aboutsummaryrefslogtreecommitdiffstats
path: root/net/mac80211/wep.c
blob: a0cff72a580baf1389ab07c2c5a86a9cb928d006 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
/*
 * Software WEP encryption implementation
 * Copyright 2002, Jouni Malinen <jkmaline@cc.hut.fi>
 * Copyright 2003, Instant802 Networks, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/netdevice.h>
#include <linux/types.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/crc32.h>
#include <linux/crypto.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>

#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "wep.h"


int ieee80211_wep_init(struct ieee80211_local *local)
{
	/* start WEP IV from a random value */
	get_random_bytes(&local->wep_iv, WEP_IV_LEN);

	local->wep_tx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
						CRYPTO_ALG_ASYNC);
	if (IS_ERR(local->wep_tx_tfm))
		return -ENOMEM;

	local->wep_rx_tfm = crypto_alloc_blkcipher("ecb(arc4)", 0,
						CRYPTO_ALG_ASYNC);
	if (IS_ERR(local->wep_rx_tfm)) {
		crypto_free_blkcipher(local->wep_tx_tfm);
		return -ENOMEM;
	}

	return 0;
}

void ieee80211_wep_free(struct ieee80211_local *local)
{
	crypto_free_blkcipher(local->wep_tx_tfm);
	crypto_free_blkcipher(local->wep_rx_tfm);
}

static inline int ieee80211_wep_weak_iv(u32 iv, int keylen)
{
	/* Fluhrer, Mantin, and Shamir have reported weaknesses in the
	 * key scheduling algorithm of RC4. At least IVs (KeyByte + 3,
	 * 0xff, N) can be used to speedup attacks, so avoid using them. */
	if ((iv & 0xff00) == 0xff00) {
		u8 B = (iv >> 16) & 0xff;
		if (B >= 3 && B < 3 + keylen)
			return 1;
	}
	return 0;
}


static void ieee80211_wep_get_iv(struct ieee80211_local *local,
				 struct ieee80211_key *key, u8 *iv)
{
	local->wep_iv++;
	if (ieee80211_wep_weak_iv(local->wep_iv, key->conf.keylen))
		local->wep_iv += 0x0100;

	if (!iv)
		return;

	*iv++ = (local->wep_iv >> 16) & 0xff;
	*iv++ = (local->wep_iv >> 8) & 0xff;
	*iv++ = local->wep_iv & 0xff;
	*iv++ = key->conf.keyidx << 6;
}


static u8 *ieee80211_wep_add_iv(struct ieee80211_local *local,
				struct sk_buff *skb,
				struct ieee80211_key *key)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u16 fc;
	int hdrlen;
	u8 *newhdr;

	fc = le16_to_cpu(hdr->frame_control);
	fc |= IEEE80211_FCTL_PROTECTED;
	hdr->frame_control = cpu_to_le16(fc);

	if ((skb_headroom(skb) < WEP_IV_LEN ||
	     skb_tailroom(skb) < WEP_ICV_LEN)) {
		I802_DEBUG_INC(local->tx_expand_skb_head);
		if (unlikely(pskb_expand_head(skb, WEP_IV_LEN, WEP_ICV_LEN,
					      GFP_ATOMIC)))
			return NULL;
	}

	hdrlen = ieee80211_get_hdrlen(fc);
	newhdr = skb_push(skb, WEP_IV_LEN);
	memmove(newhdr, newhdr + WEP_IV_LEN, hdrlen);
	ieee80211_wep_get_iv(local, key, newhdr + hdrlen);
	return newhdr + hdrlen;
}


static void ieee80211_wep_remove_iv(struct ieee80211_local *local,
				    struct sk_buff *skb,
				    struct ieee80211_key *key)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u16 fc;
	int hdrlen;

	fc = le16_to_cpu(hdr->frame_control);
	hdrlen = ieee80211_get_hdrlen(fc);
	memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
	skb_pull(skb, WEP_IV_LEN);
}


