aboutsummaryrefslogtreecommitdiffstats
path: root/net
ModeNameSize
d---------802274logstatsplain
d---------8021q295logstatsplain
d---------9p360logstatsplain
-rw-r--r--Kconfig8742logstatsplainblame
-rw-r--r--Makefile1626logstatsplainblame
-rw-r--r--TUNABLE2239logstatsplainblame
d---------appletalk222logstatsplain
d---------atm1049logstatsplain
d---------ax25824logstatsplain
d---------bluetooth532logstatsplain
d---------bridge810logstatsplain
d---------can243logstatsplain
-rw-r--r--compat.c23097logstatsplainblame
d---------core1129logstatsplain
d---------dccp769logstatsplain
d---------decnet600logstatsplain
d---------econet110logstatsplain
d---------ethernet102logstatsplain
d---------ieee80211480logstatsplain
d---------ipv43034logstatsplain
d---------ipv61988logstatsplain
d---------ipx228logstatsplain
d---------irda1002logstatsplain
d---------iucv142logstatsplain
d---------key72logstatsplain
d---------lapb265logstatsplain
d---------llc723logstatsplain
d---------mac802111789logstatsplain
d---------netfilter3519logstatsplain
d---------netlabel574logstatsplain
d---------netlink149logstatsplain
d---------netrom383logstatsplain
-rw-r--r--nonet.c528logstatsplainblame
d---------packet110logstatsplain
d---------rfkill191logstatsplain
d---------rose432logstatsplain
d---------rxrpc807logstatsplain
d---------sched1634logstatsplain
d---------sctp1088logstatsplain
-rw-r--r--socket.c56340logstatsplainblame
d---------sunrpc917logstatsplain
-rw-r--r--sysctl_net.c1885logstatsplainblame
d---------tipc1646logstatsplain
d---------unix190logstatsplain
d---------wanrouter183logstatsplain
d---------wireless422logstatsplain
d---------x25538logstatsplain
d---------xfrm428logstatsplain
'>1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/*
 * Core IEEE1394 transaction logic
 *
 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

#include <linux/bug.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/idr.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/rculist.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/types.h>
#include <linux/workqueue.h>

#include <asm/byteorder.h>

#include "core.h"

#define HEADER_PRI(pri)			((pri) << 0)
#define HEADER_TCODE(tcode)		((tcode) << 4)
#define HEADER_RETRY(retry)		((retry) << 8)
#define HEADER_TLABEL(tlabel)		((tlabel) << 10)
#define HEADER_DESTINATION(destination)	((destination) << 16)
#define HEADER_SOURCE(source)		((source) << 16)
#define HEADER_RCODE(rcode)		((rcode) << 12)
#define HEADER_OFFSET_HIGH(offset_high)	((offset_high) << 0)
#define HEADER_DATA_LENGTH(length)	((length) << 16)
#define HEADER_EXTENDED_TCODE(tcode)	((tcode) << 0)

#define HEADER_GET_TCODE(q)		(((q) >> 4) & 0x0f)
#define HEADER_GET_TLABEL(q)		(((q) >> 10) & 0x3f)
#define HEADER_GET_RCODE(q)		(((q) >> 12) & 0x0f)
#define HEADER_GET_DESTINATION(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_SOURCE(q)		(((q) >> 16) & 0xffff)
#define HEADER_GET_OFFSET_HIGH(q)	(((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q)	(((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q)	(((q) >> 0) & 0xffff)

#define HEADER_DESTINATION_IS_BROADCAST(q) \
	(((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))

#define PHY_PACKET_CONFIG	0x0
#define PHY_PACKET_LINK_ON	0x1
#define PHY_PACKET_SELF_ID	0x2

#define PHY_CONFIG_GAP_COUNT(gap_count)	(((gap_count) << 16) | (1 << 22))
#define PHY_CONFIG_ROOT_ID(node_id)	((((node_id) & 0x3f) << 24) | (1 << 23))
#define PHY_IDENTIFIER(id)		((id) << 30)

