aboutsummaryrefslogtreecommitdiffstats
path: root/net/lapb/lapb_in.c
blob: 21904a002449ca797fb02bf9603d92a73cbfd331 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
/*
 *	LAPB release 002
 *
 *	This code REQUIRES 2.1.15 or higher/ NET3.038
 *
 *	This module:
 *		This module is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 *	History
 *	LAPB 001	Jonathan Naulor	Started Coding
 *	LAPB 002	Jonathan Naylor	New timer architecture.
 *	2000-10-29	Henner Eisen	lapb_data_indication() return status.
 */

#include <linux/errno.h>
#include <linux/types.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/string.h>
#include <linux/sockios.h>
#include <linux/net.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <net/sock.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <linux/fcntl.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <net/lapb.h>

/*
 *	State machine for state 0, Disconnected State.
 *	The handling of the timer(s) is in file lapb_timer.c.
 */
static void lapb_state0_machine(struct lapb_cb *lapb, struct sk_buff *skb,
				struct lapb_frame *frame)
{
	switch (frame->type) {
		case LAPB_SABM:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S0 RX SABM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S0 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S0 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S0 -> S3\n",
				       lapb->dev);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
				lapb_stop_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state     = LAPB_STATE_3;
				lapb->condition = 0x00;
				lapb->n2count   = 0;
				lapb->vs        = 0;
				lapb->vr        = 0;
				lapb->va        = 0;
				lapb_connect_indication(lapb, LAPB_OK);
			}
			break;

		case LAPB_SABME:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S0 RX SABME(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S0 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S0 -> S3\n",
				       lapb->dev);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
				lapb_stop_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state     = LAPB_STATE_3;
				lapb->condition = 0x00;
				lapb->n2count   = 0;
				lapb->vs        = 0;
				lapb->vr        = 0;
				lapb->va        = 0;
				lapb_connect_indication(lapb, LAPB_OK);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S0 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			}
			break;

		case LAPB_DISC:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S0 RX DISC(%d)\n",
			       lapb->dev, frame->pf);
			printk(KERN_DEBUG "lapb: (%p) S0 TX UA(%d)\n",
			       lapb->dev, frame->pf);
#endif
			lapb_send_control(lapb, LAPB_UA, frame->pf,
					  LAPB_RESPONSE);
			break;

		default:
			break;
	}

	kfree_skb(skb);
}

/*
 *	State machine for state 1, Awaiting Connection State.
 *	The handling of the timer(s) is in file lapb_timer.c.
 */
static void lapb_state1_machine(struct lapb_cb *lapb, struct sk_buff *skb,
				struct lapb_frame *frame)
{
	switch (frame->type) {
		case LAPB_SABM:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S1 RX SABM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S1 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S1 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
			}
			break;

		case LAPB_SABME:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S1 RX SABME(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S1 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S1 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			}
			break;

		case LAPB_DISC:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S1 RX DISC(%d)\n",
			       lapb->dev, frame->pf);
			printk(KERN_DEBUG "lapb: (%p) S1 TX DM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			lapb_send_control(lapb, LAPB_DM, frame->pf,
					  LAPB_RESPONSE);
			break;

		case LAPB_UA:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S1 RX UA(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (frame->pf) {
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S1 -> S3\n",
				       lapb->dev);
#endif
				lapb_stop_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state     = LAPB_STATE_3;
				lapb->condition = 0x00;
				lapb->n2count   = 0;
				lapb->vs        = 0;
				lapb->vr        = 0;
				lapb->va        = 0;
				lapb_connect_confirmation(lapb, LAPB_OK);
			}
			break;

		case LAPB_DM:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S1 RX DM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (frame->pf) {
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S1 -> S0\n",
				       lapb->dev);
#endif
				lapb_clear_queues(lapb);
				lapb->state = LAPB_STATE_0;
				lapb_start_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb_disconnect_indication(lapb, LAPB_REFUSED);
			}
			break;
	}

	kfree_skb(skb);
}

/*
 *	State machine for state 2, Awaiting Release State.
 *	The handling of the timer(s) is in file lapb_timer.c
 */
static void lapb_state2_machine(struct lapb_cb *lapb, struct sk_buff *skb,
				struct lapb_frame *frame)
{
	switch (frame->type) {
		case LAPB_SABM:
		case LAPB_SABME:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S2 RX {SABM,SABME}(%d)\n",
			       lapb->dev, frame->pf);
			printk(KERN_DEBUG "lapb: (%p) S2 TX DM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			lapb_send_control(lapb, LAPB_DM, frame->pf,
					  LAPB_RESPONSE);
			break;

		case LAPB_DISC:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S2 RX DISC(%d)\n",
			       lapb->dev, frame->pf);
			printk(KERN_DEBUG "lapb: (%p) S2 TX UA(%d)\n",
			       lapb->dev, frame->pf);
#endif
			lapb_send_control(lapb, LAPB_UA, frame->pf,
					  LAPB_RESPONSE);
			break;

		case LAPB_UA:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S2 RX UA(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (frame->pf) {
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S2 -> S0\n",
				       lapb->dev);
#endif
				lapb->state = LAPB_STATE_0;
				lapb_start_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb_disconnect_confirmation(lapb, LAPB_OK);
			}
			break;

		case LAPB_DM:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S2 RX DM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (frame->pf) {
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S2 -> S0\n",
				       lapb->dev);
#endif
				lapb->state = LAPB_STATE_0;
				lapb_start_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb_disconnect_confirmation(lapb,
							     LAPB_NOTCONNECTED);
			}
			break;

		case LAPB_I:
		case LAPB_REJ:
		case LAPB_RNR:
		case LAPB_RR:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S2 RX {I,REJ,RNR,RR}"
			       "(%d)\n", lapb->dev, frame->pf);
			printk(KERN_DEBUG "lapb: (%p) S2 RX DM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (frame->pf)
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			break;
	}

	kfree_skb(skb);
}

/*
 *	State machine for state 3, Connected State.
 *	The handling of the timer(s) is in file lapb_timer.c
 */
static void lapb_state3_machine(struct lapb_cb *lapb, struct sk_buff *skb,
				struct lapb_frame *frame)
{
	int queued = 0;
	int modulus = (lapb->mode & LAPB_EXTENDED) ? LAPB_EMODULUS :
						     LAPB_SMODULUS;

	switch (frame->type) {
		case LAPB_SABM:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX SABM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S3 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S3 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
				lapb_stop_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->condition = 0x00;
				lapb->n2count   = 0;
				lapb->vs        = 0;
				lapb->vr        = 0;
				lapb->va        = 0;
				lapb_requeue_frames(lapb);
			}
			break;

		case LAPB_SABME:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX SABME(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S3 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
				lapb_stop_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->condition = 0x00;
				lapb->n2count   = 0;
				lapb->vs        = 0;
				lapb->vr        = 0;
				lapb->va        = 0;
				lapb_requeue_frames(lapb);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S3 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			}
			break;

		case LAPB_DISC:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX DISC(%d)\n",
			       lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
			printk(KERN_DEBUG "lapb: (%p) S3 -> S0\n",
			       lapb->dev);
#endif
			lapb_clear_queues(lapb);
			lapb_send_control(lapb, LAPB_UA, frame->pf,
					  LAPB_RESPONSE);
			lapb_start_t1timer(lapb);
			lapb_stop_t2timer(lapb);
			lapb->state = LAPB_STATE_0;
			lapb_disconnect_indication(lapb, LAPB_OK);
			break;

		case LAPB_DM:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX DM(%d)\n",
			       lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
			printk(KERN_DEBUG "lapb: (%p) S3 -> S0\n",
			       lapb->dev);
#endif
			lapb_clear_queues(lapb);
			lapb->state = LAPB_STATE_0;
			lapb_start_t1timer(lapb);
			lapb_stop_t2timer(lapb);
			lapb_disconnect_indication(lapb, LAPB_NOTCONNECTED);
			break;

