diff options
| author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
|---|---|---|
| committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
| commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
| tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/char/rtc.c | |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/char/rtc.c')
| -rw-r--r-- | drivers/char/rtc.c | 1354 |
1 files changed, 1354 insertions, 0 deletions
diff --git a/drivers/char/rtc.c b/drivers/char/rtc.c new file mode 100644 index 0000000000..ff4f098048 --- /dev/null +++ b/drivers/char/rtc.c | |||
| @@ -0,0 +1,1354 @@ | |||
| 1 | /* | ||
| 2 | * Real Time Clock interface for Linux | ||
| 3 | * | ||
| 4 | * Copyright (C) 1996 Paul Gortmaker | ||
| 5 | * | ||
| 6 | * This driver allows use of the real time clock (built into | ||
| 7 | * nearly all computers) from user space. It exports the /dev/rtc | ||
| 8 | * interface supporting various ioctl() and also the | ||
| 9 | * /proc/driver/rtc pseudo-file for status information. | ||
| 10 | * | ||
| 11 | * The ioctls can be used to set the interrupt behaviour and | ||
| 12 | * generation rate from the RTC via IRQ 8. Then the /dev/rtc | ||
| 13 | * interface can be used to make use of these timer interrupts, | ||
| 14 | * be they interval or alarm based. | ||
| 15 | * | ||
| 16 | * The /dev/rtc interface will block on reads until an interrupt | ||
| 17 | * has been received. If a RTC interrupt has already happened, | ||
| 18 | * it will output an unsigned long and then block. The output value | ||
| 19 | * contains the interrupt status in the low byte and the number of | ||
| 20 | * interrupts since the last read in the remaining high bytes. The | ||
| 21 | * /dev/rtc interface can also be used with the select(2) call. | ||
| 22 | * | ||
| 23 | * This program is free software; you can redistribute it and/or | ||
| 24 | * modify it under the terms of the GNU General Public License | ||
| 25 | * as published by the Free Software Foundation; either version | ||
| 26 | * 2 of the License, or (at your option) any later version. | ||
| 27 | * | ||
| 28 | * Based on other minimal char device drivers, like Alan's | ||
| 29 | * watchdog, Ted's random, etc. etc. | ||
| 30 | * | ||
| 31 | * 1.07 Paul Gortmaker. | ||
| 32 | * 1.08 Miquel van Smoorenburg: disallow certain things on the | ||
| 33 | * DEC Alpha as the CMOS clock is also used for other things. | ||
| 34 | * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup. | ||
| 35 | * 1.09a Pete Zaitcev: Sun SPARC | ||
| 36 | * 1.09b Jeff Garzik: Modularize, init cleanup | ||
| 37 | * 1.09c Jeff Garzik: SMP cleanup | ||
| 38 | * 1.10 Paul Barton-Davis: add support for async I/O | ||
| 39 | * 1.10a Andrea Arcangeli: Alpha updates | ||
| 40 | * 1.10b Andrew Morton: SMP lock fix | ||
| 41 | * 1.10c Cesar Barros: SMP locking fixes and cleanup | ||
| 42 | * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit | ||
| 43 | * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness. | ||
| 44 | * 1.11 Takashi Iwai: Kernel access functions | ||
| 45 | * rtc_register/rtc_unregister/rtc_control | ||
| 46 | * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init | ||
| 47 | * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer | ||
| 48 | * CONFIG_HPET_EMULATE_RTC | ||
| 49 | * | ||
| 50 | */ | ||
| 51 | |||
| 52 | #define RTC_VERSION "1.12" | ||
| 53 | |||
| 54 | #define RTC_IO_EXTENT 0x8 | ||
| 55 | |||
| 56 | /* | ||
| 57 | * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with | ||
| 58 | * interrupts disabled. Due to the index-port/data-port (0x70/0x71) | ||
| 59 | * design of the RTC, we don't want two different things trying to | ||
| 60 | * get to it at once. (e.g. the periodic 11 min sync from time.c vs. | ||
| 61 | * this driver.) | ||
| 62 | */ | ||
| 63 | |||
| 64 | #include <linux/config.h> | ||
| 65 | #include <linux/interrupt.h> | ||
| 66 | #include <linux/module.h> | ||
| 67 | #include <linux/kernel.h> | ||
| 68 | #include <linux/types.h> | ||
| 69 | #include <linux/miscdevice.h> | ||
| 70 | #include <linux/ioport.h> | ||
| 71 | #include <linux/fcntl.h> | ||
| 72 | #include <linux/mc146818rtc.h> | ||
| 73 | #include <linux/init.h> | ||
| 74 | #include <linux/poll.h> | ||
| 75 | #include <linux/proc_fs.h> | ||
| 76 | #include <linux/seq_file.h> | ||
| 77 | #include <linux/spinlock.h> | ||
| 78 | #include <linux/sysctl.h> | ||
| 79 | #include <linux/wait.h> | ||
| 80 | #include <linux/bcd.h> | ||
| 81 | |||
| 82 | #include <asm/current.h> | ||
| 83 | #include <asm/uaccess.h> | ||
| 84 | #include <asm/system.h> | ||
| 85 | |||
| 86 | #if defined(__i386__) | ||
| 87 | #include <asm/hpet.h> | ||
| 88 | #endif | ||
| 89 | |||
| 90 | #ifdef __sparc__ | ||
| 91 | #include <linux/pci.h> | ||
| 92 | #include <asm/ebus.h> | ||
| 93 | #ifdef __sparc_v9__ | ||
| 94 | #include <asm/isa.h> | ||
| 95 | #endif | ||
| 96 | |||
| 97 | static unsigned long rtc_port; | ||
| 98 | static int rtc_irq = PCI_IRQ_NONE; | ||
| 99 | #endif | ||
| 100 | |||
| 101 | #ifdef CONFIG_HPET_RTC_IRQ | ||
| 102 | #undef RTC_IRQ | ||
| 103 | #endif | ||
| 104 | |||
| 105 | #ifdef RTC_IRQ | ||
| 106 | static int rtc_has_irq = 1; | ||
| 107 | #endif | ||
| 108 | |||
| 109 | #ifndef CONFIG_HPET_EMULATE_RTC | ||
| 110 | #define is_hpet_enabled() 0 | ||
| 111 | #define hpet_set_alarm_time(hrs, min, sec) 0 | ||
| 112 | #define hpet_set_periodic_freq(arg) 0 | ||
| 113 | #define hpet_mask_rtc_irq_bit(arg) 0 | ||
| 114 | #define hpet_set_rtc_irq_bit(arg) 0 | ||
| 115 | #define hpet_rtc_timer_init() do { } while (0) | ||
| 116 | #define hpet_rtc_dropped_irq() 0 | ||
| 117 | static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;} | ||
| 118 | #else | ||
| 119 | extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs); | ||
| 120 | #endif | ||
| 121 | |||
| 122 | /* | ||
| 123 | * We sponge a minor off of the misc major. No need slurping | ||
| 124 | * up another valuable major dev number for this. If you add | ||
| 125 | * an ioctl, make sure you don't conflict with SPARC's RTC | ||
| 126 | * ioctls. | ||
| 127 | */ | ||
| 128 | |||
