aboutsummaryrefslogtreecommitdiffstats
path: root/net/ieee80211/ieee80211_tx.c
blob: f78f57e8844a9c1eb2d08bbc9b3f4ba6a66b9b94 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/******************************************************************************

  Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.

  This program is free software; you can redistribute it and/or modify it
  under the terms of version 2 of the GNU General Public License as
  published by the Free Software Foundation.

  This program is distributed in the hope that it will be useful, but WITHOUT
  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  more details.

  You should have received a copy of the GNU General Public License along with
  this program; if not, write to the Free Software Foundation, Inc., 59
  Temple Place - Suite 330, Boston, MA  02111-1307, USA.

  The full GNU General Public License is included in this distribution in the
  file called LICENSE.

  Contact Information:
  James P. Ketrenos <ipw2100-admin@linux.intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

******************************************************************************/
#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/if_arp.h>
#include <linux/in6.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/proc_fs.h>
#include <linux/skbuff.h>
#include <linux/slab.h>
#include <linux/tcp.h>
#include <linux/types.h>
#include <linux/wireless.h>
#include <linux/etherdevice.h>
#include <asm/uaccess.h>

#include <net/ieee80211.h>

/*

802.11 Data Frame

      ,-------------------------------------------------------------------.
Bytes |  2   |  2   |    6    |    6    |    6    |  2   | 0..2312 |   4  |
      |------|------|---------|---------|---------|------|---------|------|
Desc. | ctrl | dura |  DA/RA  |   TA    |    SA   | Sequ |  Frame  |  fcs |
      |      | tion | (BSSID) |         |         | ence |  data   |      |
      `--------------------------------------------------|         |------'
Total: 28 non-data bytes                                 `----.----'
							      |
       .- 'Frame data' expands, if WEP enabled, to <----------'
       |
       V
      ,-----------------------.
Bytes |  4  |   0-2296  |  4  |
      |-----|-----------|-----|
Desc. | IV  | Encrypted | ICV |
      |     | Packet    |     |
      `-----|           |-----'
	    `-----.-----'
		  |
       .- 'Encrypted Packet' expands to
       |
       V
      ,---------------------------------------------------.
Bytes |  1   |  1   |    1    |    3     |  2   |  0-2304 |
      |------|------|---------|----------|------|---------|
Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP      |
      | DSAP | SSAP |         |          |      | Packet  |
      | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8|      |         |
      `----------------------------------------------------
Total: 8 non-data bytes

802.3 Ethernet Data Frame

      ,-----------------------------------------.
Bytes |   6   |   6   |  2   |  Variable |   4  |
      |-------|-------|------|-----------|------|
Desc. | Dest. | Source| Type | IP Packet |  fcs |
      |  MAC  |  MAC  |      |           |      |
      `-----------------------------------------'
Total: 18 non-data bytes

In the event that fragmentation is required, the incoming payload is split into
N parts of size ieee->fts.  The first fragment contains the SNAP header and the
remaining packets are just data.

If encryption is enabled, each fragment payload size is reduced by enough space
to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
So if you have 1500 bytes of payload with ieee->fts set to 500 without
encryption it will take 3 frames.  With WEP it will take 4 frames as the
payload of each frame is reduced to 492 bytes.

* SKB visualization
*
*  ,- skb->data
* |
* |    ETHERNET HEADER        ,-<-- PAYLOAD
* |                           |     14 bytes from skb->data
* |  2 bytes for Type --> ,T. |     (sizeof ethhdr)
* |                       | | |
* |,-Dest.--. ,--Src.---. | | |
* |  6 bytes| | 6 bytes | | | |
* v         | |         | | | |
* 0         | v       1 | v | v           2
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
*     ^     | ^         | ^ |
*     |     | |         | | |
*     |     | |         | `T' <---- 2 bytes for Type
*     |     | |         |
*     |     | '---SNAP--' <-------- 6 bytes for SNAP
*     |     |
*     `-IV--' <-------------------- 4 bytes for IV (WEP)
*
*      SNAP HEADER
*
*/

static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };

static int ieee80211_copy_snap(u8 * data, __be16 h_proto)
{
	struct ieee80211_snap_hdr *snap;
	u8 *oui;

	snap = (struct ieee80211_snap_hdr *)data;
	snap->dsap = 0xaa;
	snap->ssap = 0xaa;
	snap->ctrl = 0x03;

	if (h_proto == htons(ETH_P_AARP) || h_proto == htons(ETH_P_IPX))
		oui = P802_1H_OUI;
	else
		oui = RFC1042_OUI;
	snap->oui[0] = oui[0];
	snap->oui[1] = oui[1];
	snap->oui[2] = oui[2];

	memcpy(data + SNAP_SIZE, &h_proto, sizeof(u16));

	return SNAP_SIZE + sizeof(u16);
}

static int ieee80211_encrypt_fragment(struct ieee80211_device *ieee,
					     struct sk_buff *frag, int hdr_len)
{
	struct lib80211_crypt_data *crypt =
		ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
	int res;

	if (crypt == NULL)
		return -1;