		case LAPB_RNR:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX RNR(%d) R%d\n",
			       lapb->dev, frame->pf, frame->nr);
#endif
			lapb->condition |= LAPB_PEER_RX_BUSY_CONDITION;
			lapb_check_need_response(lapb, frame->cr, frame->pf);
			if (lapb_validate_nr(lapb, frame->nr)) {
				lapb_check_iframes_acked(lapb, frame->nr);
			} else {
				lapb->frmr_data = *frame;
				lapb->frmr_type = LAPB_FRMR_Z;
				lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
				       lapb->dev);
#endif
				lapb_start_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state   = LAPB_STATE_4;
				lapb->n2count = 0;
			}
			break;

		case LAPB_RR:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX RR(%d) R%d\n",
			       lapb->dev, frame->pf, frame->nr);
#endif
			lapb->condition &= ~LAPB_PEER_RX_BUSY_CONDITION;
			lapb_check_need_response(lapb, frame->cr, frame->pf);
			if (lapb_validate_nr(lapb, frame->nr)) {
				lapb_check_iframes_acked(lapb, frame->nr);
			} else {
				lapb->frmr_data = *frame;
				lapb->frmr_type = LAPB_FRMR_Z;
				lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
				       lapb->dev);
#endif
				lapb_start_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state   = LAPB_STATE_4;
				lapb->n2count = 0;
			}
			break;

		case LAPB_REJ:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX REJ(%d) R%d\n",
			       lapb->dev, frame->pf, frame->nr);
#endif
			lapb->condition &= ~LAPB_PEER_RX_BUSY_CONDITION;
			lapb_check_need_response(lapb, frame->cr, frame->pf);
			if (lapb_validate_nr(lapb, frame->nr)) {
				lapb_frames_acked(lapb, frame->nr);
				lapb_stop_t1timer(lapb);
				lapb->n2count = 0;
				lapb_requeue_frames(lapb);
			} else {
				lapb->frmr_data = *frame;
				lapb->frmr_type = LAPB_FRMR_Z;
				lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
				       lapb->dev);
#endif
				lapb_start_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state   = LAPB_STATE_4;
				lapb->n2count = 0;
			}
			break;

		case LAPB_I:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX I(%d) S%d R%d\n",
			       lapb->dev, frame->pf, frame->ns, frame->nr);
#endif
			if (!lapb_validate_nr(lapb, frame->nr)) {
				lapb->frmr_data = *frame;
				lapb->frmr_type = LAPB_FRMR_Z;
				lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n",
				       lapb->dev);
#endif
				lapb_start_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state   = LAPB_STATE_4;
				lapb->n2count = 0;
				break;
			}
			if (lapb->condition & LAPB_PEER_RX_BUSY_CONDITION)
				lapb_frames_acked(lapb, frame->nr);
			else
				lapb_check_iframes_acked(lapb, frame->nr);

			if (frame->ns == lapb->vr) {
				int cn;
				cn = lapb_data_indication(lapb, skb);
				queued = 1;
				/*
				 * If upper layer has dropped the frame, we
				 * basically ignore any further protocol
				 * processing. This will cause the peer
				 * to re-transmit the frame later like
				 * a frame lost on the wire.
				 */
				if (cn == NET_RX_DROP) {
					printk(KERN_DEBUG
					       "LAPB: rx congestion\n");
					break;
				}
				lapb->vr = (lapb->vr + 1) % modulus;
				lapb->condition &= ~LAPB_REJECT_CONDITION;
				if (frame->pf)
					lapb_enquiry_response(lapb);
				else {
					if (!(lapb->condition &
					      LAPB_ACK_PENDING_CONDITION)) {
						lapb->condition |= LAPB_ACK_PENDING_CONDITION;
						lapb_start_t2timer(lapb);
					}
				}
			} else {
				if (lapb->condition & LAPB_REJECT_CONDITION) {
					if (frame->pf)
						lapb_enquiry_response(lapb);
				} else {
#if LAPB_DEBUG > 1
					printk(KERN_DEBUG
					       "lapb: (%p) S3 TX REJ(%d) R%d\n",
					       lapb->dev, frame->pf, lapb->vr);
#endif
					lapb->condition |= LAPB_REJECT_CONDITION;
					lapb_send_control(lapb, LAPB_REJ,
							  frame->pf,
							  LAPB_RESPONSE);
					lapb->condition &= ~LAPB_ACK_PENDING_CONDITION;
				}
			}
			break;

		case LAPB_FRMR:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX FRMR(%d) %02X "
			       "%02X %02X %02X %02X\n", lapb->dev, frame->pf,
			       skb->data[0], skb->data[1], skb->data[2],
			       skb->data[3], skb->data[4]);
#endif
			lapb_establish_data_link(lapb);
#if LAPB_DEBUG > 0
			printk(KERN_DEBUG "lapb: (%p) S3 -> S1\n",
			       lapb->dev);
#endif
			lapb_requeue_frames(lapb);
			lapb->state = LAPB_STATE_1;
			break;

		case LAPB_ILLEGAL:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S3 RX ILLEGAL(%d)\n",
			       lapb->dev, frame->pf);
#endif
			lapb->frmr_data = *frame;
			lapb->frmr_type = LAPB_FRMR_W;
			lapb_transmit_frmr(lapb);
#if LAPB_DEBUG > 0
			printk(KERN_DEBUG "lapb: (%p) S3 -> S4\n", lapb->dev);
#endif
			lapb_start_t1timer(lapb);
			lapb_stop_t2timer(lapb);
			lapb->state   = LAPB_STATE_4;
			lapb->n2count = 0;
			break;
	}

	if (!queued)
		kfree_skb(skb);
}

/*
 *	State machine for state 4, Frame Reject State.
 *	The handling of the timer(s) is in file lapb_timer.c.
 */
static void lapb_state4_machine(struct lapb_cb *lapb, struct sk_buff *skb,
				struct lapb_frame *frame)
{
	switch (frame->type) {
		case LAPB_SABM:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S4 RX SABM(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S4 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S4 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S4 -> S3\n",
				       lapb->dev);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
				lapb_stop_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state     = LAPB_STATE_3;
				lapb->condition = 0x00;
				lapb->n2count   = 0;
				lapb->vs        = 0;
				lapb->vr        = 0;
				lapb->va        = 0;
				lapb_connect_indication(lapb, LAPB_OK);
			}
			break;

		case LAPB_SABME:
#if LAPB_DEBUG > 1
			printk(KERN_DEBUG "lapb: (%p) S4 RX SABME(%d)\n",
			       lapb->dev, frame->pf);
#endif
			if (lapb->mode & LAPB_EXTENDED) {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S4 TX UA(%d)\n",
				       lapb->dev, frame->pf);
#endif
#if LAPB_DEBUG > 0
				printk(KERN_DEBUG "lapb: (%p) S4 -> S3\n",
				       lapb->dev);
#endif
				lapb_send_control(lapb, LAPB_UA, frame->pf,
						  LAPB_RESPONSE);
				lapb_stop_t1timer(lapb);
				lapb_stop_t2timer(lapb);
				lapb->state     = LAPB_STATE_3;
				lapb->condition = 0x00;
				lapb->n2count   = 0;
				lapb->vs        = 0;
				lapb->vr        = 0;
				lapb->va        = 0;
				lapb_connect_indication(lapb, LAPB_OK);
			} else {
#if LAPB_DEBUG > 1
				printk(KERN_DEBUG "lapb: (%p) S4 TX DM(%d)\n",
				       lapb->dev, frame->pf);
#endif
				lapb_send_control(lapb, LAPB_DM, frame->pf,
						  LAPB_RESPONSE);
			}
			break;
	}

	kfree_skb(skb);
}

/*
 *	Process an incoming LAPB frame
 */
void lapb_data_input(struct lapb_cb *lapb, struct sk_buff *skb)
{
	struct lapb_frame frame;

	if (lapb_decode(lapb, skb, &frame) < 0) {
		kfree_skb(skb);
		return;
	}

	switch (lapb->state) {
	case LAPB_STATE_0:
		lapb_state0_machine(lapb, skb, &frame); break;
	case LAPB_STATE_1:
		lapb_state1_machine(lapb, skb, &frame); break;
	case LAPB_STATE_2:
		lapb_state2_machine(lapb, skb, &frame); break;
	case LAPB_STATE_3:
		lapb_state3_machine(lapb, skb, &frame); break;
	case LAPB_STATE_4:
		lapb_state4_machine(lapb, skb, &frame); break;
	}