/* returns 0 if the split timeout handler is already running */
static int try_cancel_split_timeout(struct fw_transaction *t)
{
	if (t->is_split_transaction)
		return del_timer(&t->split_timeout_timer);
	else
		return 1;
}

static int close_transaction(struct fw_transaction *transaction,
			     struct fw_card *card, int rcode)
{
	struct fw_transaction *t;
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t == transaction) {
			if (!try_cancel_split_timeout(t)) {
				spin_unlock_irqrestore(&card->lock, flags);
				goto timed_out;
			}
			list_del_init(&t->link);
			card->tlabel_mask &= ~(1ULL << t->tlabel);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&t->link != &card->transaction_list) {
		t->callback(card, rcode, NULL, 0, t->callback_data);
		return 0;
	}

 timed_out:
	return -ENOENT;
}

/*
 * Only valid for transactions that are potentially pending (ie have
 * been sent).
 */
int fw_cancel_transaction(struct fw_card *card,
			  struct fw_transaction *transaction)
{
	/*
	 * Cancel the packet transmission if it's still queued.  That
	 * will call the packet transmission callback which cancels
	 * the transaction.
	 */

	if (card->driver->cancel_packet(card, &transaction->packet) == 0)
		return 0;

	/*
	 * If the request packet has already been sent, we need to see
	 * if the transaction is still pending and remove it in that case.
	 */

	return close_transaction(transaction, card, RCODE_CANCELLED);
}
EXPORT_SYMBOL(fw_cancel_transaction);

static void split_transaction_timeout_callback(unsigned long data)
{
	struct fw_transaction *t = (struct fw_transaction *)data;
	struct fw_card *card = t->card;
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (list_empty(&t->link)) {
		spin_unlock_irqrestore(&card->lock, flags);
		return;
	}
	list_del(&t->link);
	card->tlabel_mask &= ~(1ULL << t->tlabel);
	spin_unlock_irqrestore(&card->lock, flags);

	t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
}

static void start_split_transaction_timeout(struct fw_transaction *t,
					    struct fw_card *card)
{
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);

	if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
		spin_unlock_irqrestore(&card->lock, flags);
		return;
	}

	t->is_split_transaction = true;
	mod_timer(&t->split_timeout_timer,
		  jiffies + card->split_timeout_jiffies);

	spin_unlock_irqrestore(&card->lock, flags);
}

static void transmit_complete_callback(struct fw_packet *packet,
				       struct fw_card *card, int status)
{
	struct fw_transaction *t =
	    container_of(packet, struct fw_transaction, packet);

	switch (status) {
	case ACK_COMPLETE:
		close_transaction(t, card, RCODE_COMPLETE);
		break;
	case ACK_PENDING:
		start_split_transaction_timeout(t, card);
		break;
	case ACK_BUSY_X:
	case ACK_BUSY_A:
	case ACK_BUSY_B:
		close_transaction(t, card, RCODE_BUSY);
		break;
	case ACK_DATA_ERROR:
		close_transaction(t, card, RCODE_DATA_ERROR);
		break;
	case ACK_TYPE_ERROR:
		close_transaction(t, card, RCODE_TYPE_ERROR);
		break;
	default:
		/*
		 * In this case the ack is really a juju specific
		 * rcode, so just forward that to the callback.
		 */
		close_transaction(t, card, status);
		break;
	}
}

static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
		int destination_id, int source_id, int generation, int speed,
		unsigned long long offset, void *payload, size_t length)
{
	int ext_tcode;

	if (tcode == TCODE_STREAM_DATA) {
		packet->header[0] =
			HEADER_DATA_LENGTH(length) |
			destination_id |
			HEADER_TCODE(TCODE_STREAM_DATA);
		packet->header_length = 4;
		packet->payload = payload;
		packet->payload_length = length;

		goto common;
	}

	if (tcode > 0x10) {
		ext_tcode = tcode & ~0x10;
		tcode = TCODE_LOCK_REQUEST;
	} else
		ext_tcode = 0;

	packet->header[0] =
		HEADER_RETRY(RETRY_X) |
		HEADER_TLABEL(tlabel) |
		HEADER_TCODE(tcode) |
		HEADER_DESTINATION(destination_id);
	packet->header[1] =
		HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
	packet->header[2] =
		offset;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
		packet->header[3] = *(u32 *)payload;
		packet->header_length = 16;
		packet->payload_length = 0;
		break;

	case TCODE_LOCK_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		packet->header[3] =
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
		packet->header_length = 16;
		packet->payload = payload;
		packet->payload_length = length;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		packet->header_length = 12;
		packet->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		packet->header[3] =
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(ext_tcode);
		packet->header_length = 16;
		packet->payload_length = 0;
		break;

	default:
		WARN(1, "wrong tcode %d\n", tcode);
	}
 common:
	packet->speed = speed;
	packet->generation = generation;
	packet->ack = 0;
	packet->payload_mapped = false;
}

