diff options
author | Bjoern Brandenburg <bb@DS-12.(none)> | 2007-02-01 23:53:14 -0500 |
---|---|---|
committer | Bjoern Brandenburg <bb@DS-12.(none)> | 2007-02-01 23:53:14 -0500 |
commit | 212eadc8a7acff695f1c699611681a490b477f65 (patch) | |
tree | 9cc68497db17d004af73cb92c9462ab40ce1571a /kernel | |
parent | 5ae937f307990e86e5050399ba520ff7e5e327fc (diff) |
ported edf_hsb, compiles
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/Makefile | 2 | ||||
-rw-r--r-- | kernel/litmus.c | 9 | ||||
-rw-r--r-- | kernel/sched_edf_hsb.c | 1799 |
3 files changed, 1802 insertions, 8 deletions
diff --git a/kernel/Makefile b/kernel/Makefile index 84ce266148..13832e645e 100644 --- a/kernel/Makefile +++ b/kernel/Makefile | |||
@@ -11,7 +11,7 @@ obj-y = sched.o fork.o exec_domain.o panic.o printk.o profile.o \ | |||
11 | hrtimer.o rwsem.o latency.o nsproxy.o srcu.o \ | 11 | hrtimer.o rwsem.o latency.o nsproxy.o srcu.o \ |
12 | sched_plugin.o litmus.o sched_trace.o \ | 12 | sched_plugin.o litmus.o sched_trace.o \ |
13 | edf_common.o fifo_common.o \ | 13 | edf_common.o fifo_common.o \ |
14 | sched_global_edf.o sched_part_edf.o | 14 | sched_global_edf.o sched_part_edf.o sched_edf_hsb.o |
15 | 15 | ||
16 | obj-$(CONFIG_STACKTRACE) += stacktrace.o | 16 | obj-$(CONFIG_STACKTRACE) += stacktrace.o |
17 | obj-y += time/ | 17 | obj-y += time/ |
diff --git a/kernel/litmus.c b/kernel/litmus.c index 8eb37c8ccb..ac90c28330 100644 --- a/kernel/litmus.c +++ b/kernel/litmus.c | |||
@@ -349,19 +349,14 @@ static struct sysrq_key_op sysrq_kill_rt_tasks_op = { | |||
349 | sched_plugin_t *init_global_edf_plugin(void); | 349 | sched_plugin_t *init_global_edf_plugin(void); |
350 | sched_plugin_t *init_global_edf_np_plugin(void); | 350 | sched_plugin_t *init_global_edf_np_plugin(void); |
351 | sched_plugin_t *init_part_edf_plugin(void); | 351 | sched_plugin_t *init_part_edf_plugin(void); |
352 | sched_plugin_t *init_edf_hsb_plugin(void); | ||
352 | 353 | ||
353 | /* | 354 | /* |
354 | CLEANUP: Add init function when the plugin has been ported. | 355 | CLEANUP: Add init function when the plugin has been ported. |
355 | sched_plugin_t *init_pfair_plugin(void); | 356 | sched_plugin_t *init_pfair_plugin(void); |
356 | sched_plugin_t *init_desync_pfair_plugin(void); | 357 | sched_plugin_t *init_desync_pfair_plugin(void); |
357 | |||
358 | |||
359 | sched_plugin_t *init_edf_hsb_plugin(void); | ||
360 | */ | 358 | */ |
361 | 359 | ||
362 | |||
363 | |||
364 | |||
365 | /* keep everything needed to setup plugins in one place */ | 360 | /* keep everything needed to setup plugins in one place */ |
366 | 361 | ||
367 | /* we are lazy, so we use a convention for function naming to fill | 362 | /* we are lazy, so we use a convention for function naming to fill |
@@ -381,10 +376,10 @@ static struct { | |||
381 | PLUGIN(GLOBAL_EDF_NP, global_edf_np), | 376 | PLUGIN(GLOBAL_EDF_NP, global_edf_np), |
382 | PLUGIN(GLOBAL_EDF, global_edf), | 377 | PLUGIN(GLOBAL_EDF, global_edf), |
383 | PLUGIN(PART_EDF, part_edf), | 378 | PLUGIN(PART_EDF, part_edf), |
379 | PLUGIN(EDF_HSB, edf_hsb) | ||
384 | /* CLEANUP: Add when ported. | 380 | /* CLEANUP: Add when ported. |
385 | PLUGIN(PFAIR, pfair), | 381 | PLUGIN(PFAIR, pfair), |
386 | PLUGIN(PFAIR_DESYNC, desync_pfair), | 382 | PLUGIN(PFAIR_DESYNC, desync_pfair), |
387 | PLUGIN(EDF_HSB, edf_hsb) | ||
388 | */ | 383 | */ |
389 | 384 | ||
390 | /********************************************* | 385 | /********************************************* |
diff --git a/kernel/sched_edf_hsb.c b/kernel/sched_edf_hsb.c new file mode 100644 index 0000000000..5ba9be8acf --- /dev/null +++ b/kernel/sched_edf_hsb.c | |||
@@ -0,0 +1,1799 @@ | |||
1 | /* | ||
2 | * kernel/sched_edf_hsb.c | ||
3 | * | ||
4 | * Implementation of the EDF-HSB scheduler plugin. | ||
5 | * | ||
6 | */ | ||
7 | |||
8 | #include <asm/uaccess.h> | ||
9 | #include <linux/percpu.h> | ||
10 | #include <linux/sched.h> | ||
11 | #include <linux/list.h> | ||
12 | |||
13 | #include <linux/litmus.h> | ||
14 | #include <linux/sched_plugin.h> | ||
15 | #include <linux/edf_common.h> | ||
16 | #include <linux/fifo_common.h> | ||
17 | #include <linux/sched_trace.h> | ||
18 | |||
19 | /* undefine to remove capacity sharing */ | ||
20 | #define HSB_CAP_SHARE_ENABLED | ||
21 | |||
22 | /* fake server PIDs */ | ||
23 | #define HRT_BASE_PID 50000 | ||
24 | #define SRT_BASE_PID 60000 | ||
25 | |||
26 | |||
27 | /******************************************************************************/ | ||
28 | /* Capacity queue */ | ||
29 | /******************************************************************************/ | ||
30 | |||
31 | int cap_check_resched(jiffie_t deadline); | ||
32 | |||
33 | typedef struct { | ||
34 | int budget; | ||
35 | jiffie_t deadline; | ||
36 | pid_t donor; | ||
37 | |||
38 | struct list_head list; | ||
39 | } capacity_t; | ||
40 | |||
41 | typedef struct { | ||
42 | spinlock_t lock; | ||
43 | struct list_head queue; | ||
44 | } capacity_queue_t; | ||
45 | |||
46 | #define next_cap(q) list_entry((q)->queue.next, capacity_t, list) | ||
47 | |||
48 | void capacity_queue_init(capacity_queue_t* queue) | ||
49 | { | ||
50 | queue->lock = SPIN_LOCK_UNLOCKED; | ||
51 | INIT_LIST_HEAD(&queue->queue); | ||
52 | } | ||
53 | |||
54 | void __add_capacity(capacity_queue_t* queue, capacity_t *cap) | ||
55 | { | ||
56 | struct list_head* pos; | ||
57 | capacity_t* queued; | ||
58 | |||
59 | list_for_each_prev(pos, &queue->queue) { | ||
60 | queued = list_entry(pos, capacity_t, list); | ||
61 | if ( time_before_eq(queued->deadline, cap->deadline)) { | ||
62 | __list_add(&cap->list, pos, pos->next); | ||
63 | return; | ||
64 | } | ||
65 | } | ||
66 | list_add(&cap->list, &queue->queue); | ||
67 | } | ||
68 | |||
69 | int __capacity_available(capacity_queue_t* queue) | ||
70 | { | ||
71 | capacity_t *cap; | ||
72 | |||
73 | while (!list_empty(&queue->queue)) { | ||
74 | cap = list_entry(queue->queue.next, capacity_t, list); | ||
75 | |||
76 | |||
77 | if (time_before_eq(cap->deadline, jiffies)) { | ||
78 | list_del(queue->queue.next); | ||
79 | kfree(cap); | ||
80 | cap = NULL; | ||
81 | } else | ||
82 | break; | ||
83 | } | ||
84 | |||
85 | return !list_empty(&queue->queue); | ||
86 | } | ||
87 | |||
88 | void __return_capacity(capacity_queue_t* queue, capacity_t *cap) | ||
89 | { | ||
90 | if (!cap->budget || time_before_eq(cap->deadline, jiffies)) | ||
91 | kfree(cap); | ||
92 | else | ||
93 | __add_capacity(queue, cap); | ||
94 | } | ||
95 | |||
96 | |||
97 | void return_capacity(capacity_queue_t* queue, capacity_t *cap) | ||
98 | |||
99 | { | ||
100 | unsigned long flags; | ||
101 | |||
102 | if (!cap->budget || time_before_eq(cap->deadline, jiffies)) | ||
103 | kfree(cap); | ||
104 | else { | ||
105 | spin_lock_irqsave(&queue->lock, flags); | ||
106 | __add_capacity(queue, cap); | ||
107 | spin_unlock_irqrestore(&queue->lock, flags); | ||
108 | } | ||
109 | } | ||
110 | |||
111 | |||
112 | #define MIN_TIME_DELTA 1 | ||
113 | #define MIN_BUDGET 1 | ||
114 | |||
115 | #ifdef HSB_CAP_SHARE_ENABLED | ||
116 | void release_capacity(capacity_queue_t* queue, unsigned int budget, | ||
117 | jiffie_t deadline, struct task_struct* t) | ||
118 | { | ||
119 | capacity_t* cap; | ||
120 | unsigned long flags; | ||
121 | |||
122 | if (deadline >= jiffies + MIN_TIME_DELTA && budget >= MIN_BUDGET) { | ||
123 | cap = kmalloc(sizeof(capacity_t), GFP_ATOMIC); | ||
124 | if (cap) { | ||
125 | cap->budget = budget; | ||
126 | cap->deadline = deadline; | ||
127 | if (t) | ||
128 | cap->donor = t->pid; | ||
129 | else | ||
130 | cap->donor = 0; | ||
131 | spin_lock_irqsave(&queue->lock, flags); | ||
132 | __add_capacity(queue, cap); | ||
133 | cap_check_resched(next_cap(queue)->deadline); | ||
134 | spin_unlock_irqrestore(&queue->lock, flags); | ||
135 | if (t) | ||
136 | sched_trace_capacity_release(t); | ||
137 | } | ||
138 | } | ||
139 | } | ||
140 | |||