| 129 | static struct fasync_struct *rtc_async_queue; | ||
| 130 | |||
| 131 | static DECLARE_WAIT_QUEUE_HEAD(rtc_wait); | ||
| 132 | |||
| 133 | #ifdef RTC_IRQ | ||
| 134 | static struct timer_list rtc_irq_timer; | ||
| 135 | #endif | ||
| 136 | |||
| 137 | static ssize_t rtc_read(struct file *file, char __user *buf, | ||
| 138 | size_t count, loff_t *ppos); | ||
| 139 | |||
| 140 | static int rtc_ioctl(struct inode *inode, struct file *file, | ||
| 141 | unsigned int cmd, unsigned long arg); | ||
| 142 | |||
| 143 | #ifdef RTC_IRQ | ||
| 144 | static unsigned int rtc_poll(struct file *file, poll_table *wait); | ||
| 145 | #endif | ||
| 146 | |||
| 147 | static void get_rtc_alm_time (struct rtc_time *alm_tm); | ||
| 148 | #ifdef RTC_IRQ | ||
| 149 | static void rtc_dropped_irq(unsigned long data); | ||
| 150 | |||
| 151 | static void set_rtc_irq_bit(unsigned char bit); | ||
| 152 | static void mask_rtc_irq_bit(unsigned char bit); | ||
| 153 | #endif | ||
| 154 | |||
| 155 | static int rtc_proc_open(struct inode *inode, struct file *file); | ||
| 156 | |||
| 157 | /* | ||
| 158 | * Bits in rtc_status. (6 bits of room for future expansion) | ||
| 159 | */ | ||
| 160 | |||
| 161 | #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ | ||
| 162 | #define RTC_TIMER_ON 0x02 /* missed irq timer active */ | ||
| 163 | |||
| 164 | /* | ||
| 165 | * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is | ||
| 166 | * protected by the big kernel lock. However, ioctl can still disable the timer | ||
| 167 | * in rtc_status and then with del_timer after the interrupt has read | ||
| 168 | * rtc_status but before mod_timer is called, which would then reenable the | ||
| 169 | * timer (but you would need to have an awful timing before you'd trip on it) | ||
| 170 | */ | ||
| 171 | static unsigned long rtc_status = 0; /* bitmapped status byte. */ | ||
| 172 | static unsigned long rtc_freq = 0; /* Current periodic IRQ rate */ | ||
| 173 | static unsigned long rtc_irq_data = 0; /* our output to the world */ | ||
| 174 | static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */ | ||
| 175 | |||
| 176 | #ifdef RTC_IRQ | ||
| 177 | /* | ||
| 178 | * rtc_task_lock nests inside rtc_lock. | ||
| 179 | */ | ||
| 180 | static DEFINE_SPINLOCK(rtc_task_lock); | ||
| 181 | static rtc_task_t *rtc_callback = NULL; | ||
| 182 | #endif | ||
| 183 | |||
| 184 | /* | ||
| 185 | * If this driver ever becomes modularised, it will be really nice | ||
| 186 | * to make the epoch retain its value across module reload... | ||
| 187 | */ | ||
| 188 | |||
| 189 | static unsigned long epoch = 1900; /* year corresponding to 0x00 */ | ||
| 190 | |||
| 191 | static const unsigned char days_in_mo[] = | ||
| 192 | {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; | ||
| 193 | |||
| 194 | /* | ||
| 195 | * Returns true if a clock update is in progress | ||
| 196 | */ | ||
| 197 | static inline unsigned char rtc_is_updating(void) | ||
| 198 | { | ||
| 199 | unsigned char uip; | ||
| 200 | |||
| 201 | spin_lock_irq(&rtc_lock); | ||
| 202 | uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); | ||
| 203 | spin_unlock_irq(&rtc_lock); | ||
| 204 | return uip; | ||
| 205 | } | ||
| 206 | |||
| 207 | #ifdef RTC_IRQ | ||
| 208 | /* | ||
| 209 | * A very tiny interrupt handler. It runs with SA_INTERRUPT set, | ||
| 210 | * but there is possibility of conflicting with the set_rtc_mmss() | ||
| 211 | * call (the rtc irq and the timer irq can easily run at the same | ||
| 212 | * time in two different CPUs). So we need to serialize | ||
| 213 | * accesses to the chip with the rtc_lock spinlock that each | ||
| 214 | * architecture should implement in the timer code. | ||
| 215 | * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.) | ||
| 216 | */ | ||
| 217 | |||
| 218 | irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
| 219 | { | ||
| 220 | /* | ||
| 221 | * Can be an alarm interrupt, update complete interrupt, | ||
| 222 | * or a periodic interrupt. We store the status in the | ||
| 223 | * low byte and the number of interrupts received since | ||
| 224 | * the last read in the remainder of rtc_irq_data. | ||
| 225 | */ | ||
| 226 | |||
| 227 | spin_lock (&rtc_lock); | ||
| 228 | rtc_irq_data += 0x100; | ||
| 229 | rtc_irq_data &= ~0xff; | ||
| 230 | if (is_hpet_enabled()) { | ||
| 231 | /* | ||
| 232 | * In this case it is HPET RTC interrupt handler | ||
| 233 | * calling us, with the interrupt information | ||
| 234 | * passed as arg1, instead of irq. | ||
| 235 | */ | ||
| 236 | rtc_irq_data |= (unsigned long)irq & 0xF0; | ||
| 237 | } else { | ||
| 238 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); | ||
| 239 | } | ||
| 240 | |||
| 241 | if (rtc_status & RTC_TIMER_ON) | ||
| 242 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); | ||
| 243 | |||
| 244 | spin_unlock (&rtc_lock); | ||
| 245 | |||
| 246 | /* Now do the rest of the actions */ | ||
| 247 | spin_lock(&rtc_task_lock); | ||
| 248 | if (rtc_callback) | ||
| 249 | rtc_callback->func(rtc_callback->private_data); | ||
| 250 | spin_unlock(&rtc_task_lock); | ||
| 251 | wake_up_interruptible(&rtc_wait); | ||
| 252 | |||
| 253 | kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); | ||
| 254 | |||
| 255 | return IRQ_HANDLED; | ||
| 256 | } | ||
| 257 | #endif | ||
| 258 | |||
| 259 | /* | ||
| 260 | * sysctl-tuning infrastructure. | ||
| 261 | */ | ||
| 262 | static ctl_table rtc_table[] = { | ||
| 263 | { | ||
| 264 | .ctl_name = 1, | ||
| 265 | .procname = "max-user-freq", | ||
| 266 | .data = &rtc_max_user_freq, | ||
| 267 | .maxlen = sizeof(int), | ||
| 268 | .mode = 0644, | ||
| 269 | .proc_handler = &proc_dointvec, | ||
| 270 | }, | ||
| 271 | { .ctl_name = 0 } | ||
| 272 | }; | ||
| 273 | |||
| 274 | static ctl_table rtc_root[] = { | ||
| 275 | { | ||
| 276 | .ctl_name = 1, | ||
| 277 | .procname = "rtc", | ||
| 278 | .maxlen = 0, | ||
| 279 | .mode = 0555, | ||
| 280 | .child = rtc_table, | ||
| 281 | }, | ||
| 282 | { .ctl_name = 0 } | ||
| 283 | }; | ||
| 284 | |||
| 285 | static ctl_table dev_root[] = { | ||
| 286 | { | ||
| 287 | .ctl_name = CTL_DEV, | ||