static int allocate_tlabel(struct fw_card *card)
{
	int tlabel;

	tlabel = card->current_tlabel;
	while (card->tlabel_mask & (1ULL << tlabel)) {
		tlabel = (tlabel + 1) & 0x3f;
		if (tlabel == card->current_tlabel)
			return -EBUSY;
	}

	card->current_tlabel = (tlabel + 1) & 0x3f;
	card->tlabel_mask |= 1ULL << tlabel;

	return tlabel;
}

/**
 * fw_send_request() - submit a request packet for transmission
 * @card:		interface to send the request at
 * @t:			transaction instance to which the request belongs
 * @tcode:		transaction code
 * @destination_id:	destination node ID, consisting of bus_ID and phy_ID
 * @generation:		bus generation in which request and response are valid
 * @speed:		transmission speed
 * @offset:		48bit wide offset into destination's address space
 * @payload:		data payload for the request subaction
 * @length:		length of the payload, in bytes
 * @callback:		function to be called when the transaction is completed
 * @callback_data:	data to be passed to the transaction completion callback
 *
 * Submit a request packet into the asynchronous request transmission queue.
 * Can be called from atomic context.  If you prefer a blocking API, use
 * fw_run_transaction() in a context that can sleep.
 *
 * In case of lock requests, specify one of the firewire-core specific %TCODE_
 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
 *
 * Make sure that the value in @destination_id is not older than the one in
 * @generation.  Otherwise the request is in danger to be sent to a wrong node.
 *
 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
 * It will contain tag, channel, and sy data instead of a node ID then.
 *
 * The payload buffer at @data is going to be DMA-mapped except in case of
 * @length <= 8 or of local (loopback) requests.  Hence make sure that the
 * buffer complies with the restrictions of the streaming DMA mapping API.
 * @payload must not be freed before the @callback is called.
 *
 * In case of request types without payload, @data is NULL and @length is 0.
 *
 * After the transaction is completed successfully or unsuccessfully, the
 * @callback will be called.  Among its parameters is the response code which
 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
 * the firewire-core specific %RCODE_SEND_ERROR.  The other firewire-core
 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
 * generation, or missing ACK respectively.
 *
 * Note some timing corner cases:  fw_send_request() may complete much earlier
 * than when the request packet actually hits the wire.  On the other hand,
 * transaction completion and hence execution of @callback may happen even
 * before fw_send_request() returns.
 */
void fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
		     int destination_id, int generation, int speed,
		     unsigned long long offset, void *payload, size_t length,
		     fw_transaction_callback_t callback, void *callback_data)
{
	unsigned long flags;
	int tlabel;

	/*
	 * Allocate tlabel from the bitmap and put the transaction on
	 * the list while holding the card spinlock.
	 */

	spin_lock_irqsave(&card->lock, flags);

	tlabel = allocate_tlabel(card);
	if (tlabel < 0) {
		spin_unlock_irqrestore(&card->lock, flags);
		callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
		return;
	}

	t->node_id = destination_id;
	t->tlabel = tlabel;
	t->card = card;
	t->is_split_transaction = false;
	setup_timer(&t->split_timeout_timer,
		    split_transaction_timeout_callback, (unsigned long)t);
	t->callback = callback;
	t->callback_data = callback_data;

	fw_fill_request(&t->packet, tcode, t->tlabel,
			destination_id, card->node_id, generation,
			speed, offset, payload, length);
	t->packet.callback = transmit_complete_callback;

	list_add_tail(&t->link, &card->transaction_list);

	spin_unlock_irqrestore(&card->lock, flags);

	card->driver->send_request(card, &t->packet);
}
EXPORT_SYMBOL(fw_send_request);

struct transaction_callback_data {
	struct completion done;
	void *payload;
	int rcode;
};

static void transaction_callback(struct fw_card *card, int rcode,
				 void *payload, size_t length, void *data)
{
	struct transaction_callback_data *d = data;

	if (rcode == RCODE_COMPLETE)
		memcpy(d->payload, payload, length);
	d->rcode = rcode;
	complete(&d->done);
}