	lapb_kick(lapb);
}
"hl opt">} static void __unix_insert_socket(struct hlist_head *list, struct sock *sk) { WARN_ON(!sk_unhashed(sk)); sk_add_node(sk, list); } static inline void unix_remove_socket(struct sock *sk) { spin_lock(&unix_table_lock); __unix_remove_socket(sk); spin_unlock(&unix_table_lock); } static inline void unix_insert_socket(struct hlist_head *list, struct sock *sk) { spin_lock(&unix_table_lock); __unix_insert_socket(list, sk); spin_unlock(&unix_table_lock); } static struct sock *__unix_find_socket_byname(struct net *net, struct sockaddr_un *sunname, int len, int type, unsigned hash) { struct sock *s; struct hlist_node *node; sk_for_each(s, node, &unix_socket_table[hash ^ type]) { struct unix_sock *u = unix_sk(s); if (!net_eq(sock_net(s), net)) continue; if (u->addr->len == len && !memcmp(u->addr->name, sunname, len)) goto found; } s = NULL; found: return s; } static inline struct sock *unix_find_socket_byname(struct net *net, struct sockaddr_un *sunname, int len, int type, unsigned hash) { struct sock *s; spin_lock(&unix_table_lock); s = __unix_find_socket_byname(net, sunname, len, type, hash); if (s) sock_hold(s); spin_unlock(&unix_table_lock); return s; } static struct sock *unix_find_socket_byinode(struct net *net, struct inode *i) { struct sock *s; struct hlist_node *node; spin_lock(&unix_table_lock); sk_for_each(s, node, &unix_socket_table[i->i_ino & (UNIX_HASH_SIZE - 1)]) { struct dentry *dentry = unix_sk(s)->dentry; if (!net_eq(sock_net(s), net)) continue; if (dentry && dentry->d_inode == i) { sock_hold(s); goto found; } } s = NULL; found: spin_unlock(&unix_table_lock); return s; } static inline int unix_writable(struct sock *sk) { return (atomic_read(&sk->sk_wmem_alloc) << 2) <= sk->sk_sndbuf; } static void unix_write_space(struct sock *sk) { read_lock(&sk->sk_callback_lock); if (unix_writable(sk)) { if (sk_has_sleeper(sk)) wake_up_interruptible_sync(sk->sk_sleep); sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT); } read_unlock(&sk->sk_callback_lock); } /* When dgram socket disconnects (or changes its peer), we clear its receive * queue of packets arrived from previous peer. First, it allows to do * flow control based only on wmem_alloc; second, sk connected to peer * may receive messages only from that peer. */ static void unix_dgram_disconnected(struct sock *sk, struct sock *other) { if (!skb_queue_empty(&sk->sk_receive_queue)) { skb_queue_purge(&sk->sk_receive_queue); wake_up_interruptible_all(&unix_sk(sk)->peer_wait); /* If one link of bidirectional dgram pipe is disconnected, * we signal error. Messages are lost. Do not make this, * when peer was not connected to us. */ if (!sock_flag(other, SOCK_DEAD) && unix_peer(other) == sk) { other->sk_err = ECONNRESET; other->sk_error_report(other); } } } static void unix_sock_destructor(struct sock *sk) { struct unix_sock *u = unix_sk(sk); skb_queue_purge(&sk->sk_receive_queue); WARN_ON(atomic_read(&sk->sk_wmem_alloc)); WARN_ON(!sk_unhashed(sk)); WARN_ON(sk->sk_socket); if (!sock_flag(sk, SOCK_DEAD)) { printk(KERN_INFO "Attempt to release alive unix socket: %p\n", sk); return; } if (u->addr) unix_release_addr(u->addr); atomic_dec(&unix_nr_socks); local_bh_disable(); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1); local_bh_enable(); #ifdef UNIX_REFCNT_DEBUG printk(KERN_DEBUG "UNIX %p is destroyed, %d are still alive.\n", sk, atomic_read(&unix_nr_socks)); #endif } static int unix_release_sock(struct sock *sk, int embrion) { struct unix_sock *u = unix_sk(sk); struct dentry *dentry; struct vfsmount *mnt; struct sock *skpair; struct sk_buff *skb; int state; unix_remove_socket(sk); /* Clear state */ unix_state_lock(sk); sock_orphan(sk); sk->sk_shutdown = SHUTDOWN_MASK; dentry = u->dentry; u->dentry = NULL; mnt = u->mnt; u->mnt = NULL; state = sk->sk_state; sk->sk_state = TCP_CLOSE; unix_state_unlock(sk); wake_up_interruptible_all(&u->peer_wait); skpair = unix_peer(sk); if (skpair != NULL) { if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { unix_state_lock(skpair); /* No more writes */ skpair->sk_shutdown = SHUTDOWN_MASK; if (!skb_queue_empty(&sk->sk_receive_queue) || embrion) skpair->sk_err = ECONNRESET; unix_state_unlock(skpair); skpair->sk_state_change(skpair); read_lock(&skpair->sk_callback_lock); sk_wake_async(skpair, SOCK_WAKE_WAITD, POLL_HUP); read_unlock(&skpair->sk_callback_lock); } sock_put(skpair); /* It may now die */ unix_peer(sk) = NULL; } /* Try to flush out this socket. Throw out buffers at least */ while ((skb = skb_dequeue(&sk->sk_receive_queue)) != NULL) { if (state == TCP_LISTEN) unix_release_sock(skb->sk, 1); /* passed fds are erased in the kfree_skb hook */ kfree_skb(skb); } if (dentry) { dput(dentry); mntput(mnt); } sock_put(sk); /* ---- Socket is dead now and most probably destroyed ---- */ /* * Fixme: BSD difference: In BSD all sockets connected to use get * ECONNRESET and we die on the spot. In Linux we behave * like files and pipes do and wait for the last * dereference. * * Can't we simply set sock->err? * * What the above comment does talk about? --ANK(980817) */ if (unix_tot_inflight) unix_gc(); /* Garbage collect fds */ return 0; } static int unix_listen(struct socket *sock, int backlog) { int err; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); err = -EOPNOTSUPP; if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) goto out; /* Only stream/seqpacket sockets accept */ err = -EINVAL; if (!u->addr) goto out; /* No listens on an unbound socket */ unix_state_lock(sk); if (sk->sk_state != TCP_CLOSE && sk->sk_state != TCP_LISTEN) goto out_unlock; if (backlog > sk->sk_max_ack_backlog) wake_up_interruptible_all(&u->peer_wait); sk->sk_max_ack_backlog = backlog; sk->sk_state = TCP_LISTEN; /* set credentials so connect can copy them */ sk->sk_peercred.pid = task_tgid_vnr(current); current_euid_egid(&sk->sk_peercred.uid, &sk->sk_peercred.gid); err = 0; out_unlock: unix_state_unlock(sk); out: return err; } static int unix_release(struct socket *); static int unix_bind(struct socket *, struct sockaddr *, int); static int unix_stream_connect(struct socket *, struct sockaddr *, int addr_len, int flags); static int unix_socketpair(struct socket *, struct socket *); static int unix_accept(struct socket *, struct socket *, int); static int unix_getname(struct socket *, struct sockaddr *, int *, int); static unsigned int unix_poll(struct file *, struct socket *, poll_table *); static unsigned int unix_dgram_poll(struct file *, struct socket *, poll_table *); static int unix_ioctl(struct socket *, unsigned int, unsigned long); static int unix_shutdown(struct socket *, int); static int unix_stream_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); static int unix_stream_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, int); static int unix_dgram_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); static int unix_dgram_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, int); static int unix_dgram_connect(struct socket *, struct sockaddr *, int, int); static int unix_seqpacket_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); static