| 288 | .procname = "dev", | ||
| 289 | .maxlen = 0, | ||
| 290 | .mode = 0555, | ||
| 291 | .child = rtc_root, | ||
| 292 | }, | ||
| 293 | { .ctl_name = 0 } | ||
| 294 | }; | ||
| 295 | |||
| 296 | static struct ctl_table_header *sysctl_header; | ||
| 297 | |||
| 298 | static int __init init_sysctl(void) | ||
| 299 | { | ||
| 300 | sysctl_header = register_sysctl_table(dev_root, 0); | ||
| 301 | return 0; | ||
| 302 | } | ||
| 303 | |||
| 304 | static void __exit cleanup_sysctl(void) | ||
| 305 | { | ||
| 306 | unregister_sysctl_table(sysctl_header); | ||
| 307 | } | ||
| 308 | |||
| 309 | /* | ||
| 310 | * Now all the various file operations that we export. | ||
| 311 | */ | ||
| 312 | |||
| 313 | static ssize_t rtc_read(struct file *file, char __user *buf, | ||
| 314 | size_t count, loff_t *ppos) | ||
| 315 | { | ||
| 316 | #ifndef RTC_IRQ | ||
| 317 | return -EIO; | ||
| 318 | #else | ||
| 319 | DECLARE_WAITQUEUE(wait, current); | ||
| 320 | unsigned long data; | ||
| 321 | ssize_t retval; | ||
| 322 | |||
| 323 | if (rtc_has_irq == 0) | ||
| 324 | return -EIO; | ||
| 325 | |||
| 326 | if (count < sizeof(unsigned)) | ||
| 327 | return -EINVAL; | ||
| 328 | |||
| 329 | add_wait_queue(&rtc_wait, &wait); | ||
| 330 | |||
| 331 | do { | ||
| 332 | /* First make it right. Then make it fast. Putting this whole | ||
| 333 | * block within the parentheses of a while would be too | ||
| 334 | * confusing. And no, xchg() is not the answer. */ | ||
| 335 | |||
| 336 | __set_current_state(TASK_INTERRUPTIBLE); | ||
| 337 | |||
| 338 | spin_lock_irq (&rtc_lock); | ||
| 339 | data = rtc_irq_data; | ||
| 340 | rtc_irq_data = 0; | ||
| 341 | spin_unlock_irq (&rtc_lock); | ||
| 342 | |||
| 343 | if (data != 0) | ||
| 344 | break; | ||
| 345 | |||
| 346 | if (file->f_flags & O_NONBLOCK) { | ||
| 347 | retval = -EAGAIN; | ||
| 348 | goto out; | ||
| 349 | } | ||
| 350 | if (signal_pending(current)) { | ||
| 351 | retval = -ERESTARTSYS; | ||
| 352 | goto out; | ||
| 353 | } | ||
| 354 | schedule(); | ||
| 355 | } while (1); | ||
| 356 | |||
| 357 | if (count < sizeof(unsigned long)) | ||
| 358 | retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int); | ||
| 359 | else | ||
| 360 | retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long); | ||
| 361 | out: | ||
| 362 | current->state = TASK_RUNNING; | ||
| 363 | remove_wait_queue(&rtc_wait, &wait); | ||
| 364 | |||
| 365 | return retval; | ||
| 366 | #endif | ||
| 367 | } | ||
| 368 | |||
| 369 | static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel) | ||
| 370 | { | ||
| 371 | struct rtc_time wtime; | ||
| 372 | |||
| 373 | #ifdef RTC_IRQ | ||
| 374 | if (rtc_has_irq == 0) { | ||
| 375 | switch (cmd) { | ||
| 376 | case RTC_AIE_OFF: | ||
| 377 | case RTC_AIE_ON: | ||
| 378 | case RTC_PIE_OFF: | ||
| 379 | case RTC_PIE_ON: | ||
| 380 | case RTC_UIE_OFF: | ||
| 381 | case RTC_UIE_ON: | ||
| 382 | case RTC_IRQP_READ: | ||
| 383 | case RTC_IRQP_SET: | ||
| 384 | return -EINVAL; | ||
| 385 | }; | ||
| 386 | } | ||
| 387 | #endif | ||
| 388 | |||
| 389 | switch (cmd) { | ||
| 390 | #ifdef RTC_IRQ | ||
| 391 | case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ | ||
| 392 | { | ||
| 393 | mask_rtc_irq_bit(RTC_AIE); | ||
| 394 | return 0; | ||
| 395 | } | ||
| 396 | case RTC_AIE_ON: /* Allow alarm interrupts. */ | ||
| 397 | { | ||
| 398 | set_rtc_irq_bit(RTC_AIE); | ||
| 399 | return 0; | ||
| 400 | } | ||
| 401 | case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ | ||
| 402 | { | ||
| 403 | mask_rtc_irq_bit(RTC_PIE); | ||
| 404 | if (rtc_status & RTC_TIMER_ON) { | ||
| 405 | spin_lock_irq (&rtc_lock); | ||
| 406 | rtc_status &= ~RTC_TIMER_ON; | ||
| 407 | del_timer(&rtc_irq_timer); | ||
| 408 | spin_unlock_irq (&rtc_lock); | ||
| 409 | } | ||
| 410 | return 0; | ||
| 411 | } | ||
| 412 | case RTC_PIE_ON: /* Allow periodic ints */ | ||
| 413 | { | ||
| 414 | |||
| 415 | /* | ||
| 416 | * We don't really want Joe User enabling more | ||
| 417 | * than 64Hz of interrupts on a multi-user machine. | ||
| 418 | */ | ||
| 419 | if (!kernel && (rtc_freq > rtc_max_user_freq) && | ||
| 420 | (!capable(CAP_SYS_RESOURCE))) | ||
| 421 | return -EACCES; | ||
| 422 | |||
| 423 | if (!(rtc_status & RTC_TIMER_ON)) { | ||
| 424 | spin_lock_irq (&rtc_lock); | ||
| 425 | rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100; | ||
| 426 | add_timer(&rtc_irq_timer); | ||
| 427 | rtc_status |= RTC_TIMER_ON; | ||
| 428 | spin_unlock_irq (&rtc_lock); | ||
| 429 | } | ||
| 430 | set_rtc_irq_bit(RTC_PIE); | ||
| 431 | return 0; | ||
| 432 | } | ||
| 433 | case RTC_UIE_OFF: /* Mask ints from RTC updates. */ | ||
| 434 | { | ||
| 435 | mask_rtc_irq_bit(RTC_UIE); | ||
| 436 | return 0; | ||
| 437 | } | ||
| 438 | case RTC_UIE_ON: /* Allow ints for RTC updates. */ | ||
| 439 | { | ||
| 440 | set_rtc_irq_bit(RTC_UIE); | ||
| 441 | return 0; | ||
| 442 | } | ||
| 443 | #endif | ||
| 444 | case RTC_ALM_READ: /* Read the present alarm time */ | ||
| 445 | { | ||
| 446 | /* | ||
| 447 | * This returns a struct rtc_time. Reading >= 0xc0 | ||
| 448 | * means "don't care" or "match all". Only the tm_hour, | ||
| 449 | * tm_min, and tm_sec values are filled in. | ||
| 450 | */ | ||
| 451 | memset(&wtime, 0, sizeof(struct rtc_time)); | ||
| 452 | get_rtc_alm_time(&wtime); | ||
| 453 | break; | ||
| 454 | } | ||
| 455 | case RTC_ALM_SET: /* Store a time into the alarm */ | ||
| 456 | { | ||
| 457 | /* | ||
| 458 | * This expects a struct rtc_time. Writing 0xff means | ||
| 459 | * "don't care" or "match all". Only the tm_hour, | ||
| 460 | * tm_min and tm_sec are used. | ||
| 461 | */ | ||
| 462 | unsigned char hrs, min, sec; | ||
| 463 | struct rtc_time alm_tm; | ||
| 464 | |||
| 465 | if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg, | ||
| 466 | sizeof(struct rtc_time))) | ||
| 467 | return -EFAULT; | ||
| 468 | |||
| 469 | hrs = alm_tm.tm_hour; | ||
| 470 | min = alm_tm.tm_min; | ||
| 471 | sec = alm_tm.tm_sec; | ||
| 472 | |||
| 473 | spin_lock_irq(&rtc_lock); | ||
| 474 | if (hpet_set_alarm_time(hrs, min, sec)) { | ||
| 475 | /* | ||