/* Perform WEP encryption using given key. data buffer must have tailroom
 * for 4-byte ICV. data_len must not include this ICV. Note: this function
 * does _not_ add IV. data = RC4(data | CRC32(data)) */
void ieee80211_wep_encrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
				size_t klen, u8 *data, size_t data_len)
{
	struct blkcipher_desc desc = { .tfm = tfm };
	struct scatterlist sg;
	__le32 *icv;

	icv = (__le32 *)(data + data_len);
	*icv = cpu_to_le32(~crc32_le(~0, data, data_len));

	crypto_blkcipher_setkey(tfm, rc4key, klen);
	sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
	crypto_blkcipher_encrypt(&desc, &sg, &sg, sg.length);
}


/* Perform WEP encryption on given skb. 4 bytes of extra space (IV) in the
 * beginning of the buffer 4 bytes of extra space (ICV) in the end of the
 * buffer will be added. Both IV and ICV will be transmitted, so the
 * payload length increases with 8 bytes.
 *
 * WEP frame payload: IV + TX key idx, RC4(data), ICV = RC4(CRC32(data))
 */
int ieee80211_wep_encrypt(struct ieee80211_local *local, struct sk_buff *skb,
			  struct ieee80211_key *key)
{
	u32 klen;
	u8 *rc4key, *iv;
	size_t len;

	if (!key || key->conf.alg != ALG_WEP)
		return -1;

	klen = 3 + key->conf.keylen;
	rc4key = kmalloc(klen, GFP_ATOMIC);
	if (!rc4key)
		return -1;

	iv = ieee80211_wep_add_iv(local, skb, key);
	if (!iv) {
		kfree(rc4key);
		return -1;
	}

	len = skb->len - (iv + WEP_IV_LEN - skb->data);

	/* Prepend 24-bit IV to RC4 key */
	memcpy(rc4key, iv, 3);

	/* Copy rest of the WEP key (the secret part) */
	memcpy(rc4key + 3, key->conf.key, key->conf.keylen);

	/* Add room for ICV */
	skb_put(skb, WEP_ICV_LEN);

	ieee80211_wep_encrypt_data(local->wep_tx_tfm, rc4key, klen,
				   iv + WEP_IV_LEN, len);

	kfree(rc4key);

	return 0;
}


/* Perform WEP decryption using given key. data buffer includes encrypted
 * payload, including 4-byte ICV, but _not_ IV. data_len must not include ICV.
 * Return 0 on success and -1 on ICV mismatch. */
int ieee80211_wep_decrypt_data(struct crypto_blkcipher *tfm, u8 *rc4key,
			       size_t klen, u8 *data, size_t data_len)
{
	struct blkcipher_desc desc = { .tfm = tfm };
	struct scatterlist sg;
	__le32 crc;

	crypto_blkcipher_setkey(tfm, rc4key, klen);
	sg_init_one(&sg, data, data_len + WEP_ICV_LEN);
	crypto_blkcipher_decrypt(&desc, &sg, &sg, sg.length);

	crc = cpu_to_le32(~crc32_le(~0, data, data_len));
	if (memcmp(&crc, data + data_len, WEP_ICV_LEN) != 0)
		/* ICV mismatch */
		return -1;

	return 0;
}


/* Perform WEP decryption on given skb. Buffer includes whole WEP part of
 * the frame: IV (4 bytes), encrypted payload (including SNAP header),
 * ICV (4 bytes). skb->len includes both IV and ICV.
 *
 * Returns 0 if frame was decrypted successfully and ICV was correct and -1 on
 * failure. If frame is OK, IV and ICV will be removed, i.e., decrypted payload
 * is moved to the beginning of the skb and skb length will be reduced.
 */
int ieee80211_wep_decrypt(struct ieee80211_local *local, struct sk_buff *skb,
			  struct ieee80211_key *key)
{
	u32 klen;
	u8 *rc4key;
	u8 keyidx;
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u16 fc;
	int hdrlen;
	size_t len;
	int ret = 0;

