aboutsummaryrefslogtreecommitdiffstats
path: root/mm/vmalloc.c
blob: 3cee76a8c9f0b621e3479cac9f6320b0d01bdddd (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
/*
 *  linux/mm/vmalloc.c
 *
 *  Copyright (C) 1993  Linus Torvalds
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
 *  Numa awareness, Christoph Lameter, SGI, June 2005
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>

#include <linux/vmalloc.h>

#include <asm/uaccess.h>
#include <asm/tlbflush.h>


DEFINE_RWLOCK(vmlist_lock);
struct vm_struct *vmlist;

static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
			    int node);

static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
{
	pte_t *pte;

	pte = pte_offset_kernel(pmd, addr);
	do {
		pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
		WARN_ON(!pte_none(ptent) && !pte_present(ptent));
	} while (pte++, addr += PAGE_SIZE, addr != end);
}

static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
						unsigned long end)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
		vunmap_pte_range(pmd, addr, next);
	} while (pmd++, addr = next, addr != end);
}

static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
						unsigned long end)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
		vunmap_pmd_range(pud, addr, next);
	} while (pud++, addr = next, addr != end);
}

void unmap_kernel_range(unsigned long addr, unsigned long size)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long start = addr;
	unsigned long end = addr + size;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	flush_cache_vunmap(addr, end);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
		vunmap_pud_range(pgd, addr, next);
	} while (pgd++, addr = next, addr != end);
	flush_tlb_kernel_range(start, end);
}

static void unmap_vm_area(struct vm_struct *area)
{
	unmap_kernel_range((unsigned long)area->addr, area->size);
}

static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
			unsigned long end, pgprot_t prot, struct page ***pages)
{
	pte_t *pte;

	pte = pte_alloc_kernel(pmd, addr);
	if (!pte)
		return -ENOMEM;
	do {
		struct page *page = **pages;
		WARN_ON(!pte_none(*pte));
		if (!page)
			return -ENOMEM;
		set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
		(*pages)++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
	return 0;
}

static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
			unsigned long end, pgprot_t prot, struct page ***pages)
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_alloc(&init_mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		if (vmap_pte_range(pmd, addr, next, prot, pages))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
			unsigned long end, pgprot_t prot, struct page ***pages)
{
	pud_t *pud;
	unsigned long next;

	pud = pud_alloc(&init_mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (vmap_pmd_range(pud, addr, next, prot, pages))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
{
	pgd_t *pgd;
	unsigned long next;
	unsigned long addr = (unsigned long) area->addr;
	unsigned long end = addr + area->size - PAGE_SIZE;
	int err;

	BUG_ON(addr >= end);
	pgd = pgd_offset_k(addr);
	do {
		next = pgd_addr_end(addr, end);
		err = vmap_pud_range(pgd, addr, next, prot, pages);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
	flush_cache_vmap((unsigned long) area->addr, end);
	return err;
}
EXPORT_SYMBOL_GPL(map_vm_area);

static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
					    unsigned long start, unsigned long end,
					    int node, gfp_t gfp_mask)
{
	struct vm_struct **p, *tmp, *area;
	unsigned long align = 1;
	unsigned long addr;

	BUG_ON(in_interrupt());
	if (flags & VM_IOREMAP) {
		int bit = fls(size);

		if (bit > IOREMAP_MAX_ORDER)
			bit = IOREMAP_MAX_ORDER;
		else if (bit < PAGE_SHIFT)
			bit = PAGE_SHIFT;

		align = 1ul << bit;
	}
	addr = ALIGN(start, align);
	size = PAGE_ALIGN(size);
	if (unlikely(!size))
		return NULL;

	area = kmalloc_node(sizeof(*area), gfp_mask & GFP_LEVEL_MASK, node);
	if (unlikely(!area))
		return NULL;