	/* To encrypt, frame format is:
	 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */
	atomic_inc(&crypt->refcnt);
	res = 0;
	if (crypt->ops && crypt->ops->encrypt_mpdu)
		res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);

	atomic_dec(&crypt->refcnt);
	if (res < 0) {
		printk(KERN_INFO "%s: Encryption failed: len=%d.\n",
		       ieee->dev->name, frag->len);
		ieee->ieee_stats.tx_discards++;
		return -1;
	}

	return 0;
}

void ieee80211_txb_free(struct ieee80211_txb *txb)
{
	int i;
	if (unlikely(!txb))
		return;
	for (i = 0; i < txb->nr_frags; i++)
		if (txb->fragments[i])
			dev_kfree_skb_any(txb->fragments[i]);
	kfree(txb);
}

static struct ieee80211_txb *ieee80211_alloc_txb(int nr_frags, int txb_size,
						 int headroom, gfp_t gfp_mask)
{
	struct ieee80211_txb *txb;
	int i;
	txb = kmalloc(sizeof(struct ieee80211_txb) + (sizeof(u8 *) * nr_frags),
		      gfp_mask);
	if (!txb)
		return NULL;

	memset(txb, 0, sizeof(struct ieee80211_txb));
	txb->nr_frags = nr_frags;
	txb->frag_size = txb_size;

	for (i = 0; i < nr_frags; i++) {
		txb->fragments[i] = __dev_alloc_skb(txb_size + headroom,
						    gfp_mask);
		if (unlikely(!txb->fragments[i])) {
			i--;
			break;
		}
		skb_reserve(txb->fragments[i], headroom);
	}
	if (unlikely(i != nr_frags)) {
		while (i >= 0)
			dev_kfree_skb_any(txb->fragments[i--]);
		kfree(txb);
		return NULL;
	}
	return txb;
}

static int ieee80211_classify(struct sk_buff *skb)
{
	struct ethhdr *eth;
	struct iphdr *ip;

	eth = (struct ethhdr *)skb->data;
	if (eth->h_proto != htons(ETH_P_IP))
		return 0;

	ip = ip_hdr(skb);
	switch (ip->tos & 0xfc) {
	case 0x20:
		return 2;
	case 0x40:
		return 1;
	case 0x60:
		return 3;
	case 0x80:
		return 4;
	case 0xa0:
		return 5;
	case 0xc0:
		return 6;
	case 0xe0:
		return 7;
	default:
		return 0;
	}
}

/* Incoming skb is converted to a txb which consists of
 * a block of 802.11 fragment packets (stored as skbs) */
int ieee80211_xmit(struct sk_buff *skb, struct net_device *dev)
{
	struct ieee80211_device *ieee = netdev_priv(dev);
	struct ieee80211_txb *txb = NULL;
	struct ieee80211_hdr_3addrqos *frag_hdr;
	int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size,
	    rts_required;
	unsigned long flags;
	struct net_device_stats *stats = &ieee->stats;
	int encrypt, host_encrypt, host_encrypt_msdu, host_build_iv;
	__be16 ether_type;
	int bytes, fc, hdr_len;
	struct sk_buff *skb_frag;
	struct ieee80211_hdr_3addrqos header = {/* Ensure zero initialized */
		.duration_id = 0,
		.seq_ctl = 0,
		.qos_ctl = 0
	};
	u8 dest[ETH_ALEN], src[ETH_ALEN];
	struct lib80211_crypt_data *crypt;
	int priority = skb->priority;
	int snapped = 0;

	if (ieee->is_queue_full && (*ieee->is_queue_full) (dev, priority))
		return NETDEV_TX_BUSY;

	spin_lock_irqsave(&ieee->lock, flags);