| 476 | * Fallthru and set alarm time in CMOS too, | ||
| 477 | * so that we will get proper value in RTC_ALM_READ | ||
| 478 | */ | ||
| 479 | } | ||
| 480 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || | ||
| 481 | RTC_ALWAYS_BCD) | ||
| 482 | { | ||
| 483 | if (sec < 60) BIN_TO_BCD(sec); | ||
| 484 | else sec = 0xff; | ||
| 485 | |||
| 486 | if (min < 60) BIN_TO_BCD(min); | ||
| 487 | else min = 0xff; | ||
| 488 | |||
| 489 | if (hrs < 24) BIN_TO_BCD(hrs); | ||
| 490 | else hrs = 0xff; | ||
| 491 | } | ||
| 492 | CMOS_WRITE(hrs, RTC_HOURS_ALARM); | ||
| 493 | CMOS_WRITE(min, RTC_MINUTES_ALARM); | ||
| 494 | CMOS_WRITE(sec, RTC_SECONDS_ALARM); | ||
| 495 | spin_unlock_irq(&rtc_lock); | ||
| 496 | |||
| 497 | return 0; | ||
| 498 | } | ||
| 499 | case RTC_RD_TIME: /* Read the time/date from RTC */ | ||
| 500 | { | ||
| 501 | memset(&wtime, 0, sizeof(struct rtc_time)); | ||
| 502 | rtc_get_rtc_time(&wtime); | ||
| 503 | break; | ||
| 504 | } | ||
| 505 | case RTC_SET_TIME: /* Set the RTC */ | ||
| 506 | { | ||
| 507 | struct rtc_time rtc_tm; | ||
| 508 | unsigned char mon, day, hrs, min, sec, leap_yr; | ||
| 509 | unsigned char save_control, save_freq_select; | ||
| 510 | unsigned int yrs; | ||
| 511 | #ifdef CONFIG_MACH_DECSTATION | ||
| 512 | unsigned int real_yrs; | ||
| 513 | #endif | ||
| 514 | |||
| 515 | if (!capable(CAP_SYS_TIME)) | ||
| 516 | return -EACCES; | ||
| 517 | |||
| 518 | if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg, | ||
| 519 | sizeof(struct rtc_time))) | ||
| 520 | return -EFAULT; | ||
| 521 | |||
| 522 | yrs = rtc_tm.tm_year + 1900; | ||
| 523 | mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ | ||
| 524 | day = rtc_tm.tm_mday; | ||
| 525 | hrs = rtc_tm.tm_hour; | ||
| 526 | min = rtc_tm.tm_min; | ||
| 527 | sec = rtc_tm.tm_sec; | ||
| 528 | |||
| 529 | if (yrs < 1970) | ||
| 530 | return -EINVAL; | ||
| 531 | |||
| 532 | leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); | ||
| 533 | |||
| 534 | if ((mon > 12) || (day == 0)) | ||
| 535 | return -EINVAL; | ||
| 536 | |||
| 537 | if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) | ||
| 538 | return -EINVAL; | ||
| 539 | |||
| 540 | if ((hrs >= 24) || (min >= 60) || (sec >= 60)) | ||
| 541 | return -EINVAL; | ||
| 542 | |||
| 543 | if ((yrs -= epoch) > 255) /* They are unsigned */ | ||
| 544 | return -EINVAL; | ||
| 545 | |||
| 546 | spin_lock_irq(&rtc_lock); | ||
| 547 | #ifdef CONFIG_MACH_DECSTATION | ||
| 548 | real_yrs = yrs; | ||
| 549 | yrs = 72; | ||
| 550 | |||
| 551 | /* | ||
| 552 | * We want to keep the year set to 73 until March | ||
| 553 | * for non-leap years, so that Feb, 29th is handled | ||
| 554 | * correctly. | ||
| 555 | */ | ||
| 556 | if (!leap_yr && mon < 3) { | ||
| 557 | real_yrs--; | ||
| 558 | yrs = 73; | ||
| 559 | } | ||
| 560 | #endif | ||
| 561 | /* These limits and adjustments are independent of | ||
| 562 | * whether the chip is in binary mode or not. | ||
| 563 | */ | ||
| 564 | if (yrs > 169) { | ||
| 565 | spin_unlock_irq(&rtc_lock); | ||
| 566 | return -EINVAL; | ||
| 567 | } | ||
| 568 | if (yrs >= 100) | ||
| 569 | yrs -= 100; | ||
| 570 | |||
| 571 | if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) | ||
| 572 | || RTC_ALWAYS_BCD) { | ||
| 573 | BIN_TO_BCD(sec); | ||
| 574 | BIN_TO_BCD(min); | ||
| 575 | BIN_TO_BCD(hrs); | ||
| 576 | BIN_TO_BCD(day); | ||
| 577 | BIN_TO_BCD(mon); | ||
| 578 | BIN_TO_BCD(yrs); | ||
| 579 | } | ||
| 580 | |||
| 581 | save_control = CMOS_READ(RTC_CONTROL); | ||
| 582 | CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); | ||
| 583 | save_freq_select = CMOS_READ(RTC_FREQ_SELECT); | ||
| 584 | CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); | ||
| 585 | |||
| 586 | #ifdef CONFIG_MACH_DECSTATION | ||
| 587 | CMOS_WRITE(real_yrs, RTC_DEC_YEAR); | ||
| 588 | #endif | ||
| 589 | CMOS_WRITE(yrs, RTC_YEAR); | ||
| 590 | CMOS_WRITE(mon, RTC_MONTH); | ||
| 591 | CMOS_WRITE(day, RTC_DAY_OF_MONTH); | ||
| 592 | CMOS_WRITE(hrs, RTC_HOURS); | ||
| 593 | CMOS_WRITE(min, RTC_MINUTES); | ||
| 594 | CMOS_WRITE(sec, RTC_SECONDS); | ||
| 595 | |||
| 596 | CMOS_WRITE(save_control, RTC_CONTROL); | ||
| 597 | CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); | ||
| 598 | |||
| 599 | spin_unlock_irq(&rtc_lock); | ||
| 600 | return 0; | ||
| 601 | } | ||
| 602 | #ifdef RTC_IRQ | ||
| 603 | case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ | ||
| 604 | { | ||
| 605 | return put_user(rtc_freq, (unsigned long __user *)arg); | ||
| 606 | } | ||
| 607 | case RTC_IRQP_SET: /* Set periodic IRQ rate. */ | ||
| 608 | { | ||
| 609 | int tmp = 0; | ||
| 610 | unsigned char val; | ||
| 611 | |||
| 612 | /* | ||
| 613 | * The max we can do is 8192Hz. | ||
| 614 | */ | ||
| 615 | if ((arg < 2) || (arg > 8192)) | ||
| 616 | return -EINVAL; | ||
| 617 | /* | ||
| 618 | * We don't really want Joe User generating more | ||
| 619 | * than 64Hz of interrupts on a multi-user machine. | ||
| 620 | */ | ||
| 621 | if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE))) | ||
| 622 | return -EACCES; | ||
| 623 | |||
| 624 | while (arg > (1<<tmp)) | ||
| 625 | tmp++; | ||
| 626 | |||
| 627 | /* | ||
| 628 | * Check that the input was really a power of 2. | ||
| 629 | */ | ||
| 630 | if (arg != (1<<tmp)) | ||
| 631 | return -EINVAL; | ||
| 632 | |||
| 633 | spin_lock_irq(&rtc_lock); | ||
| 634 | if (hpet_set_periodic_freq(arg)) { | ||
| 635 | spin_unlock_irq(&rtc_lock); | ||
| 636 | return 0; | ||
| 637 | } | ||
| 638 | rtc_freq = arg; | ||
| 639 | |||
| 640 | val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0; | ||
| 641 | val |= (16 - tmp); | ||
| 642 | CMOS_WRITE(val, RTC_FREQ_SELECT); | ||
| 643 | spin_unlock_irq(&rtc_lock); | ||
| 644 | return 0; | ||
| 645 | } | ||
| 646 | #endif | ||
| 647 | case RTC_EPOCH_READ: /* Read the epoch. */ | ||
| 648 | { | ||
| 649 | return put_user (epoch, (unsigned long __user *)arg); | ||
| 650 | } | ||
| 651 | case RTC_EPOCH_SET: /* Set the epoch. */ | ||
| 652 | { | ||
| 653 | /* | ||
| 654 | * There were no RTC clocks before 1900. | ||
| 655 | */ | ||
| 656 | if (arg < 1900) | ||