	/*
	 * We always allocate a guard page.
	 */
	size += PAGE_SIZE;

	write_lock(&vmlist_lock);
	for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
		if ((unsigned long)tmp->addr < addr) {
			if((unsigned long)tmp->addr + tmp->size >= addr)
				addr = ALIGN(tmp->size + 
					     (unsigned long)tmp->addr, align);
			continue;
		}
		if ((size + addr) < addr)
			goto out;
		if (size + addr <= (unsigned long)tmp->addr)
			goto found;
		addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
		if (addr > end - size)
			goto out;
	}

found:
	area->next = *p;
	*p = area;

	area->flags = flags;
	area->addr = (void *)addr;
	area->size = size;
	area->pages = NULL;
	area->nr_pages = 0;
	area->phys_addr = 0;
	write_unlock(&vmlist_lock);

	return area;

out:
	write_unlock(&vmlist_lock);
	kfree(area);
	if (printk_ratelimit())
		printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
	return NULL;
}

struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
				unsigned long start, unsigned long end)
{
	return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL);
}
EXPORT_SYMBOL_GPL(__get_vm_area);

/**
 *	get_vm_area  -  reserve a contingous kernel virtual area
 *	@size:		size of the area
 *	@flags:		%VM_IOREMAP for I/O mappings or VM_ALLOC
 *
 *	Search an area of @size in the kernel virtual mapping area,
 *	and reserved it for out purposes.  Returns the area descriptor
 *	on success or %NULL on failure.
 */
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
{
	return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
}

struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
				   int node, gfp_t gfp_mask)
{
	return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
				  gfp_mask);
}

/* Caller must hold vmlist_lock */
static struct vm_struct *__find_vm_area(void *addr)
{
	struct vm_struct *tmp;

	for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
		 if (tmp->addr == addr)
			break;
	}

	return tmp;
}

/* Caller must hold vmlist_lock */
static struct vm_struct *__remove_vm_area(void *addr)
{
	struct vm_struct **p, *tmp;

	for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
		 if (tmp->addr == addr)
			 goto found;
	}
	return NULL;

found:
	unmap_vm_area(tmp);
	*p = tmp->next;

	/*
	 * Remove the guard page.
	 */
	tmp->size -= PAGE_SIZE;
	return tmp;
}

/**
 *	remove_vm_area  -  find and remove a contingous kernel virtual area
 *	@addr:		base address
 *
 *	Search for the kernel VM area starting at @addr, and remove it.
 *	This function returns the found VM area, but using it is NOT safe
 *	on SMP machines, except for its size or flags.
 */
struct vm_struct *remove_vm_area(void *addr)
{
	struct vm_struct *v;
	write_lock(&vmlist_lock);
	v = __remove_vm_area(addr);
	write_unlock(&vmlist_lock);
	return v;
}

static void __vunmap(void *addr, int deallocate_pages)
{
	struct vm_struct *area;

	if (!addr)
		return;

	if ((PAGE_SIZE-1) & (unsigned long)addr) {
		printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
		WARN_ON(1);
		return;
	}

	area = remove_vm_area(addr);
	if (unlikely(!area)) {
		printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
				addr);
		WARN_ON(1);
		return;
	}

	debug_check_no_locks_freed(addr, area->size);

	if (deallocate_pages) {
		int i;

		for (i = 0; i < area->nr_pages; i++) {
			BUG_ON(!area->pages[i]);
			__free_page(area->pages[i]);
		}

		if (area->flags & VM_VPAGES)
			vfree(area->pages);
		else
			kfree(area->pages);
	}

	kfree(area);
	return;
}

/**
 *	vfree  -  release memory allocated by vmalloc()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr, as
 *	obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
 *	NULL, no operation is performed.
 *
 *	Must not be called in interrupt context.
 */
void vfree(void *addr)
{
	BUG_ON(in_interrupt());
	__vunmap(addr, 1);
}
EXPORT_SYMBOL(vfree);

/**
 *	vunmap  -  release virtual mapping obtained by vmap()
 *	@addr:		memory base address
 *
 *	Free the virtually contiguous memory area starting at @addr,
 *	which was created from the page array passed to vmap().
 *
 *	Must not be called in interrupt context.
 */
void vunmap(void *addr)
{
	BUG_ON(in_interrupt());
	__vunmap(addr, 0);
}
EXPORT_SYMBOL(vunmap);