	/* If there is no driver handler to take the TXB, dont' bother
	 * creating it... */
	if (!ieee->hard_start_xmit) {
		printk(KERN_WARNING "%s: No xmit handler.\n", ieee->dev->name);
		goto success;
	}

	if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
		printk(KERN_WARNING "%s: skb too small (%d).\n",
		       ieee->dev->name, skb->len);
		goto success;
	}

	ether_type = ((struct ethhdr *)skb->data)->h_proto;

	crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];

	encrypt = !(ether_type == htons(ETH_P_PAE) && ieee->ieee802_1x) &&
	    ieee->sec.encrypt;

	host_encrypt = ieee->host_encrypt && encrypt && crypt;
	host_encrypt_msdu = ieee->host_encrypt_msdu && encrypt && crypt;
	host_build_iv = ieee->host_build_iv && encrypt && crypt;

	if (!encrypt && ieee->ieee802_1x &&
	    ieee->drop_unencrypted && ether_type != htons(ETH_P_PAE)) {
		stats->tx_dropped++;
		goto success;
	}

	/* Save source and destination addresses */
	skb_copy_from_linear_data(skb, dest, ETH_ALEN);
	skb_copy_from_linear_data_offset(skb, ETH_ALEN, src, ETH_ALEN);

	if (host_encrypt || host_build_iv)
		fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA |
		    IEEE80211_FCTL_PROTECTED;
	else
		fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA;

	if (ieee->iw_mode == IW_MODE_INFRA) {
		fc |= IEEE80211_FCTL_TODS;
		/* To DS: Addr1 = BSSID, Addr2 = SA, Addr3 = DA */
		memcpy(header.addr1, ieee->bssid, ETH_ALEN);
		memcpy(header.addr2, src, ETH_ALEN);
		memcpy(header.addr3, dest, ETH_ALEN);
	} else if (ieee->iw_mode == IW_MODE_ADHOC) {
		/* not From/To DS: Addr1 = DA, Addr2 = SA, Addr3 = BSSID */
		memcpy(header.addr1, dest, ETH_ALEN);
		memcpy(header.addr2, src, ETH_ALEN);
		memcpy(header.addr3, ieee->bssid, ETH_ALEN);
	}
	hdr_len = IEEE80211_3ADDR_LEN;

	if (ieee->is_qos_active && ieee->is_qos_active(dev, skb)) {
		fc |= IEEE80211_STYPE_QOS_DATA;
		hdr_len += 2;

		skb->priority = ieee80211_classify(skb);
		header.qos_ctl |= cpu_to_le16(skb->priority & IEEE80211_QCTL_TID);
	}
	header.frame_ctl = cpu_to_le16(fc);

	/* Advance the SKB to the start of the payload */
	skb_pull(skb, sizeof(struct ethhdr));

	/* Determine total amount of storage required for TXB packets */
	bytes = skb->len + SNAP_SIZE + sizeof(u16);

	/* Encrypt msdu first on the whole data packet. */
	if ((host_encrypt || host_encrypt_msdu) &&
	    crypt && crypt->ops && crypt->ops->encrypt_msdu) {
		int res = 0;
		int len = bytes + hdr_len + crypt->ops->extra_msdu_prefix_len +
		    crypt->ops->extra_msdu_postfix_len;
		struct sk_buff *skb_new = dev_alloc_skb(len);

		if (unlikely(!skb_new))
			goto failed;

		skb_reserve(skb_new, crypt->ops->extra_msdu_prefix_len);
		memcpy(skb_put(skb_new, hdr_len), &header, hdr_len);
		snapped = 1;
		ieee80211_copy_snap(skb_put(skb_new, SNAP_SIZE + sizeof(u16)),
				    ether_type);
		skb_copy_from_linear_data(skb, skb_put(skb_new, skb->len), skb->len);
		res = crypt->ops->encrypt_msdu(skb_new, hdr_len, crypt->priv);
		if (res < 0) {
			IEEE80211_ERROR("msdu encryption failed\n");
			dev_kfree_skb_any(skb_new);
			goto failed;
		}
		dev_kfree_skb_any(skb);
		skb = skb_new;
		bytes += crypt->ops->extra_msdu_prefix_len +
		    crypt->ops->extra_msdu_postfix_len;
		skb_pull(skb, hdr_len);
	}

	if (host_encrypt || ieee->host_open_frag) {
		/* Determine fragmentation size based on destination (multicast
		 * and broadcast are not fragmented) */
		if (is_multicast_ether_addr(dest) ||
		    is_broadcast_ether_addr(dest))
			frag_size = MAX_FRAG_THRESHOLD;
		else
			frag_size = ieee->fts;

		/* Determine amount of payload per fragment.  Regardless of if
		 * this stack is providing the full 802.11 header, one will
		 * eventually be affixed to this fragment -- so we must account
		 * for it when determining the amount of payload space. */
		bytes_per_frag = frag_size - hdr_len;
		if (ieee->config &
		    (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
			bytes_per_frag -= IEEE80211_FCS_LEN;

		/* Each fragment may need to have room for encryptiong
		 * pre/postfix */
		if (host_encrypt)
			bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
			    crypt->ops->extra_mpdu_postfix_len;