| 657 | return -EINVAL; | ||
| 658 | |||
| 659 | if (!capable(CAP_SYS_TIME)) | ||
| 660 | return -EACCES; | ||
| 661 | |||
| 662 | epoch = arg; | ||
| 663 | return 0; | ||
| 664 | } | ||
| 665 | default: | ||
| 666 | return -ENOTTY; | ||
| 667 | } | ||
| 668 | return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0; | ||
| 669 | } | ||
| 670 | |||
| 671 | static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, | ||
| 672 | unsigned long arg) | ||
| 673 | { | ||
| 674 | return rtc_do_ioctl(cmd, arg, 0); | ||
| 675 | } | ||
| 676 | |||
| 677 | /* | ||
| 678 | * We enforce only one user at a time here with the open/close. | ||
| 679 | * Also clear the previous interrupt data on an open, and clean | ||
| 680 | * up things on a close. | ||
| 681 | */ | ||
| 682 | |||
| 683 | /* We use rtc_lock to protect against concurrent opens. So the BKL is not | ||
| 684 | * needed here. Or anywhere else in this driver. */ | ||
| 685 | static int rtc_open(struct inode *inode, struct file *file) | ||
| 686 | { | ||
| 687 | spin_lock_irq (&rtc_lock); | ||
| 688 | |||
| 689 | if(rtc_status & RTC_IS_OPEN) | ||
| 690 | goto out_busy; | ||
| 691 | |||
| 692 | rtc_status |= RTC_IS_OPEN; | ||
| 693 | |||
| 694 | rtc_irq_data = 0; | ||
| 695 | spin_unlock_irq (&rtc_lock); | ||
| 696 | return 0; | ||
| 697 | |||
| 698 | out_busy: | ||
| 699 | spin_unlock_irq (&rtc_lock); | ||
| 700 | return -EBUSY; | ||
| 701 | } | ||
| 702 | |||
| 703 | static int rtc_fasync (int fd, struct file *filp, int on) | ||
| 704 | |||
| 705 | { | ||
| 706 | return fasync_helper (fd, filp, on, &rtc_async_queue); | ||
| 707 | } | ||
| 708 | |||
| 709 | static int rtc_release(struct inode *inode, struct file *file) | ||
| 710 | { | ||
| 711 | #ifdef RTC_IRQ | ||
| 712 | unsigned char tmp; | ||
| 713 | |||
| 714 | if (rtc_has_irq == 0) | ||
| 715 | goto no_irq; | ||
| 716 | |||
| 717 | /* | ||
| 718 | * Turn off all interrupts once the device is no longer | ||
| 719 | * in use, and clear the data. | ||
| 720 | */ | ||
| 721 | |||
| 722 | spin_lock_irq(&rtc_lock); | ||
| 723 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { | ||
| 724 | tmp = CMOS_READ(RTC_CONTROL); | ||
| 725 | tmp &= ~RTC_PIE; | ||
| 726 | tmp &= ~RTC_AIE; | ||
| 727 | tmp &= ~RTC_UIE; | ||
| 728 | CMOS_WRITE(tmp, RTC_CONTROL); | ||
| 729 | CMOS_READ(RTC_INTR_FLAGS); | ||
| 730 | } | ||
| 731 | if (rtc_status & RTC_TIMER_ON) { | ||
| 732 | rtc_status &= ~RTC_TIMER_ON; | ||
| 733 | del_timer(&rtc_irq_timer); | ||
| 734 | } | ||
| 735 | spin_unlock_irq(&rtc_lock); | ||
| 736 | |||
| 737 | if (file->f_flags & FASYNC) { | ||
| 738 | rtc_fasync (-1, file, 0); | ||
| 739 | } | ||
| 740 | no_irq: | ||
| 741 | #endif | ||
| 742 | |||
| 743 | spin_lock_irq (&rtc_lock); | ||
| 744 | rtc_irq_data = 0; | ||
| 745 | rtc_status &= ~RTC_IS_OPEN; | ||
| 746 | spin_unlock_irq (&rtc_lock); | ||
| 747 | return 0; | ||
| 748 | } | ||
| 749 | |||
| 750 | #ifdef RTC_IRQ | ||
| 751 | /* Called without the kernel lock - fine */ | ||
| 752 | static unsigned int rtc_poll(struct file *file, poll_table *wait) | ||
| 753 | { | ||
| 754 | unsigned long l; | ||
| 755 | |||
| 756 | if (rtc_has_irq == 0) | ||
| 757 | return 0; | ||
| 758 | |||
| 759 | poll_wait(file, &rtc_wait, wait); | ||
| 760 | |||
| 761 | spin_lock_irq (&rtc_lock); | ||
| 762 | l = rtc_irq_data; | ||
| 763 | spin_unlock_irq (&rtc_lock); | ||
| 764 | |||
| 765 | if (l != 0) | ||
| 766 | return POLLIN | POLLRDNORM; | ||
| 767 | return 0; | ||
| 768 | } | ||
| 769 | #endif | ||
| 770 | |||
| 771 | /* | ||
| 772 | * exported stuffs | ||
| 773 | */ | ||
| 774 | |||
| 775 | EXPORT_SYMBOL(rtc_register); | ||
| 776 | EXPORT_SYMBOL(rtc_unregister); | ||
| 777 | EXPORT_SYMBOL(rtc_control); | ||
| 778 | |||
| 779 | int rtc_register(rtc_task_t *task) | ||
| 780 | { | ||
| 781 | #ifndef RTC_IRQ | ||
| 782 | return -EIO; | ||
| 783 | #else | ||
| 784 | if (task == NULL || task->func == NULL) | ||
| 785 | return -EINVAL; | ||
| 786 | spin_lock_irq(&rtc_lock); | ||
| 787 | if (rtc_status & RTC_IS_OPEN) { | ||
| 788 | spin_unlock_irq(&rtc_lock); | ||
| 789 | return -EBUSY; | ||
| 790 | } | ||
| 791 | spin_lock(&rtc_task_lock); | ||
| 792 | if (rtc_callback) { | ||
| 793 | spin_unlock(&rtc_task_lock); | ||
| 794 | spin_unlock_irq(&rtc_lock); | ||
| 795 | return -EBUSY; | ||
| 796 | } | ||
| 797 | rtc_status |= RTC_IS_OPEN; | ||
| 798 | rtc_callback = task; | ||
| 799 | spin_unlock(&rtc_task_lock); | ||
| 800 | spin_unlock_irq(&rtc_lock); | ||
| 801 | return 0; | ||
| 802 | #endif | ||
| 803 | } | ||
| 804 | |||
| 805 | int rtc_unregister(rtc_task_t *task) | ||
| 806 | { | ||
| 807 | #ifndef RTC_IRQ | ||
| 808 | return -EIO; | ||
| 809 | #else | ||
| 810 | unsigned char tmp; | ||
| 811 | |||
| 812 | spin_lock_irq(&rtc_lock); | ||
| 813 | spin_lock(&rtc_task_lock); | ||
| 814 | if (rtc_callback != task) { | ||
| 815 | spin_unlock(&rtc_task_lock); | ||
| 816 | spin_unlock_irq(&rtc_lock); | ||
| 817 | return -ENXIO; | ||
| 818 | } | ||
| 819 | rtc_callback = NULL; | ||
| 820 | |||
| 821 | /* disable controls */ | ||
| 822 | if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) { | ||
| 823 | tmp = CMOS_READ(RTC_CONTROL); | ||
| 824 | tmp &= ~RTC_PIE; | ||
| 825 | tmp &= ~RTC_AIE; | ||
| 826 | tmp &= ~RTC_UIE; | ||
| 827 | CMOS_WRITE(tmp, RTC_CONTROL); | ||
| 828 | CMOS_READ(RTC_INTR_FLAGS); | ||
| 829 | } | ||
| 830 | if (rtc_status & RTC_TIMER_ON) { | ||
| 831 | rtc_status &= ~RTC_TIMER_ON; | ||
| 832 | del_timer(&rtc_irq_timer); | ||
| 833 | } | ||
| 834 | rtc_status &= ~RTC_IS_OPEN; | ||
| 835 | spin_unlock(&rtc_task_lock); | ||
| 836 | spin_unlock_irq(&rtc_lock); | ||
| 837 | return 0; | ||
| 838 | #endif | ||
| 839 | } | ||
| 840 | |||
| 841 | int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg) | ||
| 842 | { | ||
| 843 | #ifndef RTC_IRQ | ||
| 844 | return -EIO; | ||
| 845 | #else | ||
| 846 | spin_lock_irq(&rtc_task_lock); | ||
| 847 | if (rtc_callback != task) { | ||
| 848 | spin_unlock_irq(&rtc_task_lock); | ||
| 849 | return -ENXIO; | ||
| 850 | } | ||
| 851 | spin_unlock_irq(&rtc_task_lock); | ||
| 852 | return rtc_do_ioctl(cmd, arg, 1); | ||