/**
 * fw_run_transaction() - send request and sleep until transaction is completed
 *
 * Returns the RCODE.  See fw_send_request() for parameter documentation.
 * Unlike fw_send_request(), @data points to the payload of the request or/and
 * to the payload of the response.  DMA mapping restrictions apply to outbound
 * request payloads of >= 8 bytes but not to inbound response payloads.
 */
int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
		       int generation, int speed, unsigned long long offset,
		       void *payload, size_t length)
{
	struct transaction_callback_data d;
	struct fw_transaction t;

	init_timer_on_stack(&t.split_timeout_timer);
	init_completion(&d.done);
	d.payload = payload;
	fw_send_request(card, &t, tcode, destination_id, generation, speed,
			offset, payload, length, transaction_callback, &d);
	wait_for_completion(&d.done);
	destroy_timer_on_stack(&t.split_timeout_timer);

	return d.rcode;
}
EXPORT_SYMBOL(fw_run_transaction);

static DEFINE_MUTEX(phy_config_mutex);
static DECLARE_COMPLETION(phy_config_done);

static void transmit_phy_packet_callback(struct fw_packet *packet,
					 struct fw_card *card, int status)
{
	complete(&phy_config_done);
}

static struct fw_packet phy_config_packet = {
	.header_length	= 12,
	.header[0]	= TCODE_LINK_INTERNAL << 4,
	.payload_length	= 0,
	.speed		= SCODE_100,
	.callback	= transmit_phy_packet_callback,
};

void fw_send_phy_config(struct fw_card *card,
			int node_id, int generation, int gap_count)
{
	long timeout = DIV_ROUND_UP(HZ, 10);
	u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);

	if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
		data |= PHY_CONFIG_ROOT_ID(node_id);

	if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
		gap_count = card->driver->read_phy_reg(card, 1);
		if (gap_count < 0)
			return;

		gap_count &= 63;
		if (gap_count == 63)
			return;
	}
	data |= PHY_CONFIG_GAP_COUNT(gap_count);

	mutex_lock(&phy_config_mutex);

	phy_config_packet.header[1] = data;
	phy_config_packet.header[2] = ~data;
	phy_config_packet.generation = generation;
	reinit_completion(&phy_config_done);

	card->driver->send_request(card, &phy_config_packet);
	wait_for_completion_timeout(&phy_config_done, timeout);

	mutex_unlock(&phy_config_mutex);
}

static struct fw_address_handler *lookup_overlapping_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
{
	struct fw_address_handler *handler;

	list_for_each_entry_rcu(handler, list, link) {
		if (handler->offset < offset + length &&
		    offset < handler->offset + handler->length)
			return handler;
	}

	return NULL;
}

static bool is_enclosing_handler(struct fw_address_handler *handler,
				 unsigned long long offset, size_t length)
{
	return handler->offset <= offset &&
		offset + length <= handler->offset + handler->length;
}

static struct fw_address_handler *lookup_enclosing_address_handler(
	struct list_head *list, unsigned long long offset, size_t length)
{
	struct fw_address_handler *handler;

	list_for_each_entry_rcu(handler, list, link) {
		if (is_enclosing_handler(handler, offset, length))
			return handler;
	}

	return NULL;
}

static DEFINE_SPINLOCK(address_handler_list_lock);
static LIST_HEAD(address_handler_list);

const struct fw_address_region fw_high_memory_region =
	{ .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
EXPORT_SYMBOL(fw_high_memory_region);

static const struct fw_address_region low_memory_region =
	{ .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };

#if 0
const struct fw_address_region fw_private_region =
	{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL,  };
const struct fw_address_region fw_csr_region =
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END,  };
const struct fw_address_region fw_unit_space_region =
	{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
#endif  /*  0  */

static bool is_in_fcp_region(u64 offset, size_t length)
{
	return offset >= (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
		offset + length <= (CSR_REGISTER_BASE | CSR_FCP_END);
}

/**
 * fw_core_add_address_handler() - register for incoming requests
 * @handler:	callback
 * @region:	region in the IEEE 1212 node space address range
 *
 * region->start, ->end, and handler->length have to be quadlet-aligned.
 *
 * When a request is received that falls within the specified address range,
 * the specified callback is invoked.  The parameters passed to the callback
 * give the details of the particular request.
 *
 * To be called in process context.
 * Return value:  0 on success, non-zero otherwise.
 *
 * The start offset of the handler's address region is determined by
 * fw_core_add_address_handler() and is returned in handler->offset.
 *
 * Address allocations are exclusive, except for the FCP registers.
 */
int fw_core_add_address_handler(struct fw_address_handler *handler,
				const struct fw_address_region *region)
{
	struct fw_address_handler *other;
	int ret = -EBUSY;