const struct proto_ops unix_stream_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_stream_connect, .socketpair = unix_socketpair, .accept = unix_accept, .getname = unix_getname, .poll = unix_poll, .ioctl = unix_ioctl, .listen = unix_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_stream_sendmsg, .recvmsg = unix_stream_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops unix_dgram_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_dgram_connect, .socketpair = unix_socketpair, .accept = sock_no_accept, .getname = unix_getname, .poll = unix_dgram_poll, .ioctl = unix_ioctl, .listen = sock_no_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_dgram_sendmsg, .recvmsg = unix_dgram_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static const struct proto_ops unix_seqpacket_ops = { .family = PF_UNIX, .owner = THIS_MODULE, .release = unix_release, .bind = unix_bind, .connect = unix_stream_connect, .socketpair = unix_socketpair, .accept = unix_accept, .getname = unix_getname, .poll = unix_dgram_poll, .ioctl = unix_ioctl, .listen = unix_listen, .shutdown = unix_shutdown, .setsockopt = sock_no_setsockopt, .getsockopt = sock_no_getsockopt, .sendmsg = unix_seqpacket_sendmsg, .recvmsg = unix_dgram_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; static struct proto unix_proto = { .name = "UNIX", .owner = THIS_MODULE, .obj_size = sizeof(struct unix_sock), }; /* * AF_UNIX sockets do not interact with hardware, hence they * dont trigger interrupts - so it's safe for them to have * bh-unsafe locking for their sk_receive_queue.lock. Split off * this special lock-class by reinitializing the spinlock key: */ static struct lock_class_key af_unix_sk_receive_queue_lock_key; static struct sock *unix_create1(struct net *net, struct socket *sock) { struct sock *sk = NULL; struct unix_sock *u; atomic_inc(&unix_nr_socks); if (atomic_read(&unix_nr_socks) > 2 * get_max_files()) goto out; sk = sk_alloc(net, PF_UNIX, GFP_KERNEL, &unix_proto); if (!sk) goto out; sock_init_data(sock, sk); lockdep_set_class(&sk->sk_receive_queue.lock, &af_unix_sk_receive_queue_lock_key); sk->sk_write_space = unix_write_space; sk->sk_max_ack_backlog = net->unx.sysctl_max_dgram_qlen; sk->sk_destruct = unix_sock_destructor; u = unix_sk(sk); u->dentry = NULL; u->mnt = NULL; spin_lock_init(&u->lock); atomic_long_set(&u->inflight, 0); INIT_LIST_HEAD(&u->link); mutex_init(&u->readlock); /* single task reading lock */ init_waitqueue_head(&u->peer_wait); unix_insert_socket(unix_sockets_unbound, sk); out: if (sk == NULL) atomic_dec(&unix_nr_socks); else { local_bh_disable(); sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1); local_bh_enable(); } return sk; } static int unix_create(struct net *net, struct socket *sock, int protocol, int kern) { if (protocol && protocol != PF_UNIX) return -EPROTONOSUPPORT; sock->state = SS_UNCONNECTED; switch (sock->type) { case SOCK_STREAM: sock->ops = &unix_stream_ops; break; /* * Believe it or not BSD has AF_UNIX, SOCK_RAW though * nothing uses it. */ case SOCK_RAW: sock->type = SOCK_DGRAM; case SOCK_DGRAM: sock->ops = &unix_dgram_ops; break; case SOCK_SEQPACKET: sock->ops = &unix_seqpacket_ops; break; default: return -ESOCKTNOSUPPORT; } return unix_create1(net, sock) ? 0 : -ENOMEM; } static int unix_release(struct socket *sock) { struct sock *sk = sock->sk; if (!sk) return 0; sock->sk = NULL; return unix_release_sock(sk, 0); } static int unix_autobind(struct socket *sock) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct unix_sock *u = unix_sk(sk); static u32 ordernum = 1; struct unix_address *addr; int err; mutex_lock(&u->readlock); err = 0; if (u->addr) goto out; err = -ENOMEM; addr = kzalloc(sizeof(*addr) + sizeof(short) + 16, GFP_KERNEL); if (!addr) goto out; addr->name->sun_family = AF_UNIX; atomic_set(&addr->refcnt, 1); retry: addr->len = sprintf(addr->name->sun_path+1, "%05x", ordernum) + 1 + sizeof(short); addr->hash = unix_hash_fold(csum_partial(addr->name, addr->len, 0)); spin_lock(&unix_table_lock); ordernum = (ordernum+1)&0xFFFFF; if (__unix_find_socket_byname(net, addr->name, addr->len, sock->type, addr->hash)) { spin_unlock(&unix_table_lock); /* Sanity yield. It is unusual case, but yet... */ if (!(ordernum&0xFF)) yield(); goto retry; } addr->hash ^= sk->sk_type; __unix_remove_socket(sk); u->addr = addr; __unix_insert_socket(&unix_socket_table[addr->hash], sk); spin_unlock(&unix_table_lock); err = 0; out: mutex_unlock(&u->readlock); return err; } static struct sock *unix_find_other(struct net *net, struct sockaddr_un *sunname, int len, int type, unsigned hash, int *error) { struct sock *u; struct path path; int err = 0; if (sunname->sun_path[0]) { struct inode *inode; err = kern_path(sunname->sun_path, LOOKUP_FOLLOW, &path); if (err) goto fail; inode = path.dentry->d_inode; err = inode_permission(inode, MAY_WRITE); if (err) goto put_fail; err = -ECONNREFUSED; if (!S_ISSOCK(inode->i_mode)) goto put_fail; u = unix_find_socket_byinode(net, inode); if (!u) goto put_fail; if (u->sk_type == type) touch_atime(path.mnt, path.dentry); path_put(&path); err = -EPROTOTYPE; if (u->sk_type != type) { sock_put(u); goto fail; } } else { err = -ECONNREFUSED; u = unix_find_socket_byname(net, sunname, len, type, hash); if (u) { struct dentry *dentry; dentry = unix_sk(u)->dentry; if (dentry) touch_atime(unix_sk(u)->mnt, dentry); } else goto fail; } return u; put_fail: path_put(&path); fail: *error = err; return NULL; } static int unix_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; struct dentry *dentry = NULL; struct nameidata nd; int err; unsigned hash; struct unix_address *addr; struct hlist_head *list; err = -EINVAL; if (sunaddr->sun_family != AF_UNIX) goto out; if (addr_len == sizeof(short)) { err = unix_autobind(sock); goto out; } err = unix_mkname(sunaddr, addr_len, &hash); if (err < 0) goto out; addr_len = err; mutex_lock(&u->readlock); err = -EINVAL; if (u->addr) goto out_up; err = -ENOMEM; addr = kmalloc(sizeof(*addr)+addr_len, GFP_KERNEL); if (!addr) goto out_up; memcpy(addr->name, sunaddr, addr_len); addr->len = addr_len; addr->hash = hash ^ sk->sk_type; atomic_set(&addr->refcnt, 1); if (sunaddr->sun_path[0]) { unsigned int mode; err = 0; /* * Get the parent directory, calculate the hash for last * component. */ err = path_lookup(sunaddr->sun_path, LOOKUP_PARENT, &nd); if (err) goto out_mknod_parent; dentry = lookup_create(&nd, 0); err = PTR_ERR(dentry); if (IS_ERR(dentry)) goto out_mknod_unlock; /* * All right, let's create it. */ mode = S_IFSOCK | (SOCK_INODE(sock)->i_mode & ~current_umask()); err = mnt_want_write(nd.path.mnt); if (err) goto out_mknod_dput; err = security_path_mknod(&nd.path, dentry, mode, 0); if (err) goto out_mknod_drop_write; err = vfs_mknod(nd.path.dentry->d_inode, dentry, mode, 0); out_mknod_drop_write: mnt_drop_write(nd.path.mnt); if (err) goto out_mknod_dput; mutex_unlock(&nd.path.dentry->d_inode->i_mutex); dput(nd.path.dentry); nd.path.dentry = dentry; addr->hash = UNIX_HASH_SIZE; } spin_lock(&unix_table_lock); if (!sunaddr->sun_path[0]) { err = -EADDRINUSE; if (__unix_find_socket_byname(net, sunaddr, addr_len, sk->sk_type, hash)) { unix_release_addr(addr); goto out_unlock; } list = &unix_socket_table[addr->hash]; } else { list = &unix_socket_table[dentry->d_inode->i_ino & (UNIX_HASH_SIZE-1)]; u->dentry = nd.path.dentry; u->mnt = nd.path.mnt; } err = 0; __unix_remove_socket(sk); u->addr = addr; __unix_insert_socket(list, sk); out_unlock: spin_unlock(&unix_table_lock); out_up: mutex_unlock(&u->readlock); out: return err; out_mknod_dput: dput(dentry); out_mknod_unlock: mutex_unlock(&nd.path.dentry->d_inode->i_mutex); path_put(&nd.path); out_mknod_parent: if (err == -EEXIST) err = -EADDRINUSE; unix_release_addr(addr); goto out_up; } static void unix_state_double_lock(struct sock *sk1, struct sock *sk2) { if (unlikely(sk1 == sk2) || !sk2) { unix_state_lock(sk1); return; } if (sk1 < sk2) { unix_state_lock(sk1); unix_state_lock_nested(sk2); } else { unix_state_lock(sk2); unix_state_lock_nested(sk1); } } static void unix_state_double_unlock(struct sock *sk1, struct sock *sk2) { if (unlikely(sk1 == sk2) || !sk2) { unix_state_unlock(sk1); return; } unix_state_unlock(sk1); unix_state_unlock(sk2); } static int unix_dgram_connect(struct socket *sock, struct sockaddr *addr, int alen, int flags) { struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct sockaddr_un *sunaddr = (struct sockaddr_un *)addr; struct sock *other; unsigned hash; int err; if (addr->sa_family != AF_UNSPEC) { err = unix_mkname(sunaddr, alen, &hash); if (err < 0) goto out; alen = err; if (test_bit(SOCK_PASSCRED, &sock->flags) && !unix_sk(sk)->addr && (err = unix_autobind(sock)) != 0) goto out; restart: other = unix_find_other(net, sunaddr, alen, sock->type, hash, &err); if (!other) goto out; unix_state_double_lock(sk, other); /* Apparently VFS overslept socket death. Retry. */ if (sock_flag(other, SOCK_DEAD)) { unix_state_double_unlock(sk, other); sock_put(other); goto restart; } err = -EPERM; if (!unix_may_send(sk, other)) goto out_unlock; err = security_unix_may_send(sk->sk_socket, other->sk_socket); if (err) goto out_unlock; } else { /* * 1003.1g breaking connected state with AF_UNSPEC */ other = NULL; unix_state_double_lock(sk, other); } /* * If it was connected, reconnect. */ if (unix_peer(sk)) { struct sock *old_peer = unix_peer(sk); unix_peer(sk) = other; unix_state_double_unlock(sk, other); if (other != old_peer) unix_dgram_disconnected(sk, old_peer); sock_put(old_peer); } else { unix_peer(sk) = other; unix_state_double_unlock(sk, other); } return 0; out_unlock: unix_state_double_unlock(sk, other); sock_put(other); out: return err; } static long unix_wait_for_peer(struct sock *other, long timeo) { struct unix_sock *u = unix_sk(other); int sched; DEFINE_WAIT(wait); prepare_to_wait_exclusive(&u->peer_wait, &wait, TASK_INTERRUPTIBLE); sched = !sock_flag(other, SOCK_DEAD) && !(other->sk_shutdown & RCV_SHUTDOWN) && unix_recvq_full(other); unix_state_unlock(other); if (sched) timeo = schedule_timeout(timeo); finish_wait(&u->peer_wait, &wait); return timeo; } static int unix_stream_connect(struct socket *sock, struct sockaddr *uaddr, int addr_len, int flags) { struct sockaddr_un *sunaddr = (struct sockaddr_un *)uaddr; struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct unix_sock *u = unix_sk(sk), *newu, *otheru; struct sock *newsk = NULL; struct sock *other = NULL; struct sk_buff *skb = NULL; unsigned hash; int st; int err; long timeo; err = unix_mkname(sunaddr, addr_len, &hash); if (err < 0) goto out; addr_len = err; if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr && (err = unix_autobind(sock)) != 0) goto out; timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); /* First of all allocate resources. If we will make it after state is locked, we will have to recheck all again in any case. */ err = -ENOMEM; /* create new sock for complete connection */ newsk = unix_create1(sock_net(sk), NULL); if (newsk == NULL) goto out; /* Allocate skb for sending to listening sock */ skb = sock_wmalloc(newsk, 1, 0, GFP_KERNEL); if (skb == NULL) goto out; restart: /* Find listening sock. */ other = unix_find_other(net, sunaddr, addr_len, sk->sk_type, hash, &err); if (!other) goto out; /* Latch state of peer */ unix_state_lock(other); /* Apparently VFS overslept socket death. Retry. */ if (sock_flag(other, SOCK_DEAD)) { unix_state_unlock(other); sock_put(other); goto restart; } err = -ECONNREFUSED; if (other->sk_state != TCP_LISTEN) goto out_unlock; if (other->sk_shutdown & RCV_SHUTDOWN) goto out_unlock; if (unix_recvq_full(other)) { err = -EAGAIN; if (!timeo) goto out_unlock; timeo = unix_wait_for_peer(other, timeo); err = sock_intr_errno(timeo); if (signal_pending(current)) goto out; sock_put(other); goto restart; } /* Latch our state. It is tricky place. We need to grab write lock and cannot drop lock on peer. It is dangerous because deadlock is possible. Connect to self case and simultaneous attempt to connect are eliminated by checking socket state. other is TCP_LISTEN, if sk is TCP_LISTEN we check this before attempt to grab lock. Well, and we have to recheck the state after socket locked. */ st = sk->sk_state; switch (st) { case TCP_CLOSE: /* This is ok... continue with connect */ break; case TCP_ESTABLISHED: /* Socket is already connected */ err = -EISCONN; goto out_unlock; default: err = -EINVAL; goto out_unlock; } unix_state_lock_nested(sk); if (sk->sk_state != st) { unix_state_unlock(sk); unix_state_unlock(other); sock_put(other); goto restart; } err = security_unix_stream_connect(sock, other->sk_socket, newsk); if (err) { unix_state_unlock(sk); goto out_unlock; } /* The way is open! Fastly set all the necessary fields... */ sock_hold(sk); unix_peer(newsk) = sk; newsk->sk_state = TCP_ESTABLISHED; newsk->sk_type = sk->sk_type; newsk->sk_peercred.pid = task_tgid_vnr(current); current_euid_egid(&newsk->sk_peercred.uid, &newsk->sk_peercred.gid); newu = unix_sk(newsk); newsk->sk_sleep = &newu->peer_wait; otheru = unix_sk(other); /* copy address information from listening to new sock*/ if (otheru->addr) { atomic_inc(&otheru->addr->refcnt); newu->addr = otheru->addr; } if (otheru->dentry) { newu->dentry = dget(otheru->dentry); newu->mnt = mntget(otheru->mnt); } /* Set credentials */ sk->sk_peercred = other->sk_peercred; sock->state = SS_CONNECTED; sk->sk_state = TCP_ESTABLISHED; sock_hold(newsk); smp_mb__after_atomic_inc(); /* sock_hold() does an atomic_inc() */ unix_peer(sk) = newsk; unix_state_unlock(sk); /* take ten and and send info to listening sock */ spin_lock(&other->sk_receive_queue.lock); __skb_queue_tail(&other->sk_receive_queue, skb); spin_unlock(&other->sk_receive_queue.lock); unix_state_unlock(other); other->sk_data_ready(other, 0); sock_put(other); return 0; out_unlock: if (other) unix_state_unlock(other); out: kfree_skb(skb); if (newsk) unix_release_sock(newsk, 0); if (other) sock_put(other); return err; } static int unix_socketpair(struct socket *socka, struct socket *sockb) { struct sock *ska = socka->sk, *skb = sockb->sk; /* Join our sockets back to back */ sock_hold(ska); sock_hold(skb); unix_peer(ska) = skb; unix_peer(skb) = ska; ska->sk_peercred.pid = skb->sk_peercred.pid = task_tgid_vnr(current); current_euid_egid(&skb->sk_peercred.uid, &skb->sk_peercred.gid); ska->sk_peercred.uid = skb->sk_peercred.uid; ska->sk_peercred.gid = skb->sk_peercred.gid; if (ska->sk_type != SOCK_DGRAM) { ska->sk_state = TCP_ESTABLISHED; skb->sk_state = TCP_ESTABLISHED; socka->state = SS_CONNECTED; sockb->state = SS_CONNECTED; } return 0; } static int unix_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk = sock->sk; struct sock *tsk; struct sk_buff *skb; int err; err = -EOPNOTSUPP; if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET) goto out; err = -EINVAL; if (sk->sk_state != TCP_LISTEN) goto out; /* If socket state is TCP_LISTEN it cannot change (for now...), * so that no locks are necessary. */ skb = skb_recv_datagram(sk, 0, flags&O_NONBLOCK, &err); if (!skb) { /* This means receive shutdown. */ if (err == 0) err = -EINVAL; goto out; } tsk = skb->sk; skb_free_datagram(sk, skb); wake_up_interruptible(&unix_sk(sk)->peer_wait); /* attach accepted sock to socket */ unix_state_lock(tsk); newsock->state = SS_CONNECTED; sock_graft(tsk, newsock); unix_state_unlock(tsk); return 0; out: return err; } static int unix_getname(struct socket *sock, struct sockaddr *uaddr, int *uaddr_len, int peer) { struct sock *sk = sock->sk; struct unix_sock *u; DECLARE_SOCKADDR(struct sockaddr_un *, sunaddr, uaddr); int err = 0; if (peer) { sk = unix_peer_get(sk); err = -ENOTCONN; if (!sk) goto out; err = 0; } else { sock_hold(sk); } u = unix_sk(sk); unix_state_lock(sk); if (!u->addr) { sunaddr->sun_family = AF_UNIX; sunaddr->sun_path[0] = 0; *uaddr_len = sizeof(short); } else { struct unix_address *addr = u->addr; *uaddr_len = addr->len; memcpy(sunaddr, addr->name, *uaddr_len); } unix_state_unlock(sk); sock_put(sk); out: return err; } static void unix_detach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; scm->fp = UNIXCB(skb).fp; skb->destructor = sock_wfree; UNIXCB(skb).fp = NULL; for (i = scm->fp->count-1; i >= 0; i--) unix_notinflight(scm->fp->fp[i]); } static void unix_destruct_fds(struct sk_buff *skb) { struct scm_cookie scm; memset(&scm, 0, sizeof(scm)); unix_detach_fds(&scm, skb); /* Alas, it calls VFS */ /* So fscking what? fput() had been SMP-safe since the last Summer */ scm_destroy(&scm); sock_wfree(skb); } static int unix_attach_fds(struct scm_cookie *scm, struct sk_buff *skb) { int i; /* * Need to duplicate file references for the sake of garbage * collection. Otherwise a socket in the fps might become a * candidate for GC while the skb is not yet queued. */ UNIXCB(skb).fp = scm_fp_dup(scm->fp); if (!UNIXCB(skb).fp) return -ENOMEM; for (i = scm->fp->count-1; i >= 0; i--) unix_inflight(scm->fp->fp[i]); skb->destructor = unix_destruct_fds; return 0; } /* * Send AF_UNIX data. */ static int unix_dgram_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct net *net = sock_net(sk); struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr = msg->msg_name; struct sock *other = NULL; int namelen = 0; /* fake GCC */ int err; unsigned hash; struct sk_buff *skb; long timeo; struct scm_cookie tmp_scm; if (NULL == siocb->scm) siocb->scm = &tmp_scm; wait_for_unix_gc(); err = scm_send(sock, msg, siocb->scm); if (err < 0) return err; err = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto out; if (msg->msg_namelen) { err = unix_mkname(sunaddr, msg->msg_namelen, &hash); if (err < 0) goto out; namelen = err; } else { sunaddr = NULL; err = -ENOTCONN; other = unix_peer_get(sk); if (!other) goto out; } if (test_bit(SOCK_PASSCRED, &sock->flags) && !u->addr && (err = unix_autobind(sock)) != 0) goto out; err = -EMSGSIZE; if (len > sk->sk_sndbuf - 32) goto out; skb = sock_alloc_send_skb(sk, len, msg->msg_flags&MSG_DONTWAIT, &err); if (skb == NULL) goto out; memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); if (siocb->scm->fp) { err = unix_attach_fds(siocb->scm, skb); if (err) goto out_free; } unix_get_secdata(siocb->scm, skb); skb_reset_transport_header(skb); err = memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len); if (err) goto out_free; timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT); restart: if (!other) { err = -ECONNRESET; if (sunaddr == NULL) goto out_free; other = unix_find_other(net, sunaddr, namelen, sk->sk_type, hash, &err); if (other == NULL) goto out_free; } unix_state_lock(other); err = -EPERM; if (!unix_may_send(sk, other)) goto out_unlock; if (sock_flag(other, SOCK_DEAD)) { /* * Check with 1003.1g - what should * datagram error */ unix_state_unlock(other); sock_put(other); err = 0; unix_state_lock(sk); if (unix_peer(sk) == other) { unix_peer(sk) = NULL; unix_state_unlock(sk); unix_dgram_disconnected(sk, other); sock_put(other); err = -ECONNREFUSED; } else { unix_state_unlock(sk); } other = NULL; if (err) goto out_free; goto restart; } err = -EPIPE; if (other->sk_shutdown & RCV_SHUTDOWN) goto out_unlock; if (sk->sk_type != SOCK_SEQPACKET) { err = security_unix_may_send(sk->sk_socket, other->sk_socket); if (err) goto out_unlock; } if (unix_peer(other) != sk && unix_recvq_full(other)) { if (!timeo) { err = -EAGAIN; goto out_unlock; } timeo = unix_wait_for_peer(other, timeo); err = sock_intr_errno(timeo); if (signal_pending(current)) goto out_free; goto restart; } skb_queue_tail(&other->sk_receive_queue, skb); unix_state_unlock(other); other->sk_data_ready(other, len); sock_put(other); scm_destroy(siocb->scm); return len; out_unlock: unix_state_unlock(other); out_free: kfree_skb(skb); out: if (other) sock_put(other); scm_destroy(siocb->scm); return err; } static int unix_stream_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { struct sock_iocb *siocb = kiocb_to_siocb(kiocb); struct sock *sk = sock->sk; struct sock *other = NULL; struct sockaddr_un *sunaddr = msg->msg_name; int err, size; struct sk_buff *skb; int sent = 0; struct scm_cookie tmp_scm; bool fds_sent = false; if (NULL == siocb->scm) siocb->scm = &tmp_scm; wait_for_unix_gc(); err = scm_send(sock, msg, siocb->scm); if (err < 0) return err; err = -EOPNOTSUPP; if (msg->msg_flags&MSG_OOB) goto out_err; if (msg->msg_namelen) { err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP; goto out_err; } else { sunaddr = NULL; err = -ENOTCONN; other = unix_peer(sk); if (!other) goto out_err; } if (sk->sk_shutdown & SEND_SHUTDOWN) goto pipe_err; while (sent < len) { /* * Optimisation for the fact that under 0.01% of X * messages typically need breaking up. */ size = len-sent; /* Keep two messages in the pipe so it schedules better */ if (size > ((sk->sk_sndbuf >> 1) - 64)) size = (sk->sk_sndbuf >> 1) - 64; if (size > SKB_MAX_ALLOC) size = SKB_MAX_ALLOC; /* * Grab a buffer */ skb = sock_alloc_send_skb(sk, size, msg->msg_flags&MSG_DONTWAIT, &err); if (skb == NULL) goto out_err; /* * If you pass two values to the sock_alloc_send_skb * it tries to grab the large buffer with GFP_NOFS * (which can fail easily), and if it fails grab the * fallback size buffer which is under a page and will * succeed. [Alan] */ size = min_t(int, size, skb_tailroom(skb)); memcpy(UNIXCREDS(skb), &siocb->scm->creds, sizeof(struct ucred)); /* Only send the fds in the first buffer */ if (siocb->scm->fp && !fds_sent) { err = unix_attach_fds(siocb->scm, skb); if (err) { kfree_skb(skb); goto out_err; } fds_sent = true; } err = memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size); if (err) { kfree_skb(skb); goto out_err; } unix_state_lock(other); if (sock_flag(other, SOCK_DEAD) || (other->sk_shutdown & RCV_SHUTDOWN)) goto pipe_err_free; skb_queue_tail(&other->sk_receive_queue, skb); unix_state_unlock(other); other->sk_data_ready(other, size); sent += size; } scm_destroy(siocb->scm); siocb->scm = NULL; return sent; pipe_err_free: unix_state_unlock(other); kfree_skb(skb); pipe_err: if (sent == 0 && !