| 853 | #endif | ||
| 854 | } | ||
| 855 | |||
| 856 | |||
| 857 | /* | ||
| 858 | * The various file operations we support. | ||
| 859 | */ | ||
| 860 | |||
| 861 | static struct file_operations rtc_fops = { | ||
| 862 | .owner = THIS_MODULE, | ||
| 863 | .llseek = no_llseek, | ||
| 864 | .read = rtc_read, | ||
| 865 | #ifdef RTC_IRQ | ||
| 866 | .poll = rtc_poll, | ||
| 867 | #endif | ||
| 868 | .ioctl = rtc_ioctl, | ||
| 869 | .open = rtc_open, | ||
| 870 | .release = rtc_release, | ||
| 871 | .fasync = rtc_fasync, | ||
| 872 | }; | ||
| 873 | |||
| 874 | static struct miscdevice rtc_dev = { | ||
| 875 | .minor = RTC_MINOR, | ||
| 876 | .name = "rtc", | ||
| 877 | .fops = &rtc_fops, | ||
| 878 | }; | ||
| 879 | |||
| 880 | static struct file_operations rtc_proc_fops = { | ||
| 881 | .owner = THIS_MODULE, | ||
| 882 | .open = rtc_proc_open, | ||
| 883 | .read = seq_read, | ||
| 884 | .llseek = seq_lseek, | ||
| 885 | .release = single_release, | ||
| 886 | }; | ||
| 887 | |||
| 888 | #if defined(RTC_IRQ) && !defined(__sparc__) | ||
| 889 | static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs); | ||
| 890 | #endif | ||
| 891 | |||
| 892 | static int __init rtc_init(void) | ||
| 893 | { | ||
| 894 | struct proc_dir_entry *ent; | ||
| 895 | #if defined(__alpha__) || defined(__mips__) | ||
| 896 | unsigned int year, ctrl; | ||
| 897 | unsigned long uip_watchdog; | ||
| 898 | char *guess = NULL; | ||
| 899 | #endif | ||
| 900 | #ifdef __sparc__ | ||
| 901 | struct linux_ebus *ebus; | ||
| 902 | struct linux_ebus_device *edev; | ||
| 903 | #ifdef __sparc_v9__ | ||
| 904 | struct sparc_isa_bridge *isa_br; | ||
| 905 | struct sparc_isa_device *isa_dev; | ||
| 906 | #endif | ||
| 907 | #endif | ||
| 908 | |||
| 909 | #ifdef __sparc__ | ||
| 910 | for_each_ebus(ebus) { | ||
| 911 | for_each_ebusdev(edev, ebus) { | ||
| 912 | if(strcmp(edev->prom_name, "rtc") == 0) { | ||
| 913 | rtc_port = edev->resource[0].start; | ||
| 914 | rtc_irq = edev->irqs[0]; | ||
| 915 | goto found; | ||
| 916 | } | ||
| 917 | } | ||
| 918 | } | ||
| 919 | #ifdef __sparc_v9__ | ||
| 920 | for_each_isa(isa_br) { | ||
| 921 | for_each_isadev(isa_dev, isa_br) { | ||
| 922 | if (strcmp(isa_dev->prom_name, "rtc") == 0) { | ||
| 923 | rtc_port = isa_dev->resource.start; | ||
| 924 | rtc_irq = isa_dev->irq; | ||
| 925 | goto found; | ||
| 926 | } | ||
| 927 | } | ||
| 928 | } | ||
| 929 | #endif | ||
| 930 | printk(KERN_ERR "rtc_init: no PC rtc found\n"); | ||
| 931 | return -EIO; | ||
| 932 | |||
| 933 | found: | ||
| 934 | if (rtc_irq == PCI_IRQ_NONE) { | ||
| 935 | rtc_has_irq = 0; | ||
| 936 | goto no_irq; | ||
| 937 | } | ||
| 938 | |||
| 939 | /* | ||
| 940 | * XXX Interrupt pin #7 in Espresso is shared between RTC and | ||
| 941 | * PCI Slot 2 INTA# (and some INTx# in Slot 1). SA_INTERRUPT here | ||
| 942 | * is asking for trouble with add-on boards. Change to SA_SHIRQ. | ||
| 943 | */ | ||
| 944 | if (request_irq(rtc_irq, rtc_interrupt, SA_INTERRUPT, "rtc", (void *)&rtc_port)) { | ||
| 945 | /* | ||
| 946 | * Standard way for sparc to print irq's is to use | ||
| 947 | * __irq_itoa(). I think for EBus it's ok to use %d. | ||
| 948 | */ | ||
| 949 | printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq); | ||
| 950 | return -EIO; | ||
| 951 | } | ||
| 952 | no_irq: | ||
| 953 | #else | ||
| 954 | if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) { | ||
| 955 | printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0)); | ||
| 956 | return -EIO; | ||
| 957 | } | ||
| 958 | |||
| 959 | #ifdef RTC_IRQ | ||
| 960 | if (is_hpet_enabled()) { | ||
| 961 | rtc_int_handler_ptr = hpet_rtc_interrupt; | ||
| 962 | } else { | ||
| 963 | rtc_int_handler_ptr = rtc_interrupt; | ||
| 964 | } | ||
| 965 | |||
| 966 | if(request_irq(RTC_IRQ, rtc_int_handler_ptr, SA_INTERRUPT, "rtc", NULL)) { | ||
| 967 | /* Yeah right, seeing as irq 8 doesn't even hit the bus. */ | ||
| 968 | printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ); | ||
| 969 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | ||
| 970 | return -EIO; | ||
| 971 | } | ||
| 972 | hpet_rtc_timer_init(); | ||
| 973 | |||
| 974 | #endif | ||
| 975 | |||
| 976 | #endif /* __sparc__ vs. others */ | ||
| 977 | |||
| 978 | if (misc_register(&rtc_dev)) { | ||
| 979 | #ifdef RTC_IRQ | ||
| 980 | free_irq(RTC_IRQ, NULL); | ||
| 981 | #endif | ||
| 982 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | ||
| 983 | return -ENODEV; | ||
| 984 | } | ||
| 985 | |||
| 986 | ent = create_proc_entry("driver/rtc", 0, NULL); | ||
| 987 | if (!ent) { | ||
| 988 | #ifdef RTC_IRQ | ||
| 989 | free_irq(RTC_IRQ, NULL); | ||
| 990 | #endif | ||
| 991 | release_region(RTC_PORT(0), RTC_IO_EXTENT); | ||
| 992 | misc_deregister(&rtc_dev); | ||
| 993 | return -ENOMEM; | ||
| 994 | } | ||
| 995 | ent->proc_fops = &rtc_proc_fops; | ||
| 996 | |||
| 997 | #if defined(__alpha__) || defined(__mips__) | ||
| 998 | rtc_freq = HZ; | ||
| 999 | |||
| 1000 | /* Each operating system on an Alpha uses its own epoch. | ||
| 1001 | Let's try to guess which one we are using now. */ | ||
| 1002 | |||
| 1003 | uip_watchdog = jiffies; | ||
| 1004 | if (rtc_is_updating() != 0) | ||
| 1005 | while (jiffies - uip_watchdog < 2*HZ/100) { | ||
| 1006 | barrier(); | ||
| 1007 | cpu_relax(); | ||
| 1008 | } | ||
| 1009 | |||
| 1010 | spin_lock_irq(&rtc_lock); | ||
| 1011 | year = CMOS_READ(RTC_YEAR); | ||
| 1012 | ctrl = CMOS_READ(RTC_CONTROL); | ||
| 1013 | spin_unlock_irq(&rtc_lock); | ||
| 1014 | |||
| 1015 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | ||
| 1016 | BCD_TO_BIN(year); /* This should never happen... */ | ||
| 1017 | |||
| 1018 | if (year < 20) { | ||
| 1019 | epoch = 2000; | ||
| 1020 | guess = "SRM (post-2000)"; | ||
| 1021 | } else if (year >= 20 && year < 48) { | ||
| 1022 | epoch = 1980; | ||
| 1023 | guess = "ARC console"; | ||
| 1024 | } else if (year >= 48 && year < 72) { | ||
| 1025 | epoch = 1952; | ||
| 1026 | guess = "Digital UNIX"; | ||
| 1027 | #if defined(__mips__) | ||
| 1028 | } else if (year >= 72 && year < 74) { | ||