141 | void __release_capacity(capacity_queue_t* queue, unsigned int budget, | ||
142 | jiffie_t deadline, struct task_struct* t) | ||
143 | { | ||
144 | capacity_t* cap; | ||
145 | |||
146 | if (deadline >= jiffies + MIN_TIME_DELTA && budget >= MIN_BUDGET) { | ||
147 | cap = kmalloc(sizeof(capacity_t), GFP_ATOMIC); | ||
148 | if (cap) { | ||
149 | cap->budget = budget; | ||
150 | cap->deadline = deadline; | ||
151 | if (t) | ||
152 | cap->donor = t->pid; | ||
153 | else | ||
154 | cap->donor = 0; | ||
155 | /* no locking, no resched check -- called from schedule */ | ||
156 | __add_capacity(queue, cap); | ||
157 | if (t) | ||
158 | sched_trace_capacity_release(t); | ||
159 | } | ||
160 | } | ||
161 | } | ||
162 | |||
163 | |||
164 | capacity_t* __take_capacity(capacity_queue_t* queue, jiffie_t deadline, int deadline_matters) | ||
165 | { | ||
166 | capacity_t* cap = NULL; | ||
167 | |||
168 | while (!list_empty(&queue->queue)) { | ||
169 | cap = list_entry(queue->queue.next, capacity_t, list); | ||
170 | |||
171 | if (deadline_matters && time_before(deadline, cap->deadline)) { | ||
172 | cap = NULL; | ||
173 | break; | ||
174 | } | ||
175 | |||
176 | list_del(queue->queue.next); | ||
177 | if (cap->deadline > jiffies) { | ||
178 | if (cap->deadline - jiffies < cap->budget) | ||
179 | cap->budget = cap->deadline - jiffies; | ||
180 | break; | ||
181 | } | ||
182 | kfree(cap); | ||
183 | cap = NULL; | ||
184 | } | ||
185 | |||
186 | return cap; | ||
187 | } | ||
188 | #else | ||
189 | |||
190 | /* no capacity sharing */ | ||
191 | void release_capacity(capacity_queue_t* queue, unsigned int budget, | ||
192 | jiffie_t deadline, struct task_struct* t) | ||
193 | { | ||
194 | } | ||
195 | |||
196 | capacity_t* __take_capacity(capacity_queue_t* queue, jiffie_t deadline, int deadline_matters) | ||
197 | { | ||
198 | return NULL; | ||
199 | } | ||
200 | #endif | ||
201 | |||
202 | |||
203 | /******************************************************************************/ | ||
204 | /* server abstractions */ | ||
205 | /******************************************************************************/ | ||
206 | |||
207 | |||
208 | /* hrt_server_t - Abstraction of a hard real-time server. | ||
209 | * | ||
210 | * One HRT server per CPU. If it is unused period and wcet may be zero. | ||
211 | * HRT servers are strictly periodic and retain their budget. | ||
212 | */ | ||
213 | typedef struct { | ||
214 | edf_domain_t domain; | ||
215 | |||
216 | unsigned int period; | ||
217 | unsigned int wcet; | ||
218 | |||
219 | jiffie_t deadline; | ||
220 | int budget; | ||
221 | } hrt_server_t; | ||
222 | |||
223 | /* be_server_t - Abstraction of best-effort server. | ||
224 | * | ||
225 | * This is pretty much only an accounting abstraction. | ||
226 | */ | ||
227 | typedef struct { | ||
228 | unsigned int period; | ||
229 | unsigned int wcet; | ||
230 | |||
231 | jiffie_t deadline; | ||
232 | jiffie_t release; | ||
233 | int budget; | ||
234 | |||
235 | struct list_head list; | ||
236 | pid_t pid; | ||
237 | } be_server_t; | ||
238 | |||
239 | /* cast to int to allow for negative slack, i.e. tardiness */ | ||
240 | #define server_slack(srv) \ | ||
241 | ( ((int) (srv)->deadline - (int) jiffies) - (int) (srv)->budget ) | ||
242 | |||
243 | typedef struct { | ||
244 | int cpu; | ||
245 | |||
246 | hrt_server_t hrt; | ||
247 | be_server_t* be; | ||
248 | capacity_t* cap; | ||
249 | |||
250 | task_class_t exec_class; | ||
251 | jiffie_t cur_deadline; | ||
252 | atomic_t will_schedule; | ||
253 | |||
254 | struct list_head list; | ||
255 | spinlock_t lock; | ||
256 | } cpu_state_t; | ||
257 | |||
258 | |||
259 | DEFINE_PER_CPU(cpu_state_t, hsb_cpu_state); | ||
260 | |||
261 | #define hrt_dom(cpu) (&per_cpu(hsb_cpu_state, cpu).hrt.domain) | ||
262 | |||
263 | #define set_will_schedule() \ | ||
264 | (atomic_set(&__get_cpu_var(hsb_cpu_state).will_schedule, 1)) | ||
265 | #define clear_will_schedule() \ | ||
266 | (atomic_set(&__get_cpu_var(hsb_cpu_state).will_schedule, 0)) | ||
267 | #define test_will_schedule(cpu) \ | ||
268 | (atomic_read(&per_cpu(hsb_cpu_state, cpu).will_schedule)) | ||
269 | |||
270 | |||
271 | static void prepare_hrt_release(hrt_server_t *srv, jiffie_t start) | ||
272 | { | ||
273 | if (srv->period && srv->wcet) { | ||
274 | srv->deadline = start; | ||
275 | srv->budget = 0; | ||
276 | } | ||
277 | } | ||
278 | |||
279 | static void check_for_hrt_release(hrt_server_t *srv) { | ||
280 | if (srv->wcet && srv->period && | ||
281 | time_before_eq(srv->deadline, jiffies)) { | ||
282 | srv->deadline += srv->period; | ||
283 | srv->budget = srv->wcet; | ||
284 | sched_trace_server_release(HRT_BASE_PID + smp_processor_id(), | ||
285 | srv->budget, srv->period, RT_CLASS_HARD); | ||
286 | } | ||
287 | } | ||
288 | |||
289 | /* A HRT client is eligible if either its deadline is before the | ||
290 | * the server deadline or if the server has zero slack. The server | ||
291 | * must have budget left. | ||
292 | */ | ||
293 | static inline int hrt_client_eligible(hrt_server_t *srv) | ||
294 | { | ||
295 | if (!list_empty(&srv->domain.ready_queue)) | ||
296 | return srv->budget && ( | ||
297 | time_before(get_deadline(next_ready(&srv->domain)), | ||
298 | srv->deadline) | ||
299 | || server_slack(srv) <= 0); | ||
300 | else | ||
301 | return 0; | ||
302 | } | ||
303 | |||
304 | static void hsb_cpu_state_init(cpu_state_t* cpu_state, | ||
305 | edf_check_resched_needed_t check, | ||
306 | int cpu) | ||
307 | { | ||
308 | edf_domain_init(&cpu_state->hrt.domain, check); | ||
309 | cpu_state->hrt.budget = 0; | ||
310 | cpu_state->hrt.deadline = 0; | ||
311 | cpu_state->hrt.period = 0; | ||
312 | cpu_state->hrt.wcet = 0; | ||
313 | |||
314 | cpu_state->be = NULL; | ||
315 | cpu_state->cap = NULL; | ||
316 | |||
317 | cpu_state->cur_deadline = 0; | ||
318 | cpu_state->cpu = cpu; | ||
319 | cpu_state->lock = SPIN_LOCK_UNLOCKED; | ||
320 | cpu_state->exec_class = RT_CLASS_BEST_EFFORT; | ||
321 | |||
322 | atomic_set(&cpu_state->will_schedule, 0); | ||
323 | INIT_LIST_HEAD(&cpu_state->list); | ||
324 | } | ||
325 | |||
326 | /******************************************************************************/ | ||
327 | /* BE queue functions - mostly like edf_common.c */ | ||
328 | /******************************************************************************/ | ||
329 | |||
330 | #define be_earlier_deadline(a, b) (time_before(\ | ||
331 | (a)->deadline, (b)->deadline)) | ||
332 | #define be_earlier_release(a, b) (time_before(\ | ||
333 | (a)->release, (b)->release)) | ||
334 | |||
335 | |||
336 | static void be_add_ready(edf_domain_t* edf, be_server_t *new) | ||
337 | { | ||
338 | unsigned long flags; | ||
339 | struct list_head *pos; | ||
340 | be_server_t *queued; | ||
341 | unsigned int passed = 0; | ||
342 | |||
343 | BUG_ON(!new); | ||
344 | /* first we need the write lock for edf_ready_queue */ | ||
345 | write_lock_irqsave(&edf->ready_lock, flags); | ||
346 | /* find a spot where our deadline is earlier than the next */ | ||
347 | list_for_each(pos, &edf->ready_queue) { | ||
348 | queued = list_entry(pos, be_server_t, list); | ||
349 | if (unlikely(be_earlier_deadline(new, queued))) { | ||
350 | __list_add(&new->list, pos->prev, pos); | ||
351 | goto out; | ||
352 | } | ||
353 | passed++; | ||
354 | } | ||
355 | /* if we get to this point either the list is empty or new has the | ||
356 | * lowest priority. Let's add it to the end. */ | ||
357 | list_add_tail(&new->list, &edf->ready_queue); | ||
358 | out: | ||
359 | if (!passed) | ||
360 | edf->check_resched(edf); | ||
361 | write_unlock_irqrestore(&edf->ready_lock, flags); | ||
362 | } | ||
363 | |||
364 | static be_server_t* be_take_ready(edf_domain_t* edf) | ||
365 | { | ||
366 | be_server_t *t = NULL; | ||
367 | |||
368 | if (!list_empty(&edf->ready_queue)) { | ||
369 | t = list_entry(edf->ready_queue.next, be_server_t, list); | ||
