 ; o -= offsets[h] ; } nneighbors -= 1 ; neighbors = (int*) mxMalloc(sizeof(int) * nneighbors) ; /* Precompute offsets from offset(-1,...,-1,0,...0) to * offset(+1,...,+1,0,...,0). */ i = 0 ; while(true) { if(o != 0) neighbors[i++] = o ; h = 0 ; while( o += offsets[h], (++midx[h]) > 1 ) { o -= 3*offsets[h] ; midx[h] = -1 ; if(++h >= pdims) goto stop ; } } stop: ; /* Starts at the corner (1,1,...,1,0,0,...0) */ for(h = 0 ; h < pdims ; ++h) { midx[h] = 1 ; pt += offsets[h] ; /* printf("%d:%x\t%d\n", h, pt, offsets[h]); */ } for(h = pdims ; h < ndims ; ++h) { midx[h] = 0 ; } /* --------------------------------------------------------------- * Loop * ------------------------------------------------------------ */ /* If any dimension in the first P is less than 3 elements wide then just return the empty matrix (if we proceed without doing anything we break the carry reporting algorithm below). */ for(h=0 ; h < pdims ; ++h) if(dims[h] < 3) goto end ; while(true) { /* Propagate carry along multi index midx */ h = 0 ; while((midx[h]) >= dims[h] - 1) { /* pt += 2*offsets[h] ; skip first and last el. */ midx[h] = 1 ; if(++h >= pdims) goto next_layer ; ++midx[h] ; } /* Scan neighbors */ { double v = *pt ; bool is_greater = (v >= threshold) ; /* printf("%f\n", v); */ i = 0 ; while(is_greater && i < nneighbors) { is_greater &= v > *(pt + neighbors[i++]) ; } /* Add the local maximum */ if(is_greater) { /* Need more space? */ if(maxima_iterator == maxima_end) { maxima_size += M*N ; maxima_start = (int*) mxRealloc(maxima_start, maxima_size*sizeof(int)) ; maxima_end = maxima_start + maxima_size ; maxima_iterator = maxima_end - M*N ; } *maxima_iterator++ = pt - F_pt + 1 ; } /* Go to next element */ pt += 1 ; ++midx[0] ; continue ; next_layer: ; if( h >= ndims ) goto end ; while((++midx[h]) >= dims[h]) { midx[h] = 0 ; if(++h >= ndims) goto end ; } } } end:; /* Return. */ { double* M_pt ; /* printf("%x\t%x\t%d\n", maxima_iterator, maxima_start, maxima_iterator-maxima_start); */ out[MAXIMA] = mxCreateDoubleMatrix (1, maxima_iterator-maxima_start, mxREAL) ; maxima_end = maxima_iterator ; maxima_iterator = maxima_start ; M_pt = mxGetPr(out[MAXIMA]) ; while(maxima_iterator != maxima_end) { *M_pt++ = *maxima_iterator++ ; } } /* Release space. */ mxFree(offsets) ; mxFree(neighbors) ; mxFree(midx) ; mxFree(maxima_start) ; } mxFree(dims) ; }