(msg->msg_flags&MSG_NOSIGNAL)) send_sig(SIGPIPE, current, 0); err = -EPIPE; out_err: scm_destroy(siocb->scm); siocb->scm = NULL; return sent ? : err; } static int unix_seqpacket_sendmsg(struct kiocb *kiocb, struct socket *sock, struct msghdr *msg, size_t len) { int err; struct sock *sk = sock->sk; err = sock_error(sk); if (err) return err; if (sk->sk_state != TCP_ESTABLISHED) return -ENOTCONN; if (msg->msg_namelen) msg->msg_namelen = 0; return unix_dgram_sendmsg(kiocb, sock, msg, len); } static void unix_copy_addr(struct msghdr *msg, struct sock *sk) { struct unix_sock *u = unix_sk(sk); msg->msg_namelen = 0; if (u->addr) { msg->msg_namelen = u->addr->len; memcpy(msg->msg_name, u->addr->name, u->addr->len); } } static int unix_dgram_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock_iocb *siocb = kiocb_to_siocb(iocb); struct scm_cookie tmp_scm; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); int noblock = flags & MSG_DONTWAIT; struct sk_buff *skb; int err; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; msg->msg_namelen = 0; mutex_lock(&u->readlock); skb = skb_recv_datagram(sk, flags, noblock, &err); if (!skb) { unix_state_lock(sk); /* Signal EOF on disconnected non-blocking SEQPACKET socket. */ if (sk->sk_type == SOCK_SEQPACKET && err == -EAGAIN && (sk->sk_shutdown & RCV_SHUTDOWN)) err = 0; unix_state_unlock(sk); goto out_unlock; } wake_up_interruptible_sync(&u->peer_wait); if (msg->msg_name) unix_copy_addr(msg, skb->sk); if (size > skb->len) size = skb->len; else if (size < skb->len) msg->msg_flags |= MSG_TRUNC; err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, size); if (err) goto out_free; if (!siocb->scm) { siocb->scm = &tmp_scm; memset(&tmp_scm, 0, sizeof(tmp_scm)); } siocb->scm->creds = *UNIXCREDS(skb); unix_set_secdata(siocb->scm, skb); if (!(flags & MSG_PEEK)) { if (UNIXCB(skb).fp) unix_detach_fds(siocb->scm, skb); } else { /* It is questionable: on PEEK we could: - do not return fds - good, but too simple 8) - return fds, and do not return them on read (old strategy, apparently wrong) - clone fds (I chose it for now, it is the most universal solution) POSIX 1003.1g does not actually define this clearly at all. POSIX 1003.1g doesn't define a lot of things clearly however! */ if (UNIXCB(skb).fp) siocb->scm->fp = scm_fp_dup(UNIXCB(skb).fp); } err = size; scm_recv(sock, msg, siocb->scm, flags); out_free: skb_free_datagram(sk, skb); out_unlock: mutex_unlock(&u->readlock); out: return err; } /* * Sleep until data has arrive. But check for races.. */ static long unix_stream_data_wait(struct sock *sk, long timeo) { DEFINE_WAIT(wait); unix_state_lock(sk); for (;;) { prepare_to_wait(sk->sk_sleep, &wait, TASK_INTERRUPTIBLE); if (!skb_queue_empty(&sk->sk_receive_queue) || sk->sk_err || (sk->sk_shutdown & RCV_SHUTDOWN) || signal_pending(current) || !timeo) break; set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); unix_state_unlock(sk); timeo = schedule_timeout(timeo); unix_state_lock(sk); clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); } finish_wait(sk->sk_sleep, &wait); unix_state_unlock(sk); return timeo; } static int unix_stream_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock_iocb *siocb = kiocb_to_siocb(iocb); struct scm_cookie tmp_scm; struct sock *sk = sock->sk; struct unix_sock *u = unix_sk(sk); struct sockaddr_un *sunaddr = msg->msg_name; int copied = 0; int check_creds = 0; int target; int err = 0; long timeo; err = -EINVAL; if (sk->sk_state != TCP_ESTABLISHED) goto out; err = -EOPNOTSUPP; if (flags&MSG_OOB) goto out; target = sock_rcvlowat(sk, flags&MSG_WAITALL, size); timeo = sock_rcvtimeo(sk, flags&MSG_DONTWAIT); msg->msg_namelen = 0; /* Lock the socket to prevent queue disordering * while sleeps in memcpy_tomsg */ if (!siocb->scm) { siocb->scm = &tmp_scm; memset(&tmp_scm, 0, sizeof(tmp_scm)); } mutex_lock(&u->readlock); do { int chunk; struct sk_buff *skb; unix_state_lock(sk); skb = skb_dequeue(&sk->sk_receive_queue); if (skb == NULL) { if (copied >= target) goto unlock; /* * POSIX 1003.1g mandates this order. */ err = sock_error(sk); if (err) goto unlock; if (sk->sk_shutdown & RCV_SHUTDOWN) goto unlock; unix_state_unlock(sk); err = -EAGAIN; if (!timeo) break; mutex_unlock(&u->readlock); timeo = unix_stream_data_wait(sk, timeo); if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } mutex_lock(&u->readlock); continue; unlock: unix_state_unlock(sk); break; } unix_state_unlock(sk); if (check_creds) { /* Never glue messages from different writers */ if (memcmp(UNIXCREDS(skb), &siocb->scm->creds, sizeof(siocb->scm->creds)) != 0) { skb_queue_head(&sk->sk_receive_queue, skb); break; } } else { /* Copy credentials */ siocb->scm->creds = *UNIXCREDS(skb); check_creds = 1; } /* Copy address just once */ if (sunaddr) { unix_copy_addr(msg, skb->sk); sunaddr = NULL; } chunk = min_t(unsigned int, skb->len, size); if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { skb_queue_head(&sk->sk_receive_queue, skb); if (copied == 0) copied = -EFAULT; break; } copied += chunk; size -= chunk; /* Mark read part of skb as used */ if (!(flags & MSG_PEEK)) { skb_pull(skb, chunk); if (UNIXCB(skb).fp) unix_detach_fds(siocb->scm, skb); /* put the skb back if we didn't use it up.. */ if (skb->len) { skb_queue_head(&sk->sk_receive_queue, skb); break; } kfree_skb(skb); if (siocb->scm->fp) break; } else { /* It is questionable, see note in unix_dgram_recvmsg. */ if (UNIXCB(skb).fp) siocb->scm->fp = scm_fp_dup(UNIXCB(skb).fp); /* put message back and return */ skb_queue_head(&sk->sk_receive_queue, skb); break; } } while (size); mutex_unlock(&u->readlock); scm_recv(sock, msg, siocb->scm, flags); out: return copied ? : err; } static int unix_shutdown(struct socket *sock, int mode) { struct sock *sk = sock->sk; struct sock *other; mode = (mode+1)&(RCV_SHUTDOWN|SEND_SHUTDOWN); if (mode) { unix_state_lock(sk); sk->sk_shutdown |= mode; other = unix_peer(sk); if (other) sock_hold(other); unix_state_unlock(sk); sk->sk_state_change(sk); if (other && (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET)) { int peer_mode = 0; if (mode&RCV_SHUTDOWN) peer_mode |= SEND_SHUTDOWN; if (mode&SEND_SHUTDOWN) peer_mode |= RCV_SHUTDOWN; unix_state_lock(other); other->sk_shutdown |= peer_mode; unix_state_unlock(other); other->sk_state_change(other); read_lock(&other->sk_callback_lock); if (peer_mode == SHUTDOWN_MASK) sk_wake_async(other, SOCK_WAKE_WAITD, POLL_HUP); else if (peer_mode & RCV_SHUTDOWN) sk_wake_async(other, SOCK_WAKE_WAITD, POLL_IN); read_unlock(&other->sk_callback_lock); } if (other) sock_put(other); } return 0; } static int unix_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; long amount = 0; int err; switch (cmd) { case SIOCOUTQ: amount = sk_wmem_alloc_get(sk); err = put_user(amount, (int __user *)arg); break; case SIOCINQ: { struct sk_buff *skb; if (sk->sk_state == TCP_LISTEN) { err = -EINVAL; break; } spin_lock(&sk->sk_receive_queue.lock); if (sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) { skb_queue_walk(&sk->sk_receive_queue, skb) amount += skb->len; } else { skb = skb_peek(&sk->sk_receive_queue); if (skb) amount = skb->len; } spin_unlock(&sk->sk_receive_queue.lock); err = put_user(amount, (int __user *)arg); break; } default: err = -ENOIOCTLCMD; break; } return err; } static unsigned int unix_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; unsigned int mask; sock_poll_wait(file, sk->sk_sleep, wait); mask = 0; /* exceptional events? */ if (sk->sk_err) mask |= POLLERR; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= POLLHUP; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= POLLRDHUP; /* readable? */ if (!skb_queue_empty(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= POLLIN | POLLRDNORM; /* Connection-based need to check for termination and startup */ if ((sk->sk_type == SOCK_STREAM || sk->sk_type == SOCK_SEQPACKET) && sk->sk_state == TCP_CLOSE) mask |= POLLHUP; /* * we set writable also when the other side has shut down the * connection. This prevents stuck sockets. */ if (unix_writable(sk)) mask |= POLLOUT | POLLWRNORM | POLLWRBAND; return mask; } static unsigned int unix_dgram_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk, *other; unsigned int mask, writable; sock_poll_wait(file, sk->sk_sleep, wait); mask = 0; /* exceptional events? */ if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue)) mask |= POLLERR; if (sk->sk_shutdown & RCV_SHUTDOWN) mask |= POLLRDHUP; if (sk->sk_shutdown == SHUTDOWN_MASK) mask |= POLLHUP; /* readable? */ if (!skb_queue_empty(&sk->sk_receive_queue) || (sk->sk_shutdown & RCV_SHUTDOWN)) mask |= POLLIN | POLLRDNORM; /* Connection-based need to check for termination and startup */ if (sk->sk_type == SOCK_SEQPACKET) { if (sk->sk_state == TCP_CLOSE) mask |= POLLHUP; /* connection hasn't started yet? */ if (sk->sk_state == TCP_SYN_SENT) return mask; } /* writable? */ writable = unix_writable(sk); if (writable) { other = unix_peer_get(sk); if (other) { if (unix_peer(other) != sk) { sock_poll_wait(file, &unix_sk(other)->peer_wait, wait); if (unix_recvq_full(other)) writable = 0; } sock_put(other); } } if (writable) mask |= POLLOUT | POLLWRNORM | POLLWRBAND; else set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags); return mask; } #ifdef CONFIG_PROC_FS static struct sock *first_unix_socket(int *i) { for (*i = 0; *i <= UNIX_HASH_SIZE; (*i)++) { if (!hlist_empty(&unix_socket_table[*i])) return __sk_head(&unix_socket_table[*i]); } return NULL; } static struct sock *next_unix_socket(int *i, struct sock *s) { struct sock *next = sk_next(s); /* More in this chain? */ if (next) return next; /* Look for next non-empty chain. */ for ((*i)++; *i <= UNIX_HASH_SIZE; (*i)++) { if (!hlist_empty(&unix_socket_table[*i])) return __sk_head(&unix_socket_table[*i]); } return NULL; } struct unix_iter_state { struct seq_net_private p; int i; }; static struct sock *unix_seq_idx(struct seq_file *seq, loff_t pos) { struct unix_iter_state *iter = seq->private; loff_t off = 0; struct sock *s; for (s = first_unix_socket(&iter->i); s; s = next_unix_socket(&iter->i, s)) { if (sock_net(s) != seq_file_net(seq)) continue; if (off == pos) return s; ++off; } return NULL; } static void *unix_seq_start(struct seq_file *seq, loff_t *pos) __acquires(unix_table_lock) { spin_lock(&unix_table_lock); return *pos ? unix_seq_idx(seq, *pos - 1) : SEQ_START_TOKEN; } static void *unix_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct unix_iter_state *iter = seq->private; struct sock *sk = v; ++*pos; if (v == SEQ_START_TOKEN) sk = first_unix_socket(&iter->i); else sk = next_unix_socket(&iter->i, sk); while (sk && (sock_net(sk) != seq_file_net(seq))) sk = next_unix_socket(&iter->i, sk); return sk; } static void unix_seq_stop(struct seq_file *seq, void *v) __releases(unix_table_lock) { spin_unlock(&unix_table_lock); } static int unix_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_puts(seq, "Num RefCount Protocol Flags Type St " "Inode Path\n"); else { struct sock *s = v; struct unix_sock *u = unix_sk(s); unix_state_lock(s); seq_printf(seq, "%p: %08X %08X %08X %04X %02X %5lu", s, atomic_read(&s->sk_refcnt), 0, s->sk_state == TCP_LISTEN ? __SO_ACCEPTCON : 0, s->sk_type, s->sk_socket ? (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTED : SS_UNCONNECTED) : (s->sk_state == TCP_ESTABLISHED ? SS_CONNECTING : SS_DISCONNECTING), sock_i_ino(s)); if (u->addr) { int i, len; seq_putc(seq, ' '); i = 0; len = u->addr->len - sizeof(short); if (!UNIX_ABSTRACT(s)) len--; else { seq_putc(seq, '@'); i++; } for ( ; i < len; i++) seq_putc(seq, u->addr->name->sun_path[i]); } unix_state_unlock(s); seq_putc(seq, '\n'); } return 0; } static const struct seq_operations unix_seq_ops = { .start = unix_seq_start, .next = unix_seq_next, .stop = unix_seq_stop, .show = unix_seq_show, }; static int unix_seq_open(struct inode *inode, struct file *file) { return seq_open_net(inode, file, &unix_seq_ops, sizeof(struct unix_iter_state)); } static const struct file_operations unix_seq_fops = { .owner = THIS_MODULE, .open = unix_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_net, }; #endif static const struct net_proto_family unix_family_ops = { .family = PF_UNIX, .create = unix_create, .owner = THIS_MODULE, }; static int __net_init unix_net_init(struct net *net) { int error = -ENOMEM; net->unx.sysctl_max_dgram_qlen = 10; if (unix_sysctl_register(net)) goto out; #ifdef CONFIG_PROC_FS if (!proc_net_fops_create(net, "unix", 0, &unix_seq_fops)) { unix_sysctl_unregister(net); goto out; } #endif error = 0; out: return error; } static void __net_exit unix_net_exit(struct net *net) { unix_sysctl_unregister(net); proc_net_remove(net, "unix"); } static struct pernet_operations unix_net_ops = { .init = unix_net_init, .exit = unix_net_exit, }; static int __init af_unix_init(void) { int rc = -1; struct sk_buff *dummy_skb; BUILD_BUG_ON(sizeof(struct unix_skb_parms) > sizeof(dummy_skb->cb)); rc = proto_register(&unix_proto, 1); if (rc != 0) { printk(KERN_CRIT "%s: Cannot create unix_sock SLAB cache!\n", __func__); goto out; } sock_register(&unix_family_ops); register_pernet_subsys(&unix_net_ops); out: return rc; } static void __exit af_unix_exit(void) { sock_unregister(PF_UNIX); proto_unregister(&unix_proto); unregister_pernet_subsys(&unix_net_ops); } /* Earlier than device_initcall() so that other drivers invoking request_module() don't end up in a loop when modprobe tries to use a UNIX socket. But later than subsys_initcall() because we depend on stuff initialised there */ fs_initcall(af_unix_init); module_exit(af_unix_exit); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_UNIX);