370 | /* kick it out of the ready list */ | ||
371 | list_del(&t->list); | ||
372 | } | ||
373 | return t; | ||
374 | } | ||
375 | |||
376 | /*static be_server_t* get_be_server(edf_domain_t* edf) | ||
377 | { | ||
378 | be_server_t *t = NULL; | ||
379 | |||
380 | spin_lock(&edf->release_lock); | ||
381 | write_lock(&edf->ready_lock); | ||
382 | t = be_take_ready(edf); | ||
383 | |||
384 | if (!t && !list_empty(&edf->release_queue)) { | ||
385 | t = list_entry(edf->release_queue.next, be_server_t, list); | ||
386 | |||
387 | list_del(&t->list); | ||
388 | } | ||
389 | |||
390 | write_unlock(&edf->ready_lock); | ||
391 | spin_unlock(&edf->release_lock); | ||
392 | return t; | ||
393 | }*/ | ||
394 | |||
395 | static void be_add_release(edf_domain_t* edf, be_server_t *srv) | ||
396 | { | ||
397 | unsigned long flags; | ||
398 | struct list_head *pos; | ||
399 | be_server_t *queued; | ||
400 | |||
401 | spin_lock_irqsave(&edf->release_lock, flags); | ||
402 | list_for_each_prev(pos, &edf->release_queue) { | ||
403 | queued = list_entry(pos, be_server_t, list); | ||
404 | if ((unlikely(be_earlier_release(queued, srv)))) { | ||
405 | /* the task at pos has an earlier release */ | ||
406 | /* insert the new task in behind it */ | ||
407 | __list_add(&srv->list, pos, pos->next); | ||
408 | goto out; | ||
409 | } | ||
410 | } | ||
411 | |||
412 | list_add(&srv->list, &edf->release_queue); | ||
413 | out: | ||
414 | spin_unlock_irqrestore(&edf->release_lock, flags); | ||
415 | } | ||
416 | |||
417 | static void be_try_release_pending(edf_domain_t* edf) | ||
418 | { | ||
419 | unsigned long flags; | ||
420 | struct list_head *pos, *save; | ||
421 | be_server_t *queued; | ||
422 | |||
423 | if (spin_trylock_irqsave(&edf->release_lock, flags)) { | ||
424 | list_for_each_safe(pos, save, &edf->release_queue) { | ||
425 | queued = list_entry(pos, be_server_t, list); | ||
426 | if (likely(time_before_eq( | ||
427 | queued->release, | ||
428 | jiffies))) { | ||
429 | list_del(pos); | ||
430 | be_add_ready(edf, queued); | ||
431 | sched_trace_server_release( | ||
432 | queued->pid, queued->budget, | ||
433 | queued->period, RT_CLASS_BEST_EFFORT); | ||
434 | } else | ||
435 | /* the release queue is ordered */ | ||
436 | break; | ||
437 | } | ||
438 | spin_unlock_irqrestore(&edf->release_lock, flags); | ||
439 | } | ||
440 | } | ||
441 | |||
442 | static void be_prepare_new_release(be_server_t *t, jiffie_t start) { | ||
443 | t->release = start; | ||
444 | t->deadline = t->release + t->period; | ||
445 | t->budget = t->wcet; | ||
446 | } | ||
447 | |||
448 | static void be_prepare_new_releases(edf_domain_t *edf, jiffie_t start) | ||
449 | { | ||
450 | unsigned long flags; | ||
451 | struct list_head tmp_list; | ||
452 | struct list_head *pos, *n; | ||
453 | be_server_t *t; | ||
454 | |||
455 | INIT_LIST_HEAD(&tmp_list); | ||
456 | |||
457 | spin_lock_irqsave(&edf->release_lock, flags); | ||
458 | write_lock(&edf->ready_lock); | ||
459 | |||
460 | |||
461 | while (!list_empty(&edf->release_queue)) { | ||
462 | pos = edf->release_queue.next; | ||
463 | list_del(pos); | ||
464 | list_add(pos, &tmp_list); | ||
465 | } | ||
466 | |||
467 | while (!list_empty(&edf->ready_queue)) { | ||
468 | pos = edf->ready_queue.next; | ||
469 | list_del(pos); | ||
470 | list_add(pos, &tmp_list); | ||
471 | |||
472 | } | ||
473 | |||
474 | write_unlock(&edf->ready_lock); | ||
475 | spin_unlock_irqrestore(&edf->release_lock, flags); | ||
476 | |||
477 | list_for_each_safe(pos, n, &tmp_list) { | ||
478 | t = list_entry(pos, be_server_t, list); | ||
479 | list_del(pos); | ||
480 | be_prepare_new_release(t, start); | ||
481 | be_add_release(edf, t); | ||
482 | } | ||
483 | |||
484 | } | ||
485 | |||
486 | static void be_prepare_for_next_period(be_server_t *t) | ||
487 | { | ||
488 | BUG_ON(!t); | ||
489 | /* prepare next release */ | ||
490 | t->release = t->deadline; | ||
491 | t->deadline += t->period; | ||
492 | t->budget = t->wcet; | ||
493 | } | ||
494 | |||
495 | #define be_next_ready(edf) \ | ||
496 | list_entry((edf)->ready_queue.next, be_server_t, list) | ||
497 | |||
498 | |||
499 | /* need_to_preempt - check whether the task t needs to be preempted by a | ||
500 | * best-effort server. | ||
501 | */ | ||
502 | static inline int be_preemption_needed(edf_domain_t* edf, cpu_state_t* state) | ||
503 | { | ||
504 | /* we need the read lock for edf_ready_queue */ | ||
505 | if (!list_empty(&edf->ready_queue)) | ||
506 | { | ||
507 | |||
508 | if (state->exec_class == RT_CLASS_SOFT) { | ||
509 | if (state->cap) | ||
510 | return time_before( | ||
511 | be_next_ready(edf)->deadline, | ||
512 | state->cap->deadline); | ||
513 | else | ||
514 | return time_before( | ||
515 | be_next_ready(edf)->deadline, | ||
516 | state->cur_deadline); | ||
517 | } else | ||
518 | return 1; | ||
519 | } | ||
520 | return 0; | ||
521 | } | ||
522 | |||
523 | static void be_enqueue(edf_domain_t* edf, be_server_t* srv) | ||
524 | { | ||
525 | int new_release = 0; | ||
526 | if (!srv->budget) { | ||
527 | be_prepare_for_next_period(srv); | ||
528 | new_release = 1; | ||
529 | } | ||
530 | |||
531 | if (time_before_eq(srv->release, jiffies) && | ||
532 | get_rt_mode() == MODE_RT_RUN) { | ||
533 | be_add_ready(edf, srv); | ||
534 | if (new_release) | ||
535 | sched_trace_server_release( | ||
536 | srv->pid, srv->budget, | ||
537 | srv->period, RT_CLASS_BEST_EFFORT); | ||
538 | } else | ||
539 | be_add_release(edf, srv); | ||
540 | } | ||
541 | |||
542 | static void be_preempt(edf_domain_t *be, cpu_state_t *state) | ||
543 | { | ||
544 | be_server_t *srv; | ||
545 | |||
546 | spin_lock(&state->lock); | ||
547 | srv = state->be; | ||
548 | state->be = NULL; | ||
549 | spin_unlock(&state->lock); | ||
550 | |||
551 | /* add outside of lock to avoid deadlock */ | ||
552 | if (srv) | ||
553 | be_enqueue(be, srv); | ||
554 | } | ||
555 | |||
556 | |||
557 | /******************************************************************************/ | ||
558 | /* Actual HSB implementation */ | ||
559 | /******************************************************************************/ | ||
560 | |||
561 | /* always acquire the cpu lock as the last lock to avoid deadlocks */ | ||
562 | static spinlock_t hsb_cpu_lock = SPIN_LOCK_UNLOCKED; | ||
563 | /* the cpus queue themselves according to priority in here */ | ||
564 | static LIST_HEAD(hsb_cpu_queue); | ||
565 | |||
566 | |||
567 | /* the global soft real-time domain */ | ||
568 | static edf_domain_t srt; | ||
569 | /* the global best-effort server domain | ||
570 | * belongs conceptually to the srt domain, but has | ||
571 | * be_server_t* queued instead of tast_t* | ||
572 | */ | ||
573 | static edf_domain_t be; | ||
574 | |||
575 | static fifo_domain_t hsb_fifo; | ||
576 | |||
577 | static capacity_queue_t cap_queue; | ||
578 | |||
579 | |||
580 | |||
581 | |||
582 | /* adjust_cpu_queue - Move the cpu entry to the correct place to maintain | ||
583 | * order in the cpu queue. | ||
584 | * | ||
585 | */ | ||
586 | static void adjust_cpu_queue(task_class_t class, jiffie_t deadline, | ||
587 | be_server_t *be) | ||
588 | { | ||
589 | struct list_head *pos; | ||
590 | cpu_state_t *other; | ||
591 | cpu_state_t *entry; | ||
592 | |||
593 | spin_lock(&hsb_cpu_lock); | ||
594 | |||
595 | entry = &__get_cpu_var(hsb_cpu_state); | ||
596 | |||
597 | spin_lock(&entry->lock); | ||
598 | entry->exec_class = class; | ||
599 | entry->cur_deadline = deadline; | ||
600 | entry->be = be; | ||
601 | |||
602 | spin_unlock(&entry->lock); | ||
603 | |||
604 | |||
605 | |||
606 | if (be) | ||
607 | sched_trace_server_scheduled( | ||
608 | be->pid, RT_CLASS_BEST_EFFORT, be->budget, | ||
609 | be->deadline); | ||
610 | else if (class == RT_CLASS_HARD) | ||
611 | sched_trace_server_scheduled( | ||
612 | HRT_BASE_PID + smp_processor_id(), RT_CLASS_HARD, | ||
613 | entry->hrt.budget, entry->hrt.deadline); | ||
614 | |||