		/* Number of fragments is the total
		 * bytes_per_frag / payload_per_fragment */
		nr_frags = bytes / bytes_per_frag;
		bytes_last_frag = bytes % bytes_per_frag;
		if (bytes_last_frag)
			nr_frags++;
		else
			bytes_last_frag = bytes_per_frag;
	} else {
		nr_frags = 1;
		bytes_per_frag = bytes_last_frag = bytes;
		frag_size = bytes + hdr_len;
	}

	rts_required = (frag_size > ieee->rts
			&& ieee->config & CFG_IEEE80211_RTS);
	if (rts_required)
		nr_frags++;

	/* When we allocate the TXB we allocate enough space for the reserve
	 * and full fragment bytes (bytes_per_frag doesn't include prefix,
	 * postfix, header, FCS, etc.) */
	txb = ieee80211_alloc_txb(nr_frags, frag_size,
				  ieee->tx_headroom, GFP_ATOMIC);
	if (unlikely(!txb)) {
		printk(KERN_WARNING "%s: Could not allocate TXB\n",
		       ieee->dev->name);
		goto failed;
	}
	txb->encrypted = encrypt;
	if (host_encrypt)
		txb->payload_size = frag_size * (nr_frags - 1) +
		    bytes_last_frag;
	else
		txb->payload_size = bytes;

	if (rts_required) {
		skb_frag = txb->fragments[0];
		frag_hdr =
		    (struct ieee80211_hdr_3addrqos *)skb_put(skb_frag, hdr_len);

		/*
		 * Set header frame_ctl to the RTS.
		 */
		header.frame_ctl =
		    cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
		memcpy(frag_hdr, &header, hdr_len);

		/*
		 * Restore header frame_ctl to the original data setting.
		 */
		header.frame_ctl = cpu_to_le16(fc);

		if (ieee->config &
		    (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
			skb_put(skb_frag, 4);

		txb->rts_included = 1;
		i = 1;
	} else
		i = 0;

	for (; i < nr_frags; i++) {
		skb_frag = txb->fragments[i];

		if (host_encrypt || host_build_iv)
			skb_reserve(skb_frag,
				    crypt->ops->extra_mpdu_prefix_len);

		frag_hdr =
		    (struct ieee80211_hdr_3addrqos *)skb_put(skb_frag, hdr_len);
		memcpy(frag_hdr, &header, hdr_len);

		/* If this is not the last fragment, then add the MOREFRAGS
		 * bit to the frame control */
		if (i != nr_frags - 1) {
			frag_hdr->frame_ctl =
			    cpu_to_le16(fc | IEEE80211_FCTL_MOREFRAGS);
			bytes = bytes_per_frag;
		} else {
			/* The last fragment takes the remaining length */
			bytes = bytes_last_frag;
		}

		if (i == 0 && !snapped) {
			ieee80211_copy_snap(skb_put
					    (skb_frag, SNAP_SIZE + sizeof(u16)),
					    ether_type);
			bytes -= SNAP_SIZE + sizeof(u16);
		}

		skb_copy_from_linear_data(skb, skb_put(skb_frag, bytes), bytes);

		/* Advance the SKB... */
		skb_pull(skb, bytes);

		/* Encryption routine will move the header forward in order
		 * to insert the IV between the header and the payload */
		if (host_encrypt)
			ieee80211_encrypt_fragment(ieee, skb_frag, hdr_len);
		else if (host_build_iv) {
			atomic_inc(&crypt->refcnt);
			if (crypt->ops->build_iv)
				crypt->ops->build_iv(skb_frag, hdr_len,
				      ieee->sec.keys[ieee->sec.active_key],
				      ieee->sec.key_sizes[ieee->sec.active_key],
				      crypt->priv);
			atomic_dec(&crypt->refcnt);
		}

		if (ieee->config &
		    (CFG_IEEE80211_COMPUTE_FCS | CFG_IEEE80211_RESERVE_FCS))
			skb_put(skb_frag, 4);
	}

      success:
	spin_unlock_irqrestore(&ieee->lock, flags);

	dev_kfree_skb_any(skb);

	if (txb) {
		int ret = (*ieee->hard_start_xmit) (txb, dev, priority);
		if (ret == 0) {
			stats->tx_packets++;
			stats->tx_bytes += txb->payload_size;
			return 0;
		}

		ieee80211_txb_free(txb);
	}

	return 0;

      failed:
	spin_unlock_irqrestore(&ieee->lock, flags);
	netif_stop_queue(dev);
	stats->tx_errors++;
	return 1;
}

EXPORT_SYMBOL(ieee80211_txb_free);