| 1029 | epoch = 2000; | ||
| 1030 | guess = "Digital DECstation"; | ||
| 1031 | #else | ||
| 1032 | } else if (year >= 70) { | ||
| 1033 | epoch = 1900; | ||
| 1034 | guess = "Standard PC (1900)"; | ||
| 1035 | #endif | ||
| 1036 | } | ||
| 1037 | if (guess) | ||
| 1038 | printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch); | ||
| 1039 | #endif | ||
| 1040 | #ifdef RTC_IRQ | ||
| 1041 | if (rtc_has_irq == 0) | ||
| 1042 | goto no_irq2; | ||
| 1043 | |||
| 1044 | init_timer(&rtc_irq_timer); | ||
| 1045 | rtc_irq_timer.function = rtc_dropped_irq; | ||
| 1046 | spin_lock_irq(&rtc_lock); | ||
| 1047 | rtc_freq = 1024; | ||
| 1048 | if (!hpet_set_periodic_freq(rtc_freq)) { | ||
| 1049 | /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */ | ||
| 1050 | CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT); | ||
| 1051 | } | ||
| 1052 | spin_unlock_irq(&rtc_lock); | ||
| 1053 | no_irq2: | ||
| 1054 | #endif | ||
| 1055 | |||
| 1056 | (void) init_sysctl(); | ||
| 1057 | |||
| 1058 | printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n"); | ||
| 1059 | |||
| 1060 | return 0; | ||
| 1061 | } | ||
| 1062 | |||
| 1063 | static void __exit rtc_exit (void) | ||
| 1064 | { | ||
| 1065 | cleanup_sysctl(); | ||
| 1066 | remove_proc_entry ("driver/rtc", NULL); | ||
| 1067 | misc_deregister(&rtc_dev); | ||
| 1068 | |||
| 1069 | #ifdef __sparc__ | ||
| 1070 | if (rtc_has_irq) | ||
| 1071 | free_irq (rtc_irq, &rtc_port); | ||
| 1072 | #else | ||
| 1073 | release_region (RTC_PORT (0), RTC_IO_EXTENT); | ||
| 1074 | #ifdef RTC_IRQ | ||
| 1075 | if (rtc_has_irq) | ||
| 1076 | free_irq (RTC_IRQ, NULL); | ||
| 1077 | #endif | ||
| 1078 | #endif /* __sparc__ */ | ||
| 1079 | } | ||
| 1080 | |||
| 1081 | module_init(rtc_init); | ||
| 1082 | module_exit(rtc_exit); | ||
| 1083 | |||
| 1084 | #ifdef RTC_IRQ | ||
| 1085 | /* | ||
| 1086 | * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. | ||
| 1087 | * (usually during an IDE disk interrupt, with IRQ unmasking off) | ||
| 1088 | * Since the interrupt handler doesn't get called, the IRQ status | ||
| 1089 | * byte doesn't get read, and the RTC stops generating interrupts. | ||
| 1090 | * A timer is set, and will call this function if/when that happens. | ||
| 1091 | * To get it out of this stalled state, we just read the status. | ||
| 1092 | * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. | ||
| 1093 | * (You *really* shouldn't be trying to use a non-realtime system | ||
| 1094 | * for something that requires a steady > 1KHz signal anyways.) | ||
| 1095 | */ | ||
| 1096 | |||
| 1097 | static void rtc_dropped_irq(unsigned long data) | ||
| 1098 | { | ||
| 1099 | unsigned long freq; | ||
| 1100 | |||
| 1101 | spin_lock_irq (&rtc_lock); | ||
| 1102 | |||
| 1103 | if (hpet_rtc_dropped_irq()) { | ||
| 1104 | spin_unlock_irq(&rtc_lock); | ||
| 1105 | return; | ||
| 1106 | } | ||
| 1107 | |||
| 1108 | /* Just in case someone disabled the timer from behind our back... */ | ||
| 1109 | if (rtc_status & RTC_TIMER_ON) | ||
| 1110 | mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); | ||
| 1111 | |||
| 1112 | rtc_irq_data += ((rtc_freq/HZ)<<8); | ||
| 1113 | rtc_irq_data &= ~0xff; | ||
| 1114 | rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */ | ||
| 1115 | |||
| 1116 | freq = rtc_freq; | ||
| 1117 | |||
| 1118 | spin_unlock_irq(&rtc_lock); | ||
| 1119 | |||
| 1120 | printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq); | ||
| 1121 | |||
| 1122 | /* Now we have new data */ | ||
| 1123 | wake_up_interruptible(&rtc_wait); | ||
| 1124 | |||
| 1125 | kill_fasync (&rtc_async_queue, SIGIO, POLL_IN); | ||
| 1126 | } | ||
| 1127 | #endif | ||
| 1128 | |||
| 1129 | /* | ||
| 1130 | * Info exported via "/proc/driver/rtc". | ||
| 1131 | */ | ||
| 1132 | |||
| 1133 | static int rtc_proc_show(struct seq_file *seq, void *v) | ||
| 1134 | { | ||
| 1135 | #define YN(bit) ((ctrl & bit) ? "yes" : "no") | ||
| 1136 | #define NY(bit) ((ctrl & bit) ? "no" : "yes") | ||
| 1137 | struct rtc_time tm; | ||
| 1138 | unsigned char batt, ctrl; | ||
| 1139 | unsigned long freq; | ||
| 1140 | |||
| 1141 | spin_lock_irq(&rtc_lock); | ||
| 1142 | batt = CMOS_READ(RTC_VALID) & RTC_VRT; | ||
| 1143 | ctrl = CMOS_READ(RTC_CONTROL); | ||
| 1144 | freq = rtc_freq; | ||
| 1145 | spin_unlock_irq(&rtc_lock); | ||
| 1146 | |||
| 1147 | |||
| 1148 | rtc_get_rtc_time(&tm); | ||
| 1149 | |||
| 1150 | /* | ||
| 1151 | * There is no way to tell if the luser has the RTC set for local | ||
| 1152 | * time or for Universal Standard Time (GMT). Probably local though. | ||
| 1153 | */ | ||
| 1154 | seq_printf(seq, | ||
| 1155 | "rtc_time\t: %02d:%02d:%02d\n" | ||
| 1156 | "rtc_date\t: %04d-%02d-%02d\n" | ||
| 1157 | "rtc_epoch\t: %04lu\n", | ||
| 1158 | tm.tm_hour, tm.tm_min, tm.tm_sec, | ||
| 1159 | tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); | ||
| 1160 | |||
| 1161 | get_rtc_alm_time(&tm); | ||
| 1162 | |||
| 1163 | /* | ||
| 1164 | * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will | ||
| 1165 | * match any value for that particular field. Values that are | ||
| 1166 | * greater than a valid time, but less than 0xc0 shouldn't appear. | ||
| 1167 | */ | ||
| 1168 | seq_puts(seq, "alarm\t\t: "); | ||
| 1169 | if (tm.tm_hour <= 24) | ||
| 1170 | seq_printf(seq, "%02d:", tm.tm_hour); | ||
| 1171 | else | ||
| 1172 | seq_puts(seq, "**:"); | ||
| 1173 | |||
| 1174 | if (tm.tm_min <= 59) | ||
| 1175 | seq_printf(seq, "%02d:", tm.tm_min); | ||
| 1176 | else | ||
| 1177 | seq_puts(seq, "**:"); | ||
| 1178 | |||
| 1179 | if (tm.tm_sec <= 59) | ||
| 1180 | seq_printf(seq, "%02d\n", tm.tm_sec); | ||
| 1181 | else | ||
| 1182 | seq_puts(seq, "**\n"); | ||
| 1183 | |||
| 1184 | seq_printf(seq, | ||
| 1185 | "DST_enable\t: %s\n" | ||
| 1186 | "BCD\t\t: %s\n" | ||
| 1187 | "24hr\t\t: %s\n" | ||
| 1188 | "square_wave\t: %s\n" | ||
| 1189 | "alarm_IRQ\t: %s\n" | ||
| 1190 | "update_IRQ\t: %s\n" | ||
| 1191 | "periodic_IRQ\t: %s\n" | ||
| 1192 | "periodic_freq\t: %ld\n" | ||
| 1193 | "batt_status\t: %s\n", | ||
| 1194 | YN(RTC_DST_EN), | ||
| 1195 | NY(RTC_DM_BINARY), | ||