615 | list_del(&entry->list); | ||
616 | /* If we do not execute real-time jobs we just move | ||
617 | * to the end of the queue . | ||
618 | * If we execute hard real-time jobs we move the start | ||
619 | * of the queue. | ||
620 | */ | ||
621 | |||
622 | switch (entry->exec_class) { | ||
623 | case RT_CLASS_HARD: | ||
624 | list_add(&entry->list, &hsb_cpu_queue); | ||
625 | break; | ||
626 | |||
627 | case RT_CLASS_SOFT: | ||
628 | list_for_each(pos, &hsb_cpu_queue) { | ||
629 | other = list_entry(pos, cpu_state_t, list); | ||
630 | if (other->exec_class > RT_CLASS_SOFT || | ||
631 | time_before_eq(entry->cur_deadline, | ||
632 | other->cur_deadline)) | ||
633 | { | ||
634 | __list_add(&entry->list, pos->prev, pos); | ||
635 | goto out; | ||
636 | } | ||
637 | } | ||
638 | /* possible fall through if lowest SRT priority */ | ||
639 | |||
640 | case RT_CLASS_BEST_EFFORT: | ||
641 | list_add_tail(&entry->list, &hsb_cpu_queue); | ||
642 | break; | ||
643 | |||
644 | default: | ||
645 | /* something wrong in the variable */ | ||
646 | BUG(); | ||
647 | } | ||
648 | out: | ||
649 | spin_unlock(&hsb_cpu_lock); | ||
650 | } | ||
651 | |||
652 | |||
653 | /* hrt_check_resched - check whether the HRT server on given CPU needs to | ||
654 | * preempt the running task. | ||
655 | */ | ||
656 | static int hrt_check_resched(edf_domain_t *edf) | ||
657 | { | ||
658 | hrt_server_t *srv = container_of(edf, hrt_server_t, domain); | ||
659 | cpu_state_t *state = container_of(srv, cpu_state_t, hrt); | ||
660 | int ret = 0; | ||
661 | |||
662 | spin_lock(&state->lock); | ||
663 | |||
664 | if (hrt_client_eligible(srv)) { | ||
665 | if (state->exec_class > RT_CLASS_HARD || | ||
666 | time_before( | ||
667 | get_deadline(next_ready(edf)), | ||
668 | state->cur_deadline) | ||
669 | ) { | ||
670 | if (state->cpu == smp_processor_id()) | ||
671 | set_tsk_need_resched(current); | ||
672 | else | ||
673 | smp_send_reschedule(state->cpu); | ||
674 | } | ||
675 | } | ||
676 | |||
677 | spin_unlock(&state->lock); | ||
678 | return ret; | ||
679 | } | ||
680 | |||
681 | |||
682 | /* srt_check_resched - Check whether another CPU needs to switch to a SRT task. | ||
683 | * | ||
684 | * The function only checks and kicks the last CPU. It will reschedule and | ||
685 | * kick the next if necessary, and so on. The caller is responsible for making | ||
686 | * sure that it is not the last entry or that a reschedule is not necessary. | ||
687 | * | ||
688 | * Caller must hold edf->ready_lock! | ||
689 | */ | ||
690 | static int srt_check_resched(edf_domain_t *edf) | ||
691 | { | ||
692 | cpu_state_t *last; | ||
693 | int ret = 0; | ||
694 | |||
695 | spin_lock(&hsb_cpu_lock); | ||
696 | |||
697 | if (!list_empty(&srt.ready_queue)) { | ||
698 | last = list_entry(hsb_cpu_queue.prev, cpu_state_t, list); | ||
699 | /* guard against concurrent updates */ | ||
700 | spin_lock(&last->lock); | ||
701 | if (last->exec_class == RT_CLASS_BEST_EFFORT || ( | ||
702 | last->exec_class == RT_CLASS_SOFT && | ||
703 | time_before(get_deadline(next_ready(&srt)), | ||
704 | last->cur_deadline))) | ||
705 | { | ||
706 | if (smp_processor_id() == last->cpu) | ||
707 | set_tsk_need_resched(current); | ||
708 | else | ||
709 | if (!test_will_schedule(last->cpu)) | ||
710 | smp_send_reschedule(last->cpu); | ||
711 | ret = 1; | ||
712 | } | ||
713 | spin_unlock(&last->lock); | ||
714 | } | ||
715 | |||
716 | spin_unlock(&hsb_cpu_lock); | ||
717 | return ret; | ||
718 | } | ||
719 | |||
720 | |||
721 | /* be_check_resched - Check whether another CPU needs to switch to a BE server.. | ||
722 | * | ||
723 | * Caller must hold edf->ready_lock! | ||
724 | */ | ||
725 | static int be_check_resched(edf_domain_t *edf) | ||
726 | { | ||
727 | cpu_state_t *last; | ||
728 | int soft, bg; | ||
729 | int ret = 0; | ||
730 | |||
731 | spin_lock(&hsb_cpu_lock); | ||
732 | |||
733 | if (!list_empty(&be.ready_queue)) { | ||
734 | last = list_entry(hsb_cpu_queue.prev, cpu_state_t, list); | ||
735 | /* guard against concurrent updates */ | ||
736 | spin_lock(&last->lock); | ||
737 | |||
738 | bg = last->exec_class == RT_CLASS_BEST_EFFORT; | ||
739 | soft = last->exec_class == RT_CLASS_SOFT; | ||
740 | |||
741 | if (bg || (soft && time_before(be_next_ready(&be)->deadline, | ||
742 | last->cur_deadline))) | ||
743 | { | ||
744 | if (smp_processor_id() == last->cpu) | ||
745 | set_tsk_need_resched(current); | ||
746 | else | ||
747 | if (!test_will_schedule(last->cpu)) | ||
748 | smp_send_reschedule(last->cpu); | ||
749 | ret = 1; | ||
750 | } | ||
751 | |||
752 | spin_unlock(&last->lock); | ||
753 | } | ||
754 | |||
755 | spin_unlock(&hsb_cpu_lock); | ||
756 | return ret; | ||
757 | } | ||
758 | |||
759 | |||
760 | int cap_check_resched(jiffie_t deadline) | ||
761 | { | ||
762 | unsigned long flags; | ||
763 | cpu_state_t *last; | ||
764 | int soft, bg; | ||
765 | int ret = 0; | ||
766 | |||
767 | |||
768 | |||
769 | if (get_rt_mode() == MODE_RT_RUN) { | ||
770 | spin_lock_irqsave(&hsb_cpu_lock, flags); | ||
771 | |||
772 | last = list_entry(hsb_cpu_queue.prev, cpu_state_t, list); | ||
773 | /* guard against concurrent updates */ | ||
774 | spin_lock(&last->lock); | ||
775 | |||
776 | bg = last->exec_class == RT_CLASS_BEST_EFFORT; | ||
777 | soft = last->exec_class == RT_CLASS_SOFT; | ||
778 | |||
779 | if (bg || (soft && time_before(deadline, | ||
780 | last->cur_deadline))) | ||
781 | { | ||
782 | if (smp_processor_id() == last->cpu) | ||
783 | set_tsk_need_resched(current); | ||
784 | else | ||
785 | if (!test_will_schedule(last->cpu)) | ||
786 | smp_send_reschedule(last->cpu); | ||
787 | ret = 1; | ||
788 | } | ||
789 | |||
790 | spin_unlock(&last->lock); | ||
791 | |||
792 | spin_unlock_irqrestore(&hsb_cpu_lock, flags); | ||
793 | } | ||
794 | return ret; | ||
795 | } | ||
796 | |||
797 | int fifo_check_resched(void) | ||
798 | { | ||
799 | unsigned long flags; | ||
800 | cpu_state_t *last; | ||
801 | int ret = 0; | ||
802 | |||
803 | if (get_rt_mode() == MODE_RT_RUN) { | ||
804 | spin_lock_irqsave(&hsb_cpu_lock, flags); | ||
805 | |||
806 | |||
807 | last = list_entry(hsb_cpu_queue.prev, cpu_state_t, list); | ||
808 | /* guard against concurrent updates */ | ||
809 | |||
810 | spin_lock(&last->lock); | ||
811 | |||
812 | if (last->exec_class == RT_CLASS_BEST_EFFORT) | ||
813 | { | ||
814 | if (smp_processor_id() == last->cpu) | ||
815 | set_tsk_need_resched(current); | ||
816 | else | ||
817 | if (!test_will_schedule(last->cpu)) | ||
818 | smp_send_reschedule(last->cpu); | ||
819 | ret = 1; | ||
820 | } | ||
821 | |||
822 | spin_unlock(&last->lock); | ||
823 | |||
824 | spin_unlock_irqrestore(&hsb_cpu_lock, flags); | ||
825 | } | ||
826 | return ret; | ||
827 | } | ||
828 | |||
829 | |||
830 | |||
831 | static inline int hsb_preemption_needed(edf_domain_t* edf, cpu_state_t* state) | ||
832 | { | ||
833 | /* we need the read lock for edf_ready_queue */ | ||
834 | if (!list_empty(&edf->ready_queue)) | ||
835 | { | ||
836 | if (state->exec_class == RT_CLASS_SOFT) { | ||
837 | if (state->cap) | ||
838 | return time_before(get_deadline(next_ready(edf)) | ||
839 | , state->cap->deadline); | ||
840 | else | ||
841 | return time_before(get_deadline(next_ready(edf)) | ||
842 | , state->cur_deadline); | ||
843 | } else | ||
844 | return 1; | ||
845 | } | ||
846 | return 0; | ||
847 | } | ||
848 | |||
849 | static inline int cap_preemption_needed(capacity_queue_t* q, cpu_state_t* state) | ||
850 | { | ||
851 | /* we need the read lock for edf_ready_queue */ | ||
852 | if (!list_empty(&q->queue)) | ||
853 | { | ||
854 | if (state->exec_class == RT_CLASS_SOFT) { | ||
855 | if (state->cap) | ||
856 | return time_before(next_cap(q)->deadline | ||
857 | , state->cap->deadline); | ||
858 | else | ||
859 | return time_before(next_cap(q)->deadline | ||
860 | , state->cur_deadline); | ||
861 | } else | ||
862 | return 1; | ||
863 | } | ||