	fc = le16_to_cpu(hdr->frame_control);
	if (!(fc & IEEE80211_FCTL_PROTECTED))
		return -1;

	hdrlen = ieee80211_get_hdrlen(fc);

	if (skb->len < 8 + hdrlen)
		return -1;

	len = skb->len - hdrlen - 8;

	keyidx = skb->data[hdrlen + 3] >> 6;

	if (!key || keyidx != key->conf.keyidx || key->conf.alg != ALG_WEP)
		return -1;

	klen = 3 + key->conf.keylen;

	rc4key = kmalloc(klen, GFP_ATOMIC);
	if (!rc4key)
		return -1;

	/* Prepend 24-bit IV to RC4 key */
	memcpy(rc4key, skb->data + hdrlen, 3);

	/* Copy rest of the WEP key (the secret part) */
	memcpy(rc4key + 3, key->conf.key, key->conf.keylen);

	if (ieee80211_wep_decrypt_data(local->wep_rx_tfm, rc4key, klen,
				       skb->data + hdrlen + WEP_IV_LEN,
				       len)) {
		if (net_ratelimit())
			printk(KERN_DEBUG "WEP decrypt failed (ICV)\n");
		ret = -1;
	}

	kfree(rc4key);

	/* Trim ICV */
	skb_trim(skb, skb->len - WEP_ICV_LEN);

	/* Remove IV */
	memmove(skb->data + WEP_IV_LEN, skb->data, hdrlen);
	skb_pull(skb, WEP_IV_LEN);

	return ret;
}


u8 * ieee80211_wep_is_weak_iv(struct sk_buff *skb, struct ieee80211_key *key)
{
	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
	u16 fc;
	int hdrlen;
	u8 *ivpos;
	u32 iv;

	fc = le16_to_cpu(hdr->frame_control);
	if (!(fc & IEEE80211_FCTL_PROTECTED))
		return NULL;

	hdrlen = ieee80211_get_hdrlen(fc);
	ivpos = skb->data + hdrlen;
	iv = (ivpos[0] << 16) | (ivpos[1] << 8) | ivpos[2];

	if (ieee80211_wep_weak_iv(iv, key->conf.keylen))
		return ivpos;

	return NULL;
}

ieee80211_txrx_result
ieee80211_crypto_wep_decrypt(struct ieee80211_txrx_data *rx)
{
	if ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA &&
	    ((rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_MGMT ||
	     (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_AUTH))
		return TXRX_CONTINUE;

	if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED)) {
		if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
#ifdef CONFIG_MAC80211_DEBUG
			if (net_ratelimit())
				printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
				       "failed\n", rx->dev->name);
#endif /* CONFIG_MAC80211_DEBUG */
			return TXRX_DROP;
		}
	} else if (!(rx->u.rx.status->flag & RX_FLAG_IV_STRIPPED)) {
		ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
		/* remove ICV */
		skb_trim(rx->skb, rx->skb->len - 4);
	}

	return TXRX_CONTINUE;
}

static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb)
{
	if (!(tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) {
		if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
			return -1;
	} else {
		tx->u.tx.control->key_idx = tx->key->conf.hw_key_idx;
		if (tx->key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) {
			if (!ieee80211_wep_add_iv(tx->local, skb, tx->key))
				return -1;
		}
	}
	return 0;
}

ieee80211_txrx_result
ieee80211_crypto_wep_encrypt(struct ieee80211_txrx_data *tx)
{
	tx->u.tx.control->iv_len = WEP_IV_LEN;
	tx->u.tx.control->icv_len = WEP_ICV_LEN;
	ieee80211_tx_set_iswep(tx);

	if (wep_encrypt_skb(tx, tx->skb) < 0) {
		I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
		return TXRX_DROP;
	}

	if (tx->u.tx.extra_frag) {
		int i;
		for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
			if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) {
				I802_DEBUG_INC(tx->local->
					       tx_handlers_drop_wep);
				return TXRX_DROP;
			}
		}
	}

	return TXRX_CONTINUE;
}