	if (region->start & 0xffff000000000003ULL ||
	    region->start >= region->end ||
	    region->end   > 0x0001000000000000ULL ||
	    handler->length & 3 ||
	    handler->length == 0)
		return -EINVAL;

	spin_lock(&address_handler_list_lock);

	handler->offset = region->start;
	while (handler->offset + handler->length <= region->end) {
		if (is_in_fcp_region(handler->offset, handler->length))
			other = NULL;
		else
			other = lookup_overlapping_address_handler
					(&address_handler_list,
					 handler->offset, handler->length);
		if (other != NULL) {
			handler->offset += other->length;
		} else {
			list_add_tail_rcu(&handler->link, &address_handler_list);
			ret = 0;
			break;
		}
	}

	spin_unlock(&address_handler_list_lock);

	return ret;
}
EXPORT_SYMBOL(fw_core_add_address_handler);

/**
 * fw_core_remove_address_handler() - unregister an address handler
 *
 * To be called in process context.
 *
 * When fw_core_remove_address_handler() returns, @handler->callback() is
 * guaranteed to not run on any CPU anymore.
 */
void fw_core_remove_address_handler(struct fw_address_handler *handler)
{
	spin_lock(&address_handler_list_lock);
	list_del_rcu(&handler->link);
	spin_unlock(&address_handler_list_lock);
	synchronize_rcu();
}
EXPORT_SYMBOL(fw_core_remove_address_handler);

struct fw_request {
	struct fw_packet response;
	u32 request_header[4];
	int ack;
	u32 length;
	u32 data[0];
};

static void free_response_callback(struct fw_packet *packet,
				   struct fw_card *card, int status)
{
	struct fw_request *request;

	request = container_of(packet, struct fw_request, response);
	kfree(request);
}

int fw_get_response_length(struct fw_request *r)
{
	int tcode, ext_tcode, data_length;

	tcode = HEADER_GET_TCODE(r->request_header[0]);

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		return 0;

	case TCODE_READ_QUADLET_REQUEST:
		return 4;

	case TCODE_READ_BLOCK_REQUEST:
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		return data_length;

	case TCODE_LOCK_REQUEST:
		ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
		data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
		switch (ext_tcode) {
		case EXTCODE_FETCH_ADD:
		case EXTCODE_LITTLE_ADD:
			return data_length;
		default:
			return data_length / 2;
		}

	default:
		WARN(1, "wrong tcode %d\n", tcode);
		return 0;
	}
}

void fw_fill_response(struct fw_packet *response, u32 *request_header,
		      int rcode, void *payload, size_t length)
{
	int tcode, tlabel, extended_tcode, source, destination;

	tcode          = HEADER_GET_TCODE(request_header[0]);
	tlabel         = HEADER_GET_TLABEL(request_header[0]);
	source         = HEADER_GET_DESTINATION(request_header[0]);
	destination    = HEADER_GET_SOURCE(request_header[1]);
	extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);

	response->header[0] =
		HEADER_RETRY(RETRY_1) |
		HEADER_TLABEL(tlabel) |
		HEADER_DESTINATION(destination);
	response->header[1] =
		HEADER_SOURCE(source) |
		HEADER_RCODE(rcode);
	response->header[2] = 0;

	switch (tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
	case TCODE_WRITE_BLOCK_REQUEST:
		response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
		response->header_length = 12;
		response->payload_length = 0;
		break;

	case TCODE_READ_QUADLET_REQUEST:
		response->header[0] |=
			HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
		if (payload != NULL)
			response->header[3] = *(u32 *)payload;
		else
			response->header[3] = 0;
		response->header_length = 16;
		response->payload_length = 0;
		break;

	case TCODE_READ_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
		response->header[0] |= HEADER_TCODE(tcode + 2);
		response->header[3] =
			HEADER_DATA_LENGTH(length) |
			HEADER_EXTENDED_TCODE(extended_tcode);
		response->header_length = 16;
		response->payload = payload;
		response->payload_length = length;
		break;

	default:
		WARN(1, "wrong tcode %d\n", tcode);
	}

	response->payload_mapped = false;
}
EXPORT_SYMBOL(fw_fill_response);

static u32 compute_split_timeout_timestamp(struct fw_card *card,
					   u32 request_timestamp)
{
	unsigned int cycles;
	u32 timestamp;