864 | return 0; | ||
865 | } | ||
866 | |||
867 | /* hsb_scheduler_tick - this function is called for every local timer | ||
868 | * interrupt. | ||
869 | * | ||
870 | * checks whether the current task has expired and checks | ||
871 | * whether we need to preempt it if it has not expired | ||
872 | */ | ||
873 | static reschedule_check_t hsb_scheduler_tick(void) | ||
874 | { | ||
875 | unsigned long flags; | ||
876 | struct task_struct *t = current; | ||
877 | int resched = 0; | ||
878 | |||
879 | cpu_state_t *state = &__get_cpu_var(hsb_cpu_state); | ||
880 | |||
881 | /* expire tasks even if not in real-time mode | ||
882 | * this makes sure that at the end of real-time mode | ||
883 | * no tasks "run away forever". | ||
884 | */ | ||
885 | |||
886 | /* charge BE server only if we are not running on a spare capacity */ | ||
887 | if (state->be && !state->cap && --state->be->budget <= 0) { | ||
888 | sched_trace_server_completion(state->be->pid, 0, | ||
889 | state->be->deadline, | ||
890 | RT_CLASS_BEST_EFFORT); | ||
891 | be_preempt(&be, state); | ||
892 | resched = 1; | ||
893 | } | ||
894 | |||
895 | if (state->cap) | ||
896 | if (--state->cap->budget <= 0 || | ||
897 | time_before_eq(state->cap->deadline, jiffies)) { | ||
898 | kfree(state->cap); | ||
899 | state->cap = NULL; | ||
900 | resched = 1; | ||
901 | } | ||
902 | |||
903 | if (is_realtime(t)) { | ||
904 | if (is_hrt(t) && (--state->hrt.budget <= 0)) { | ||
905 | sched_trace_server_completion( | ||
906 | HRT_BASE_PID + smp_processor_id(), 0, | ||
907 | state->hrt.deadline, RT_CLASS_HARD); | ||
908 | resched = 1; | ||
909 | } | ||
910 | |||
911 | /* account for received service... */ | ||
912 | t->rt_param.times.exec_time++; | ||
913 | |||
914 | /* ...and charge current budget */ | ||
915 | if (!state->cap) { | ||
916 | --t->time_slice; | ||
917 | /* a task always should be able to finish its job */ | ||
918 | BUG_ON(!is_be(t) && !t->time_slice && !job_completed(t)); | ||
919 | } | ||
920 | |||
921 | if (job_completed(t) || (is_be(t) && !t->time_slice)) { | ||
922 | sched_trace_job_completion(t); | ||
923 | set_rt_flags(t, RT_F_SLEEP); | ||
924 | resched = 1; | ||
925 | } | ||
926 | } | ||
927 | |||
928 | |||
929 | if (get_rt_mode() == MODE_RT_RUN) | ||
930 | { | ||
931 | try_release_pending(&state->hrt.domain); | ||
932 | check_for_hrt_release(&state->hrt); | ||
933 | try_release_pending(&srt); | ||
934 | be_try_release_pending(&be); | ||
935 | |||
936 | if (!resched) | ||
937 | switch (state->exec_class) { | ||
938 | case RT_CLASS_HARD: | ||
939 | read_lock_irqsave(&state->hrt.domain.ready_lock, | ||
940 | flags); | ||
941 | resched = preemption_needed(&state->hrt.domain, | ||
942 | t); | ||
943 | read_unlock_irqrestore( | ||
944 | &state->hrt.domain.ready_lock, flags); | ||
945 | break; | ||
946 | |||
947 | case RT_CLASS_SOFT: | ||
948 | case RT_CLASS_BEST_EFFORT: | ||
949 | local_irq_save(flags); | ||
950 | |||
951 | /* check for HRT jobs */ | ||
952 | read_lock(&state->hrt.domain.ready_lock); | ||
953 | resched = hrt_client_eligible(&state->hrt); | ||
954 | read_unlock(&state->hrt.domain.ready_lock); | ||
955 | |||
956 | /* check for spare capacities */ | ||
957 | if (!resched) { | ||
958 | spin_lock(&cap_queue.lock); | ||
959 | resched = | ||
960 | cap_preemption_needed(&cap_queue, | ||
961 | state); | ||
962 | spin_unlock(&cap_queue.lock); | ||
963 | } | ||
964 | |||
965 | /* check for SRT jobs */ | ||
966 | if (!resched) { | ||
967 | read_lock(&srt.ready_lock); | ||
968 | resched = hsb_preemption_needed( | ||
969 | &srt, state); | ||
970 | read_unlock(&srt.ready_lock); | ||
971 | } | ||
972 | |||
973 | /* check for BE jobs */ | ||
974 | if (!resched) { | ||
975 | read_lock(&be.ready_lock); | ||
976 | resched = be_preemption_needed( | ||
977 | &be, state); | ||
978 | read_unlock(&be.ready_lock); | ||
979 | } | ||
980 | |||
981 | /* check for background jobs */ | ||
982 | if (!resched && !is_realtime(current)) | ||
983 | resched = fifo_jobs_pending(&hsb_fifo); | ||
984 | local_irq_restore(flags); | ||
985 | break; | ||
986 | |||
987 | default: | ||
988 | /* something wrong in the variable */ | ||
989 | BUG(); | ||
990 | } | ||
991 | } | ||
992 | |||
993 | if (resched) { | ||
994 | set_will_schedule(); | ||
995 | return FORCE_RESCHED; | ||
996 | } else | ||
997 | return NO_RESCHED; | ||
998 | } | ||
999 | |||
1000 | static int schedule_hrt(struct task_struct * prev, | ||
1001 | struct task_struct ** next, runqueue_t * rq) | ||
1002 | { | ||
1003 | unsigned long flags; | ||
1004 | int deactivate = 1; | ||
1005 | cpu_state_t *state; | ||
1006 | |||
1007 | |||
1008 | state = &__get_cpu_var(hsb_cpu_state); | ||
1009 | |||
1010 | write_lock_irqsave(&state->hrt.domain.ready_lock, flags); | ||
1011 | |||
1012 | |||
1013 | if (state->cap) { | ||
1014 | /* hrt_schedule does not have the cap_queue lock */ | ||
1015 | return_capacity(&cap_queue, state->cap); | ||
1016 | state->cap = NULL; | ||
1017 | } | ||
1018 | |||
1019 | if (is_hrt(prev) && is_released(prev) && is_running(prev) | ||
1020 | && !preemption_needed(&state->hrt.domain, prev)) { | ||
1021 | /* This really should only happen if the task has | ||
1022 | * 100% utilization or when we got a bogus/delayed | ||
1023 | * resched IPI. | ||
1024 | */ | ||
1025 | TRACE("HRT: prev will be next, already released\n"); | ||
1026 | *next = prev; | ||
1027 | deactivate = 0; | ||
1028 | } else { | ||
1029 | /* either not yet released, preempted, or non-rt */ | ||
1030 | *next = __take_ready(&state->hrt.domain); | ||
1031 | /* the logic in hsb_schedule makes sure *next must exist | ||
1032 | * if we get here */ | ||
1033 | BUG_ON(!*next); | ||
1034 | /* stick the task into the runqueue */ | ||
1035 | __activate_task(*next, rq); | ||
1036 | set_task_cpu(*next, smp_processor_id()); | ||
1037 | } | ||
1038 | |||
1039 | set_rt_flags(*next, RT_F_RUNNING); | ||
1040 | adjust_cpu_queue(RT_CLASS_HARD, get_deadline(*next), NULL); | ||
1041 | clear_will_schedule(); | ||
1042 | |||
1043 | write_unlock_irqrestore(&state->hrt.domain.ready_lock, flags); | ||
1044 | return deactivate; | ||
1045 | } | ||
1046 | |||
1047 | |||
1048 | static struct task_struct* find_min_slack_task(struct task_struct *prev, | ||
1049 | edf_domain_t* edf) | ||
1050 | { | ||
1051 | struct list_head *pos; | ||
1052 | struct task_struct* tsk = NULL; | ||
1053 | struct task_struct* cur; | ||
1054 | |||
1055 | if (is_realtime(prev) && is_running(prev) && | ||
1056 | get_rt_flags(prev) != RT_F_SLEEP) | ||
1057 | tsk = prev; | ||
1058 | list_for_each(pos, &edf->ready_queue) { | ||
1059 | cur = list_entry(pos, struct task_struct, rt_list); | ||
1060 | if (!tsk || task_slack(tsk) > task_slack(cur)) | ||
1061 | tsk = cur; | ||
1062 | } | ||
1063 | return tsk; | ||
1064 | } | ||
1065 | |||
1066 | static struct task_struct* null_heuristic(struct task_struct *prev, | ||
1067 | edf_domain_t* edf, | ||
1068 | fifo_domain_t* fifo) | ||
1069 | { | ||
1070 | if (fifo_jobs_pending( fifo)) | ||
1071 | return NULL; | ||
1072 | else if (!list_empty(&edf->ready_queue)) | ||
1073 | return list_entry(edf->ready_queue.next, | ||
1074 | struct task_struct, rt_list); | ||
1075 | else | ||
1076 | return NULL; | ||
1077 | } | ||
1078 | |||
1079 | /*static struct task_struct* history_heuristic(struct task_struct *prev, edf_domain_t* edf) | ||
1080 | { | ||
1081 | struct list_head *pos; | ||
1082 | struct task_struct* tsk = NULL; | ||
1083 | struct task_struct* cur; | ||
1084 | |||
1085 | if (is_realtime(prev) && is_running(prev) && | ||
1086 | get_rt_flags(prev) != RT_F_SLEEP) | ||
1087 | tsk = prev; | ||
1088 | list_for_each(pos, &edf->ready_queue) { | ||
1089 | cur = list_entry(pos, struct task_struct, rt_list); | ||
1090 | if (!tsk || | ||
1091 | tsk->rt_param.stats.nontardy_jobs_ctr > | ||
1092 | cur->rt_param.stats.nontardy_jobs_ctr) | ||
1093 | tsk = cur; | ||
1094 | } | ||
1095 | if (tsk && tsk->rt_param.stats.nontardy_jobs_ctr < 5) | ||