| 1196 | YN(RTC_24H), | ||
| 1197 | YN(RTC_SQWE), | ||
| 1198 | YN(RTC_AIE), | ||
| 1199 | YN(RTC_UIE), | ||
| 1200 | YN(RTC_PIE), | ||
| 1201 | freq, | ||
| 1202 | batt ? "okay" : "dead"); | ||
| 1203 | |||
| 1204 | return 0; | ||
| 1205 | #undef YN | ||
| 1206 | #undef NY | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | static int rtc_proc_open(struct inode *inode, struct file *file) | ||
| 1210 | { | ||
| 1211 | return single_open(file, rtc_proc_show, NULL); | ||
| 1212 | } | ||
| 1213 | |||
| 1214 | void rtc_get_rtc_time(struct rtc_time *rtc_tm) | ||
| 1215 | { | ||
| 1216 | unsigned long uip_watchdog = jiffies; | ||
| 1217 | unsigned char ctrl; | ||
| 1218 | #ifdef CONFIG_MACH_DECSTATION | ||
| 1219 | unsigned int real_year; | ||
| 1220 | #endif | ||
| 1221 | |||
| 1222 | /* | ||
| 1223 | * read RTC once any update in progress is done. The update | ||
| 1224 | * can take just over 2ms. We wait 10 to 20ms. There is no need to | ||
| 1225 | * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. | ||
| 1226 | * If you need to know *exactly* when a second has started, enable | ||
| 1227 | * periodic update complete interrupts, (via ioctl) and then | ||
| 1228 | * immediately read /dev/rtc which will block until you get the IRQ. | ||
| 1229 | * Once the read clears, read the RTC time (again via ioctl). Easy. | ||
| 1230 | */ | ||
| 1231 | |||
| 1232 | if (rtc_is_updating() != 0) | ||
| 1233 | while (jiffies - uip_watchdog < 2*HZ/100) { | ||
| 1234 | barrier(); | ||
| 1235 | cpu_relax(); | ||
| 1236 | } | ||
| 1237 | |||
| 1238 | /* | ||
| 1239 | * Only the values that we read from the RTC are set. We leave | ||
| 1240 | * tm_wday, tm_yday and tm_isdst untouched. Even though the | ||
| 1241 | * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated | ||
| 1242 | * by the RTC when initially set to a non-zero value. | ||
| 1243 | */ | ||
| 1244 | spin_lock_irq(&rtc_lock); | ||
| 1245 | rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS); | ||
| 1246 | rtc_tm->tm_min = CMOS_READ(RTC_MINUTES); | ||
| 1247 | rtc_tm->tm_hour = CMOS_READ(RTC_HOURS); | ||
| 1248 | rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); | ||
| 1249 | rtc_tm->tm_mon = CMOS_READ(RTC_MONTH); | ||
| 1250 | rtc_tm->tm_year = CMOS_READ(RTC_YEAR); | ||
| 1251 | #ifdef CONFIG_MACH_DECSTATION | ||
| 1252 | real_year = CMOS_READ(RTC_DEC_YEAR); | ||
| 1253 | #endif | ||
| 1254 | ctrl = CMOS_READ(RTC_CONTROL); | ||
| 1255 | spin_unlock_irq(&rtc_lock); | ||
| 1256 | |||
| 1257 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | ||
| 1258 | { | ||
| 1259 | BCD_TO_BIN(rtc_tm->tm_sec); | ||
| 1260 | BCD_TO_BIN(rtc_tm->tm_min); | ||
| 1261 | BCD_TO_BIN(rtc_tm->tm_hour); | ||
| 1262 | BCD_TO_BIN(rtc_tm->tm_mday); | ||
| 1263 | BCD_TO_BIN(rtc_tm->tm_mon); | ||
| 1264 | BCD_TO_BIN(rtc_tm->tm_year); | ||
| 1265 | } | ||
| 1266 | |||
| 1267 | #ifdef CONFIG_MACH_DECSTATION | ||
| 1268 | rtc_tm->tm_year += real_year - 72; | ||
| 1269 | #endif | ||
| 1270 | |||
| 1271 | /* | ||
| 1272 | * Account for differences between how the RTC uses the values | ||
| 1273 | * and how they are defined in a struct rtc_time; | ||
| 1274 | */ | ||
| 1275 | if ((rtc_tm->tm_year += (epoch - 1900)) <= 69) | ||
| 1276 | rtc_tm->tm_year += 100; | ||
| 1277 | |||
| 1278 | rtc_tm->tm_mon--; | ||
| 1279 | } | ||
| 1280 | |||
| 1281 | static void get_rtc_alm_time(struct rtc_time *alm_tm) | ||
| 1282 | { | ||
| 1283 | unsigned char ctrl; | ||
| 1284 | |||
| 1285 | /* | ||
| 1286 | * Only the values that we read from the RTC are set. That | ||
| 1287 | * means only tm_hour, tm_min, and tm_sec. | ||
| 1288 | */ | ||
| 1289 | spin_lock_irq(&rtc_lock); | ||
| 1290 | alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); | ||
| 1291 | alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM); | ||
| 1292 | alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM); | ||
| 1293 | ctrl = CMOS_READ(RTC_CONTROL); | ||
| 1294 | spin_unlock_irq(&rtc_lock); | ||
| 1295 | |||
| 1296 | if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) | ||
| 1297 | { | ||
| 1298 | BCD_TO_BIN(alm_tm->tm_sec); | ||
| 1299 | BCD_TO_BIN(alm_tm->tm_min); | ||
| 1300 | BCD_TO_BIN(alm_tm->tm_hour); | ||
| 1301 | } | ||
| 1302 | } | ||
| 1303 | |||
| 1304 | #ifdef RTC_IRQ | ||
| 1305 | /* | ||
| 1306 | * Used to disable/enable interrupts for any one of UIE, AIE, PIE. | ||
| 1307 | * Rumour has it that if you frob the interrupt enable/disable | ||
| 1308 | * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to | ||
| 1309 | * ensure you actually start getting interrupts. Probably for | ||
| 1310 | * compatibility with older/broken chipset RTC implementations. | ||
| 1311 | * We also clear out any old irq data after an ioctl() that | ||
| 1312 | * meddles with the interrupt enable/disable bits. | ||
| 1313 | */ | ||
| 1314 | |||
| 1315 | static void mask_rtc_irq_bit(unsigned char bit) | ||
| 1316 | { | ||
| 1317 | unsigned char val; | ||
| 1318 | |||
| 1319 | spin_lock_irq(&rtc_lock); | ||
| 1320 | if (hpet_mask_rtc_irq_bit(bit)) { | ||
| 1321 | spin_unlock_irq(&rtc_lock); | ||
| 1322 | return; | ||
| 1323 | } | ||
| 1324 | val = CMOS_READ(RTC_CONTROL); | ||
| 1325 | val &= ~bit; | ||
| 1326 | CMOS_WRITE(val, RTC_CONTROL); | ||
| 1327 | CMOS_READ(RTC_INTR_FLAGS); | ||
| 1328 | |||
| 1329 | rtc_irq_data = 0; | ||
| 1330 | spin_unlock_irq(&rtc_lock); | ||
| 1331 | } | ||
| 1332 | |||
| 1333 | static void set_rtc_irq_bit(unsigned char bit) | ||
| 1334 | { | ||
| 1335 | unsigned char val; | ||
| 1336 | |||
| 1337 | spin_lock_irq(&rtc_lock); | ||
| 1338 | if (hpet_set_rtc_irq_bit(bit)) { | ||
| 1339 | spin_unlock_irq(&rtc_lock); | ||
| 1340 | return; | ||
| 1341 | } | ||
| 1342 | val = CMOS_READ(RTC_CONTROL); | ||
| 1343 | val |= bit; | ||
| 1344 | CMOS_WRITE(val, RTC_CONTROL); | ||
| 1345 | CMOS_READ(RTC_INTR_FLAGS); | ||
| 1346 | |||
| 1347 | rtc_irq_data = 0; | ||
| 1348 | spin_unlock_irq(&rtc_lock); | ||
| 1349 | } | ||
| 1350 | #endif | ||
| 1351 | |||
| 1352 | MODULE_AUTHOR("Paul Gortmaker"); | ||
| 1353 | MODULE_LICENSE("GPL"); | ||
| 1354 | MODULE_ALIAS_MISCDEV(RTC_MINOR); | ||