	cycles = card->split_timeout_cycles;
	cycles += request_timestamp & 0x1fff;

	timestamp = request_timestamp & ~0x1fff;
	timestamp += (cycles / 8000) << 13;
	timestamp |= cycles % 8000;

	return timestamp;
}

static struct fw_request *allocate_request(struct fw_card *card,
					   struct fw_packet *p)
{
	struct fw_request *request;
	u32 *data, length;
	int request_tcode;

	request_tcode = HEADER_GET_TCODE(p->header[0]);
	switch (request_tcode) {
	case TCODE_WRITE_QUADLET_REQUEST:
		data = &p->header[3];
		length = 4;
		break;

	case TCODE_WRITE_BLOCK_REQUEST:
	case TCODE_LOCK_REQUEST:
		data = p->payload;
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
		break;

	case TCODE_READ_QUADLET_REQUEST:
		data = NULL;
		length = 4;
		break;

	case TCODE_READ_BLOCK_REQUEST:
		data = NULL;
		length = HEADER_GET_DATA_LENGTH(p->header[3]);
		break;

	default:
		fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
			 p->header[0], p->header[1], p->header[2]);
		return NULL;
	}

	request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
	if (request == NULL)
		return NULL;

	request->response.speed = p->speed;
	request->response.timestamp =
			compute_split_timeout_timestamp(card, p->timestamp);
	request->response.generation = p->generation;
	request->response.ack = 0;
	request->response.callback = free_response_callback;
	request->ack = p->ack;
	request->length = length;
	if (data)
		memcpy(request->data, data, length);

	memcpy(request->request_header, p->header, sizeof(p->header));

	return request;
}

void fw_send_response(struct fw_card *card,
		      struct fw_request *request, int rcode)
{
	if (WARN_ONCE(!request, "invalid for FCP address handlers"))
		return;

	/* unified transaction or broadcast transaction: don't respond */
	if (request->ack != ACK_PENDING ||
	    HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
		kfree(request);
		return;
	}

	if (rcode == RCODE_COMPLETE)
		fw_fill_response(&request->response, request->request_header,
				 rcode, request->data,
				 fw_get_response_length(request));
	else
		fw_fill_response(&request->response, request->request_header,
				 rcode, NULL, 0);

	card->driver->send_response(card, &request->response);
}
EXPORT_SYMBOL(fw_send_response);

/**
 * fw_get_request_speed() - returns speed at which the @request was received
 */
int fw_get_request_speed(struct fw_request *request)
{
	return request->response.speed;
}
EXPORT_SYMBOL(fw_get_request_speed);

static void handle_exclusive_region_request(struct fw_card *card,
					    struct fw_packet *p,
					    struct fw_request *request,
					    unsigned long long offset)
{
	struct fw_address_handler *handler;
	int tcode, destination, source;

	destination = HEADER_GET_DESTINATION(p->header[0]);
	source      = HEADER_GET_SOURCE(p->header[1]);
	tcode       = HEADER_GET_TCODE(p->header[0]);
	if (tcode == TCODE_LOCK_REQUEST)
		tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);

	rcu_read_lock();
	handler = lookup_enclosing_address_handler(&address_handler_list,
						   offset, request->length);
	if (handler)
		handler->address_callback(card, request,
					  tcode, destination, source,
					  p->generation, offset,
					  request->data, request->length,
					  handler->callback_data);
	rcu_read_unlock();

	if (!handler)
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
}

static void handle_fcp_region_request(struct fw_card *card,
				      struct fw_packet *p,
				      struct fw_request *request,
				      unsigned long long offset)
{
	struct fw_address_handler *handler;
	int tcode, destination, source;

	if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
	     offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
	    request->length > 0x200) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);

		return;
	}

	tcode       = HEADER_GET_TCODE(p->header[0]);
	destination = HEADER_GET_DESTINATION(p->header[0]);
	source      = HEADER_GET_SOURCE(p->header[1]);

	if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
	    tcode != TCODE_WRITE_BLOCK_REQUEST) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);

		return;
	}

	rcu_read_lock();
	list_for_each_entry_rcu(handler, &address_handler_list, link) {
		if (is_enclosing_handler(handler, offset, request->length))
			handler->address_callback(card, NULL, tcode,
						  destination, source,
						  p->generation, offset,
						  request->data,
						  request->length,
						  handler->callback_data);
	}
	rcu_read_unlock();

	fw_send_response(card, request, RCODE_COMPLETE);
}

void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
{
	struct fw_request *request;
	unsigned long long offset;

	if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
		return;

	if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
		fw_cdev_handle_phy_packet(card, p);
		return;
	}

	request = allocate_request(card, p);
	if (request == NULL) {
		/* FIXME: send statically allocated busy packet. */
		return;
	}

	offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
		p->header[2];

	if (!is_in_fcp_region(offset, request->length))
		handle_exclusive_region_request(card, p, request, offset);
	else
		handle_fcp_region_request(card, p, request, offset);