1096 | return tsk; | ||
1097 | else | ||
1098 | return NULL; | ||
1099 | } | ||
1100 | */ | ||
1101 | /* TODO: write slack heuristic.*/ | ||
1102 | /*static struct task_struct* slack_heuristic(struct task_struct *prev, edf_domain_t* edf) | ||
1103 | { | ||
1104 | struct list_head *pos; | ||
1105 | struct task_struct* tsk = NULL; | ||
1106 | struct task_struct* cur; | ||
1107 | |||
1108 | if (is_realtime(prev) && is_running(prev) && | ||
1109 | get_rt_flags(prev) != RT_F_SLEEP) | ||
1110 | tsk = prev; | ||
1111 | list_for_each(pos, &edf->ready_queue) { | ||
1112 | cur = list_entry(pos, struct task_struct, rt_list); | ||
1113 | if (!tsk || | ||
1114 | tsk->rt_param.stats.nontardy_job_ctr > | ||
1115 | cur->rt_param.stats.nontardy_job_ctr) | ||
1116 | tsk = cur; | ||
1117 | } | ||
1118 | if (tsk && tsk->rt_param.stats.nontardy_job_ctr < 5) | ||
1119 | return tsk; | ||
1120 | else | ||
1121 | return NULL; | ||
1122 | }*/ | ||
1123 | |||
1124 | |||
1125 | /* caller holds all locks | ||
1126 | */ | ||
1127 | |||
1128 | static int schedule_capacity(struct task_struct *prev, | ||
1129 | struct task_struct **next, runqueue_t *rq) | ||
1130 | { | ||
1131 | cpu_state_t *state = &__get_cpu_var(hsb_cpu_state); | ||
1132 | capacity_t* old; | ||
1133 | |||
1134 | if (state->cap) { | ||
1135 | old = state->cap; | ||
1136 | state->cap = __take_capacity(&cap_queue, old->deadline, 1); | ||
1137 | if (!state->cap) | ||
1138 | state->cap = old; | ||
1139 | else | ||
1140 | __return_capacity(&cap_queue, old); | ||
1141 | } else | ||
1142 | state->cap = __take_capacity(&cap_queue, 0, 0); | ||
1143 | |||
1144 | |||
1145 | /* pick a task likely to be tardy */ | ||
1146 | *next = find_min_slack_task(prev, &srt); | ||
1147 | |||
1148 | /* only give away spare capacities if there is no task that | ||
1149 | * is going to be tardy | ||
1150 | */ | ||
1151 | if (*next && task_slack(*next) >= 0) | ||
1152 | *next = null_heuristic(prev, &srt, &hsb_fifo); | ||
1153 | if (*next && *next != prev) | ||
1154 | list_del(&(*next)->rt_list); | ||
1155 | |||
1156 | |||
1157 | /* if there is none pick a BE job */ | ||
1158 | if (!*next) { | ||
1159 | if (is_realtime(prev) && is_be(prev) && is_running(prev) && | ||
1160 | get_rt_flags(prev) != RT_F_SLEEP) | ||
1161 | *next = prev; | ||
1162 | else | ||
1163 | *next = fifo_take(&hsb_fifo); | ||
1164 | } | ||
1165 | |||
1166 | if (state->be) | ||
1167 | be_preempt(&be, state); | ||
1168 | BUG_ON(!state->cap); | ||
1169 | if (*next && state->cap->donor) { | ||
1170 | sched_trace_capacity_allocation( | ||
1171 | *next, state->cap->budget, state->cap->deadline, | ||
1172 | state->cap->donor); | ||
1173 | } | ||
1174 | |||
1175 | return *next != prev; | ||
1176 | } | ||
1177 | |||
1178 | |||
1179 | |||
1180 | #define BG 0 | ||
1181 | #define SRT 1 | ||
1182 | #define BE 2 | ||
1183 | #define CAP 3 | ||
1184 | |||
1185 | static inline int what_first(edf_domain_t *be, edf_domain_t *srt, capacity_queue_t* q) | ||
1186 | { | ||
1187 | jiffie_t sdl = 0, bdl= 0, cdl = 0, cur; | ||
1188 | int _srt = !list_empty(&srt->ready_queue); | ||
1189 | int _be = !list_empty(&be->ready_queue); | ||
1190 | int _cap = __capacity_available(q); | ||
1191 | |||
1192 | |||
1193 | int ret = BG; /* nothing ready => background mode*/ | ||
1194 | cur = 0; | ||
1195 | |||
1196 | if (_srt) | ||
1197 | sdl = get_deadline(next_ready(srt)); | ||
1198 | if (_be) | ||
1199 | bdl = be_next_ready(be)->deadline; | ||
1200 | if (_cap) | ||
1201 | cdl = next_cap(q)->deadline; | ||
1202 | |||
1203 | |||
1204 | |||
1205 | if (_cap) { | ||
1206 | ret = CAP; | ||
1207 | cur = cdl; | ||
1208 | } | ||
1209 | if (_srt && (time_before(sdl, cur) || !ret)) { | ||
1210 | ret = SRT; | ||
1211 | cur = sdl; | ||
1212 | } | ||
1213 | if (_be && (time_before(bdl, cur) || !ret)) { | ||
1214 | ret = BE; | ||
1215 | cur = bdl; | ||
1216 | } | ||
1217 | return ret; | ||
1218 | } | ||
1219 | |||
1220 | |||
1221 | |||
1222 | static int schedule_srt_be_cap(struct task_struct *prev, | ||
1223 | struct task_struct **next, runqueue_t *rq) | ||
1224 | { | ||
1225 | task_class_t class = RT_CLASS_BEST_EFFORT; | ||
1226 | jiffie_t deadline = 0; | ||
1227 | unsigned long flags; | ||
1228 | int deactivate = 1; | ||
1229 | be_server_t* bes; | ||
1230 | cpu_state_t* state; | ||
1231 | int type; | ||
1232 | |||
1233 | reschedule: | ||
1234 | write_lock_irqsave(&srt.ready_lock, flags); | ||
1235 | write_lock(&be.ready_lock); | ||
1236 | spin_lock(&cap_queue.lock); | ||
1237 | |||
1238 | |||
1239 | state = &__get_cpu_var(hsb_cpu_state); | ||
1240 | bes = NULL; | ||
1241 | |||
1242 | clear_will_schedule(); | ||
1243 | |||
1244 | if (is_realtime(prev) && (is_released(prev) || is_be(prev)) && | ||
1245 | is_running(prev) && !hsb_preemption_needed(&srt, state) && | ||
1246 | !be_preemption_needed(&be, state) | ||
1247 | ) { | ||
1248 | /* Our current task's next job has already been | ||
1249 | * released and has higher priority than the highest | ||
1250 | * prioriy waiting task; in other words: it is tardy. | ||
1251 | * We just keep it. | ||
1252 | */ | ||
1253 | TRACE("prev will be next, already released\n"); | ||
1254 | *next = prev; | ||
1255 | class = prev->rt_param.basic_params.class; | ||
1256 | deadline = get_deadline(*next); | ||
1257 | deactivate = 0; | ||
1258 | } else { | ||
1259 | /* either not yet released, preempted, or non-rt */ | ||
1260 | type = what_first(&be, &srt, &cap_queue); | ||
1261 | switch (type) { | ||
1262 | case CAP: | ||
1263 | /* capacity */ | ||
1264 | deactivate = schedule_capacity(prev, next, rq); | ||
1265 | deadline = state->cap->deadline; | ||
1266 | if (*next) | ||
1267 | class = RT_CLASS_SOFT; | ||
1268 | else | ||
1269 | class = RT_CLASS_BEST_EFFORT; | ||
1270 | break; | ||
1271 | case BE: | ||
1272 | /* be */ | ||
1273 | *next = NULL; | ||
1274 | bes = be_take_ready(&be); | ||
1275 | if (bes) { | ||
1276 | class = RT_CLASS_SOFT; | ||
1277 | deadline = bes->deadline; | ||
1278 | *next = fifo_take(&hsb_fifo); | ||
1279 | if (!*next) { | ||
1280 | /* deactivate */ | ||
1281 | __release_capacity(&cap_queue, | ||
1282 | bes->budget, | ||
1283 | bes->deadline, NULL); | ||
1284 | bes->budget = 0; | ||
1285 | barrier(); | ||
1286 | spin_unlock(&cap_queue.lock); | ||
1287 | write_unlock(&be.ready_lock); | ||
1288 | write_unlock_irqrestore(&srt.ready_lock, | ||
1289 | flags); | ||
1290 | be_enqueue(&be, bes); | ||
1291 | goto reschedule; | ||
1292 | } | ||
1293 | } | ||
1294 | break; | ||
1295 | case SRT: | ||
1296 | /* srt */ | ||
1297 | *next = __take_ready(&srt); | ||
1298 | if (*next) { | ||
1299 | class = RT_CLASS_SOFT; | ||
1300 | deadline = get_deadline(*next); | ||
1301 | } | ||
1302 | break; | ||
1303 | case BG: | ||
1304 | /* background server mode */ | ||
1305 | class = RT_CLASS_BEST_EFFORT; | ||
1306 | deadline = 0; | ||
1307 | *next = fifo_take(&hsb_fifo); | ||
1308 | break; | ||
1309 | } | ||
1310 | |||
1311 | |||
1312 | /* give back capacities */ | ||
1313 | if (type != CAP && state->cap) { | ||
1314 | __return_capacity(&cap_queue, state->cap); | ||
1315 | state->cap = NULL; | ||
1316 | } | ||
1317 | if (*next && deactivate) { | ||
1318 | /* mark the task as executing on this cpu */ | ||
1319 | set_task_cpu(*next, smp_processor_id()); | ||
1320 | /* stick the task into the runqueue */ | ||
1321 | __activate_task(*next, rq); | ||
1322 | } | ||
1323 | } | ||
1324 | |||
1325 | adjust_cpu_queue(class, deadline, bes); | ||
1326 | |||
1327 | switch (type) { | ||
1328 | case BG: | ||
1329 | break; | ||
1330 | case BE: | ||
1331 | be.check_resched(&be); | ||
1332 | break; | ||
1333 | case SRT: | ||
1334 | srt.check_resched(&srt); | ||
1335 | break; | ||
1336 | case CAP: | ||
1337 | if (!list_empty(&cap_queue.queue)) | ||
1338 | cap_check_resched(list_entry(cap_queue.queue.next, | ||
1339 | capacity_t, list)->deadline); | ||
1340 | break; | ||
1341 | } | ||
1342 | |||
1343 | |||
1344 | if(*next) | ||
1345 | set_rt_flags(*next, RT_F_RUNNING); | ||
1346 | |||
1347 | spin_unlock(&cap_queue.lock); | ||
1348 | write_unlock(&be.ready_lock); | ||
1349 | write_unlock_irqrestore(&srt.ready_lock, flags); | ||
1350 | return deactivate; | ||
1351 | } | ||
1352 | |||
1353 | |||
1354 | static int hsb_schedule(struct task_struct * prev, struct task_struct ** next, | ||
1355 | runqueue_t * rq) | ||
1356 | { | ||
1357 | int need_deactivate = 1; | ||
1358 | cpu_state_t *state = NULL; | ||
1359 | |||
1360 | preempt_disable(); | ||
1361 | |||
1362 | state = &__get_cpu_var(hsb_cpu_state); | ||
1363 | |||
1364 | be_preempt(&be, state); | ||
1365 | |||
1366 | |||
1367 | if (is_realtime(prev) && !is_be(prev) && | ||
1368 | get_rt_flags(prev) == RT_F_SLEEP) | ||
1369 | { | ||
1370 | TRACE("preparing %d for next period\n", prev->pid); | ||
1371 | release_capacity(&cap_queue, prev->time_slice, | ||
1372 | prev->rt_param.times.deadline, prev); | ||
1373 | prepare_for_next_period(prev); | ||
1374 | } | ||
1375 | |||
1376 | if (get_rt_mode() == MODE_RT_RUN) { | ||
1377 | /* we need to schedule hrt if a hrt job is pending or when | ||
1378 | * we have a non expired hrt job on the cpu | ||
1379 | */ | ||
1380 | |||
1381 | if (hrt_client_eligible(&state->hrt) || | ||
1382 | unlikely((is_hrt(prev) && is_running(prev) && | ||
1383 | get_rt_flags(prev) != RT_F_SLEEP))) { | ||
1384 | if (state->cap) { | ||
1385 | return_capacity(&cap_queue, state->cap); | ||
1386 | state->cap = NULL; | ||
1387 | } | ||
1388 | need_deactivate = schedule_hrt(prev, next, rq); | ||
1389 | } else | ||
1390 | need_deactivate = schedule_srt_be_cap(prev, next, rq); | ||
1391 | |||
1392 | } | ||
1393 | |||
1394 | if (is_realtime(prev) && need_deactivate && prev->array) { | ||
1395 | /* take it out of the run queue */ | ||
1396 | deactivate_task(prev, rq); | ||
1397 | } | ||
1398 | |||
1399 | preempt_enable(); | ||
1400 | |||
1401 | return 0; | ||
1402 | } | ||
1403 | |||
1404 | /* put task into correct queue */ | ||
1405 | static inline void hsb_add_release(struct task_struct *t) | ||
1406 | { | ||
1407 | if (is_hrt(t)) | ||
1408 | add_release(hrt_dom(get_partition(t)), t); | ||
1409 | else if (is_srt(t)) | ||
1410 | add_release(&srt, t); | ||
1411 | else if (is_be(t)) { | ||
1412 | t->time_slice = 0; | ||
1413 | fifo_enqueue(&hsb_fifo, t); | ||
1414 | fifo_check_resched(); | ||
1415 | } else | ||
1416 | BUG(); | ||
1417 | |||
1418 | } | ||
1419 | |||
1420 | /* put task into correct queue */ | ||
1421 | static inline void hsb_add_ready(struct task_struct *t) | ||
1422 | { | ||
1423 | if (is_hrt(t)) | ||
1424 | add_ready(hrt_dom(get_partition(t)), t); | ||
1425 | else if (is_srt(t)) | ||
1426 | add_ready(&srt, t); | ||
1427 | else if (is_be(t)) { | ||
1428 | fifo_enqueue(&hsb_fifo, t); | ||
1429 | fifo_check_resched(); | ||
1430 | } | ||
1431 | else | ||
1432 | BUG(); | ||
1433 | } | ||
1434 | |||
1435 | |||
1436 | /* _finish_switch - we just finished the switch away from prev | ||
1437 | * it is now safe to requeue the task | ||
1438 | */ | ||
1439 | static void hsb_finish_switch(struct task_struct *prev) | ||
1440 | { | ||
1441 | TRACE("finish switch for %d\n", prev->pid); | ||
1442 | |||
1443 | if (is_be(prev)) { | ||
1444 | fifo_enqueue(&hsb_fifo, prev); | ||
1445 | return; | ||
1446 | } | ||
1447 | |||
1448 | if (get_rt_flags(prev) == RT_F_SLEEP || | ||
1449 | get_rt_mode() != MODE_RT_RUN) { | ||
1450 | /* this task has expired | ||
1451 | * _schedule has already taken care of updating | ||
1452 | * the release and | ||
1453 | * deadline. We just must check if has been released. | ||
1454 | */ | ||
1455 | if (is_released(prev) && get_rt_mode() == MODE_RT_RUN) { | ||
1456 | sched_trace_job_release(prev); | ||
1457 | hsb_add_ready(prev); | ||
1458 | TRACE("%d goes straight to ready queue\n", prev->pid); | ||
1459 | } | ||
1460 | else | ||
1461 | /* it has got to wait */ | ||
1462 | hsb_add_release(prev); | ||
1463 | } | ||
1464 | else { | ||
1465 | /* this is a forced preemption | ||
1466 | * thus the task stays in the ready_queue | ||
1467 | * we only must make it available to other cpus | ||
1468 | */ | ||
1469 | hsb_add_ready(prev); | ||
1470 | } | ||
1471 | } | ||
1472 | |||
1473 | |||
1474 | /* Prepare a task for running in RT mode | ||
1475 | * Enqueues the task into master queue data structure | ||
1476 | * returns | ||
1477 | * -EPERM if task is not TASK_STOPPED | ||
1478 | */ | ||
1479 | static long hsb_prepare_task(struct task_struct * t) | ||
1480 | { | ||
1481 | TRACE("edf-hsb: prepare task %d\n", t->pid); | ||
1482 | |||
1483 | if (t->state == TASK_STOPPED) { | ||
1484 | __setscheduler(t, SCHED_FIFO, MAX_RT_PRIO - 1); | ||
1485 | |||
1486 | if (get_rt_mode() == MODE_RT_RUN && !is_be(t)) | ||
1487 | /* The action is already on. | ||
1488 | * Prepare immediate release | ||
1489 | */ | ||
1490 | prepare_new_release(t); | ||
1491 | /* The task should be running in the queue, otherwise signal | ||
1492 | * code will try to wake it up with fatal consequences. | ||
1493 | */ | ||
1494 | t->state = TASK_RUNNING; | ||
1495 | if (is_be(t)) | ||
1496 | t->rt_param.times.deadline = 0; | ||
1497 | hsb_add_release(t); | ||
1498 | return 0; | ||
1499 | } | ||
1500 | else | ||
1501 | return -EPERM; | ||
1502 | } | ||
1503 | |||
1504 | static void hsb_wake_up_task(struct task_struct *task) | ||
1505 | { | ||
1506 | /* We must determine whether task should go into the release | ||
1507 | * queue or into the ready queue. It may enter the ready queue | ||
1508 | * if it has credit left in its time slice and has not yet reached | ||
1509 | * its deadline. If it is now passed its deadline we assume this the | ||
1510 | * arrival of a new sporadic job and thus put it in the ready queue | ||
1511 | * anyway.If it has zero budget and the next release is in the future | ||
1512 | * it has to go to the release queue. | ||
1513 | */ | ||
1514 | TRACE("edf-hsb: wake up %d with budget=%d\n", | ||
1515 | task->pid, task->time_slice); | ||
1516 | task->state = TASK_RUNNING; | ||
1517 | |||
1518 | if (is_be(task)) { | ||
1519 | hsb_add_release(task); | ||
1520 | } | ||
1521 | else if (is_tardy(task)) { | ||
1522 | /* new sporadic release */ | ||
1523 | prepare_new_release(task); | ||
1524 | sched_trace_job_release(task); | ||
1525 | hsb_add_ready(task); | ||
1526 | } | ||
1527 | else if (task->time_slice) { | ||
1528 | /* came back in time before deadline | ||
1529 | * TODO: clip budget to fit into period, otherwise it could | ||
1530 | * cause a deadline overrun in the next period, i.e. | ||
1531 | * over allocation in the next period. | ||
1532 | */ | ||
1533 | set_rt_flags(task, RT_F_RUNNING); | ||
1534 | hsb_add_ready(task); | ||
1535 | } | ||
1536 | else { | ||
1537 | hsb_add_release(task); | ||
1538 | } | ||
1539 | |||
1540 | } | ||
1541 | |||
1542 | static void hsb_task_blocks(struct task_struct *t) | ||
1543 | { | ||
1544 | /* CLEANUP: The BUG_ON actually triggerd in a really weierd case if a | ||
1545 | * BEST_EFFORT gets caught in a migration right after execv | ||
1546 | * The next version of Litmus should deal with this more gracefully. | ||
1547 | */ | ||
1548 | |||
1549 | /*BUG_ON(!is_realtime(t));*/ | ||
1550 | /* not really anything to do since it can only block if | ||
1551 | * it is running, and when it is not running it is not in any | ||
1552 | * queue anyway. | ||
1553 | * | ||
1554 | * TODO: Check whether the assumption is correct for SIGKILL and | ||
1555 | * SIGSTOP. | ||
1556 | */ | ||
1557 | TRACE("task %d blocks with budget=%d\n", t->pid, t->time_slice); | ||
1558 | /*BUG_ON(t->rt_list.next != LIST_POISON1);*/ | ||
1559 | /*BUG_ON(t->rt_list.prev != LIST_POISON2);*/ | ||
1560 | |||
1561 | if (is_be(t)) | ||
1562 | sched_trace_job_completion(t); | ||
1563 | } | ||
1564 | |||
1565 | |||
1566 | /* When _tear_down is called, the task should not be in any queue any more | ||