}
EXPORT_SYMBOL(fw_core_handle_request);

void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
{
	struct fw_transaction *t;
	unsigned long flags;
	u32 *data;
	size_t data_length;
	int tcode, tlabel, source, rcode;

	tcode	= HEADER_GET_TCODE(p->header[0]);
	tlabel	= HEADER_GET_TLABEL(p->header[0]);
	source	= HEADER_GET_SOURCE(p->header[1]);
	rcode	= HEADER_GET_RCODE(p->header[1]);

	spin_lock_irqsave(&card->lock, flags);
	list_for_each_entry(t, &card->transaction_list, link) {
		if (t->node_id == source && t->tlabel == tlabel) {
			if (!try_cancel_split_timeout(t)) {
				spin_unlock_irqrestore(&card->lock, flags);
				goto timed_out;
			}
			list_del_init(&t->link);
			card->tlabel_mask &= ~(1ULL << t->tlabel);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (&t->link == &card->transaction_list) {
 timed_out:
		fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
			  source, tlabel);
		return;
	}

	/*
	 * FIXME: sanity check packet, is length correct, does tcodes
	 * and addresses match.
	 */

	switch (tcode) {
	case TCODE_READ_QUADLET_RESPONSE:
		data = (u32 *) &p->header[3];
		data_length = 4;
		break;

	case TCODE_WRITE_RESPONSE:
		data = NULL;
		data_length = 0;
		break;

	case TCODE_READ_BLOCK_RESPONSE:
	case TCODE_LOCK_RESPONSE:
		data = p->payload;
		data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
		break;

	default:
		/* Should never happen, this is just to shut up gcc. */
		data = NULL;
		data_length = 0;
		break;
	}

	/*
	 * The response handler may be executed while the request handler
	 * is still pending.  Cancel the request handler.
	 */
	card->driver->cancel_packet(card, &t->packet);

	t->callback(card, rcode, data, data_length, t->callback_data);
}
EXPORT_SYMBOL(fw_core_handle_response);

/**
 * fw_rcode_string - convert a firewire result code to an error description
 * @rcode: the result code
 */
const char *fw_rcode_string(int rcode)
{
	static const char *const names[] = {
		[RCODE_COMPLETE]       = "no error",
		[RCODE_CONFLICT_ERROR] = "conflict error",
		[RCODE_DATA_ERROR]     = "data error",
		[RCODE_TYPE_ERROR]     = "type error",
		[RCODE_ADDRESS_ERROR]  = "address error",
		[RCODE_SEND_ERROR]     = "send error",
		[RCODE_CANCELLED]      = "timeout",
		[RCODE_BUSY]           = "busy",
		[RCODE_GENERATION]     = "bus reset",
		[RCODE_NO_ACK]         = "no ack",
	};

	if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
		return names[rcode];
	else
		return "unknown";
}
EXPORT_SYMBOL(fw_rcode_string);

static const struct fw_address_region topology_map_region =
	{ .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
	  .end   = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };

static void handle_topology_map(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
		unsigned long long offset, void *payload, size_t length,
		void *callback_data)
{
	int start;

	if (!TCODE_IS_READ_REQUEST(tcode)) {
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	if ((offset & 3) > 0 || (length & 3) > 0) {
		fw_send_response(card, request, RCODE_ADDRESS_ERROR);
		return;
	}

	start = (offset - topology_map_region.start) / 4;
	memcpy(payload, &card->topology_map[start], length);

	fw_send_response(card, request, RCODE_COMPLETE);
}

static struct fw_address_handler topology_map = {
	.length			= 0x400,
	.address_callback	= handle_topology_map,
};

static const struct fw_address_region registers_region =
	{ .start = CSR_REGISTER_BASE,
	  .end   = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };

static void update_split_timeout(struct fw_card *card)
{
	unsigned int cycles;

	cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);

	/* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
	cycles = clamp(cycles, 800u, 3u * 8000u);

	card->split_timeout_cycles = cycles;
	card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
}

static void handle_registers(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
		unsigned long long offset, void *payload, size_t length,
		void *callback_data)
{
	int reg = offset & ~CSR_REGISTER_BASE;
	__be32 *data = payload;
	int rcode = RCODE_COMPLETE;
	unsigned long flags;

	switch (reg) {
	case CSR_PRIORITY_BUDGET:
		if (!card->priority_budget_implemented) {
			rcode = RCODE_ADDRESS_ERROR;
			break;
		}
		/* else fall through */

	case CSR_NODE_IDS:
		/*
		 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
		 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
		 */
		/* fall through */

	case CSR_STATE_CLEAR:
	case CSR_STATE_SET:
	case CSR_CYCLE_TIME:
	case CSR_BUS_TIME:
	case CSR_BUSY_TIMEOUT:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->driver->read_csr(card, reg));
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->driver->write_csr(card, reg, be32_to_cpu(*data));
		else
			rcode = RCODE_TYPE_ERROR;
		break;

	case CSR_RESET_START:
		if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->driver->write_csr(card, CSR_STATE_CLEAR,
						CSR_STATE_BIT_ABDICATE);
		else
			rcode = RCODE_TYPE_ERROR;
		break;

	case CSR_SPLIT_TIMEOUT_HI:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_hi);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_hi = be32_to_cpu(*data) & 7;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

	case CSR_SPLIT_TIMEOUT_LO:
		if (tcode == TCODE_READ_QUADLET_REQUEST) {
			*data = cpu_to_be32(card->split_timeout_lo);
		} else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
			spin_lock_irqsave(&card->lock, flags);
			card->split_timeout_lo =
					be32_to_cpu(*data) & 0xfff80000;
			update_split_timeout(card);
			spin_unlock_irqrestore(&card->lock, flags);
		} else {
			rcode = RCODE_TYPE_ERROR;
		}
		break;

	case CSR_MAINT_UTILITY:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = card->maint_utility_register;
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->maint_utility_register = *data;
		else
			rcode = RCODE_TYPE_ERROR;
		break;

	case CSR_BROADCAST_CHANNEL:
		if (tcode == TCODE_READ_QUADLET_REQUEST)
			*data = cpu_to_be32(card->broadcast_channel);
		else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
			card->broadcast_channel =
			    (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
			    BROADCAST_CHANNEL_INITIAL;
		else
			rcode = RCODE_TYPE_ERROR;
		break;

	case CSR_BUS_MANAGER_ID:
	case CSR_BANDWIDTH_AVAILABLE:
	case CSR_CHANNELS_AVAILABLE_HI:
	case CSR_CHANNELS_AVAILABLE_LO:
		/*
		 * FIXME: these are handled by the OHCI hardware and
		 * the stack never sees these request. If we add
		 * support for a new type of controller that doesn't
		 * handle this in hardware we need to deal with these
		 * transactions.
		 */
		BUG();
		break;

	default:
		rcode = RCODE_ADDRESS_ERROR;
		break;
	}

	fw_send_response(card, request, rcode);
}

static struct fw_address_handler registers = {
	.length			= 0x400,
	.address_callback	= handle_registers,
};

static void handle_low_memory(struct fw_card *card, struct fw_request *request,
		int tcode, int destination, int source, int generation,
		unsigned long long offset, void *payload, size_t length,
		void *callback_data)
{
	/*
	 * This catches requests not handled by the physical DMA unit,
	 * i.e., wrong transaction types or unauthorized source nodes.
	 */
	fw_send_response(card, request, RCODE_TYPE_ERROR);
}

static struct fw_address_handler low_memory = {
	.length			= FW_MAX_PHYSICAL_RANGE,
	.address_callback	= handle_low_memory,
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
MODULE_LICENSE("GPL");

static const u32 vendor_textual_descriptor[] = {
	/* textual descriptor leaf () */
	0x00060000,
	0x00000000,
	0x00000000,
	0x4c696e75,		/* L i n u */
	0x78204669,		/* x   F i */
	0x72657769,		/* r e w i */
	0x72650000,		/* r e     */
};

static const u32 model_textual_descriptor[] = {
	/* model descriptor leaf () */
	0x00030000,
	0x00000000,
	0x00000000,
	0x4a756a75,		/* J u j u */
};

static struct fw_descriptor vendor_id_descriptor = {