1567 | * as it must have blocked first. We don't have any internal state for the task, | ||
1568 | * it is all in the task_struct. | ||
1569 | */ | ||
1570 | static long hsb_tear_down(struct task_struct * t) | ||
1571 | { | ||
1572 | /* CLEANUP: see hsb_task_blocks */ | ||
1573 | /*BUG_ON(!is_realtime(t)); | ||
1574 | TRACE("edf-hsb: tear down called for %d \n", t->pid); | ||
1575 | BUG_ON(t->array); | ||
1576 | BUG_ON(t->rt_list.next != LIST_POISON1); | ||
1577 | BUG_ON(t->rt_list.prev != LIST_POISON2);*/ | ||
1578 | return 0; | ||
1579 | } | ||
1580 | |||
1581 | static int hsb_mode_change(int new_mode) | ||
1582 | { | ||
1583 | int cpu; | ||
1584 | cpu_state_t *entry; | ||
1585 | jiffie_t start; | ||
1586 | |||
1587 | TRACE("[%d] edf-hsb: mode changed to %d\n", smp_processor_id(), | ||
1588 | new_mode); | ||
1589 | if (new_mode == MODE_RT_RUN) { | ||
1590 | start = jiffies + 20; | ||
1591 | prepare_new_releases(&srt, start); | ||
1592 | be_prepare_new_releases(&be, start); | ||
1593 | |||
1594 | /* initialize per CPU state | ||
1595 | * we can't do this at boot time because we don't know | ||
1596 | * which CPUs will be online and we can't put non-existing | ||
1597 | * cpus into the queue | ||
1598 | */ | ||
1599 | spin_lock(&hsb_cpu_lock); | ||
1600 | /* get old cruft out of the way in case we reenter real-time | ||
1601 | * mode for a second time | ||
1602 | */ | ||
1603 | while (!list_empty(&hsb_cpu_queue)) | ||
1604 | list_del(hsb_cpu_queue.next); | ||
1605 | /* reinitialize */ | ||
1606 | for_each_online_cpu(cpu) { | ||
1607 | entry = &per_cpu(hsb_cpu_state, cpu); | ||
1608 | atomic_set(&entry->will_schedule, 0); | ||
1609 | entry->exec_class = RT_CLASS_BEST_EFFORT; | ||
1610 | entry->cur_deadline = 0; | ||
1611 | list_add(&entry->list, &hsb_cpu_queue); | ||
1612 | |||
1613 | prepare_new_releases(&entry->hrt.domain, start); | ||
1614 | prepare_hrt_release(&entry->hrt, start); | ||
1615 | } | ||
1616 | spin_unlock(&hsb_cpu_lock); | ||
1617 | |||
1618 | } | ||
1619 | TRACE("[%d] edf-hsb: mode change done\n", smp_processor_id()); | ||
1620 | return 0; | ||
1621 | } | ||
1622 | |||
1623 | |||
1624 | typedef enum { | ||
1625 | EDF_HSB_SET_HRT, | ||
1626 | EDF_HSB_GET_HRT, | ||
1627 | EDF_HSB_CREATE_BE | ||
1628 | } edf_hsb_setup_cmds_t; | ||
1629 | |||
1630 | typedef struct { | ||
1631 | int cpu; | ||
1632 | unsigned int wcet; | ||
1633 | unsigned int period; | ||
1634 | } setup_hrt_param_t; | ||
1635 | |||
1636 | typedef struct { | ||
1637 | unsigned int wcet; | ||
1638 | unsigned int period; | ||
1639 | } create_be_param_t; | ||
1640 | |||
1641 | typedef struct { | ||
1642 | union { | ||
1643 | setup_hrt_param_t setup_hrt; | ||
1644 | create_be_param_t create_be; | ||
1645 | }; | ||
1646 | } param_t; | ||
1647 | |||
1648 | static pid_t next_be_server_pid = SRT_BASE_PID; | ||
1649 | |||
1650 | static int hsb_scheduler_setup(int cmd, void __user* up) | ||
1651 | { | ||
1652 | unsigned long flags; | ||
1653 | int error = -EINVAL; | ||
1654 | cpu_state_t* state; | ||
1655 | be_server_t* srv; | ||
1656 | param_t param; | ||
1657 | |||
1658 | switch (cmd) { | ||
1659 | case EDF_HSB_SET_HRT: | ||
1660 | if (copy_from_user(¶m, up, sizeof(setup_hrt_param_t))) { | ||
1661 | error = -EFAULT; | ||
1662 | goto out; | ||
1663 | } | ||
1664 | if (!cpu_online(param.setup_hrt.cpu)) { | ||
1665 | printk(KERN_WARNING "scheduler setup: " | ||
1666 | "CPU %d is not online!\n", param.setup_hrt.cpu); | ||
1667 | error = -EINVAL; | ||
1668 | goto out; | ||
1669 | } | ||
1670 | if (param.setup_hrt.period < param.setup_hrt.wcet) { | ||
1671 | printk(KERN_WARNING "period < wcet!\n"); | ||
1672 | error = -EINVAL; | ||
1673 | goto out; | ||
1674 | } | ||
1675 | |||
1676 | state = &per_cpu(hsb_cpu_state, param.setup_hrt.cpu); | ||
1677 | spin_lock_irqsave(&state->lock, flags); | ||
1678 | |||
1679 | state->hrt.wcet = param.setup_hrt.wcet; | ||
1680 | state->hrt.period = param.setup_hrt.period; | ||
1681 | |||
1682 | spin_unlock_irqrestore(&state->lock, flags); | ||
1683 | |||
1684 | printk(KERN_WARNING "edf-hsb: set HRT #%d to (%d, %d)\n", | ||
1685 | param.setup_hrt.cpu, param.setup_hrt.wcet, | ||
1686 | param.setup_hrt.period); | ||
1687 | |||
1688 | error = 0; | ||
1689 | |||
1690 | break; | ||
1691 | |||
1692 | case EDF_HSB_GET_HRT: | ||
1693 | if (copy_from_user(¶m, up, sizeof(setup_hrt_param_t))) { | ||
1694 | error = -EFAULT; | ||
1695 | goto out; | ||
1696 | } | ||
1697 | if (!cpu_online(param.setup_hrt.cpu)) { | ||
1698 | error = -EINVAL; | ||
1699 | goto out; | ||
1700 | } | ||
1701 | state = &per_cpu(hsb_cpu_state, param.setup_hrt.cpu); | ||
1702 | spin_lock_irqsave(&state->lock, flags); | ||
1703 | |||
1704 | param.setup_hrt.wcet = state->hrt.wcet; | ||
1705 | param.setup_hrt.period = state->hrt.period; | ||
1706 | |||
1707 | spin_unlock_irqrestore(&state->lock, flags); | ||
1708 | |||
1709 | if (copy_to_user(up, ¶m, sizeof(setup_hrt_param_t))) { | ||
1710 | error = -EFAULT; | ||
1711 | goto out; | ||
1712 | } | ||
1713 | error = 0; | ||
1714 | break; | ||
1715 | |||
1716 | case EDF_HSB_CREATE_BE: | ||
1717 | if (copy_from_user(¶m, up, sizeof(create_be_param_t))) { | ||
1718 | error = -EFAULT; | ||
1719 | goto out; | ||
1720 | } | ||
1721 | if (param.create_be.period < param.create_be.wcet || | ||
1722 | !param.create_be.period || !param.create_be.wcet) { | ||
1723 | error = -EINVAL; | ||
1724 | goto out; | ||
1725 | } | ||
1726 | srv = (be_server_t*) kmalloc(sizeof(be_server_t), GFP_KERNEL); | ||
1727 | if (!srv) { | ||
1728 | error = -ENOMEM; | ||
1729 | goto out; | ||
1730 | } | ||
1731 | srv->wcet = param.create_be.wcet; | ||
1732 | srv->period = param.create_be.period; | ||
1733 | srv->pid = next_be_server_pid++; | ||
1734 | INIT_LIST_HEAD(&srv->list); | ||
1735 | be_prepare_new_release(srv, jiffies); | ||
1736 | be_enqueue(&be, srv); | ||
1737 | |||
1738 | printk(KERN_WARNING "edf-hsb: created a BE with (%d, %d)\n", | ||
1739 | param.create_be.wcet, param.create_be.period); | ||
1740 | |||
1741 | error = 0; | ||
1742 | break; | ||
1743 | |||
1744 | default: | ||
1745 | printk(KERN_WARNING "edf-hsb: unknown command %d\n", cmd); | ||
1746 | } | ||
1747 | |||
1748 | out: | ||
1749 | return error; | ||
1750 | } | ||
1751 | |||
1752 | /* Plugin object */ | ||
1753 | static sched_plugin_t s_plugin __cacheline_aligned_in_smp = { | ||
1754 | .ready_to_use = 0 | ||
1755 | }; | ||
1756 | |||
1757 | |||
1758 | /* | ||
1759 | * Plugin initialization code. | ||
1760 | */ | ||
1761 | #define INIT_SCHED_PLUGIN (struct sched_plugin){\ | ||
1762 | .plugin_name = "EDF-HSB",\ | ||
1763 | .ready_to_use = 1,\ | ||
1764 | .algo_scheduler_tick = hsb_scheduler_tick,\ | ||
1765 | .scheduler_tick = rt_scheduler_tick,\ | ||
1766 | .prepare_task = hsb_prepare_task,\ | ||
1767 | .sleep_next_period = edf_sleep_next_period,\ | ||
1768 | .tear_down = hsb_tear_down,\ | ||
1769 | .shutdown_hook = 0,\ | ||
1770 | .schedule = hsb_schedule,\ | ||
1771 | .finish_switch = hsb_finish_switch,\ | ||
1772 | .mode_change = hsb_mode_change,\ | ||
1773 | .wake_up_task = hsb_wake_up_task,\ | ||
1774 | .task_blocks = hsb_task_blocks, \ | ||
1775 | .scheduler_setup = hsb_scheduler_setup \ | ||
1776 | } | ||
1777 | |||
1778 | |||
1779 | sched_plugin_t *__init init_edf_hsb_plugin(void) | ||
1780 | { | ||
1781 | int i; | ||
1782 | |||
1783 | if (!s_plugin.ready_to_use) | ||
1784 | { | ||
1785 | set_sched_options(SCHED_NONE); | ||
1786 | capacity_queue_init(&cap_queue); | ||
1787 | edf_domain_init(&srt, srt_check_resched); | ||
1788 | edf_domain_init(&be, be_check_resched); | ||
1789 | fifo_domain_init(&hsb_fifo, 50); | ||
1790 | for (i = 0; i < NR_CPUS; i++) | ||
1791 | { | ||
1792 | hsb_cpu_state_init(&per_cpu(hsb_cpu_state, i), | ||
1793 | hrt_check_resched, i); | ||
1794 | printk("HRT server %d initialized.\n", i); | ||
1795 | } | ||
1796 | s_plugin = INIT_SCHED_PLUGIN; | ||
1797 | } | ||
1798 | return &s_plugin; | ||
1799 | } | ||