/**
 *	vmap  -  map an array of pages into virtually contiguous space
 *	@pages:		array of page pointers
 *	@count:		number of pages to map
 *	@flags:		vm_area->flags
 *	@prot:		page protection for the mapping
 *
 *	Maps @count pages from @pages into contiguous kernel virtual
 *	space.
 */
void *vmap(struct page **pages, unsigned int count,
		unsigned long flags, pgprot_t prot)
{
	struct vm_struct *area;

	if (count > num_physpages)
		return NULL;

	area = get_vm_area((count << PAGE_SHIFT), flags);
	if (!area)
		return NULL;
	if (map_vm_area(area, prot, &pages)) {
		vunmap(area->addr);
		return NULL;
	}

	return area->addr;
}
EXPORT_SYMBOL(vmap);

void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
				pgprot_t prot, int node)
{
	struct page **pages;
	unsigned int nr_pages, array_size, i;

	nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
	array_size = (nr_pages * sizeof(struct page *));

	area->nr_pages = nr_pages;
	/* Please note that the recursion is strictly bounded. */
	if (array_size > PAGE_SIZE) {
		pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
					PAGE_KERNEL, node);
		area->flags |= VM_VPAGES;
	} else {
		pages = kmalloc_node(array_size,
				(gfp_mask & GFP_LEVEL_MASK) | __GFP_ZERO,
				node);
	}
	area->pages = pages;
	if (!area->pages) {
		remove_vm_area(area->addr);
		kfree(area);
		return NULL;
	}

	for (i = 0; i < area->nr_pages; i++) {
		if (node < 0)
			area->pages[i] = alloc_page(gfp_mask);
		else
			area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
		if (unlikely(!area->pages[i])) {
			/* Successfully allocated i pages, free them in __vunmap() */
			area->nr_pages = i;
			goto fail;
		}
	}

	if (map_vm_area(area, prot, &pages))
		goto fail;
	return area->addr;

fail:
	vfree(area->addr);
	return NULL;
}

void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
{
	return __vmalloc_area_node(area, gfp_mask, prot, -1);
}

/**
 *	__vmalloc_node  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	@gfp_mask:	flags for the page level allocator
 *	@prot:		protection mask for the allocated pages
 *	@node:		node to use for allocation or -1
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator with @gfp_mask flags.  Map them into contiguous
 *	kernel virtual space, using a pagetable protection of @prot.
 */
static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
			    int node)
{
	struct vm_struct *area;

	size = PAGE_ALIGN(size);
	if (!size || (size >> PAGE_SHIFT) > num_physpages)
		return NULL;

	area = get_vm_area_node(size, VM_ALLOC, node, gfp_mask);
	if (!area)
		return NULL;

	return __vmalloc_area_node(area, gfp_mask, prot, node);
}

void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
{
	return __vmalloc_node(size, gfp_mask, prot, -1);
}
EXPORT_SYMBOL(__vmalloc);

/**
 *	vmalloc  -  allocate virtually contiguous memory
 *	@size:		allocation size
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vmalloc(unsigned long size)
{
	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
}
EXPORT_SYMBOL(vmalloc);

/**
 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
 * @size: allocation size
 *
 * The resulting memory area is zeroed so it can be mapped to userspace
 * without leaking data.
 */
void *vmalloc_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
	if (ret) {
		write_lock(&vmlist_lock);
		area = __find_vm_area(ret);
		area->flags |= VM_USERMAP;
		write_unlock(&vmlist_lock);
	}
	return ret;
}
EXPORT_SYMBOL(vmalloc_user);

/**
 *	vmalloc_node  -  allocate memory on a specific node
 *	@size:		allocation size
 *	@node:		numa node
 *
 *	Allocate enough pages to cover @size from the page level
 *	allocator and map them into contiguous kernel virtual space.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */
void *vmalloc_node(unsigned long size, int node)
{
	return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
}
EXPORT_SYMBOL(vmalloc_node);

#ifndef PAGE_KERNEL_EXEC
# define PAGE_KERNEL_EXEC PAGE_KERNEL
#endif

/**
 *	vmalloc_exec  -  allocate virtually contiguous, executable memory
 *	@size:		allocation size
 *
 *	Kernel-internal function to allocate enough pages to cover @size
 *	the page level allocator and map them into contiguous and
 *	executable kernel virtual space.
 *
 *	For tight control over page level allocator and protection flags
 *	use __vmalloc() instead.
 */

void *vmalloc_exec(unsigned long size)
{
	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
}

#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif

/**
 *	vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
 *	@size:		allocation size
 *
 *	Allocate enough 32bit PA addressable pages to cover @size from the
 *	page level allocator and map them into contiguous kernel virtual space.
 */
void *vmalloc_32(unsigned long size)
{
	return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
}
EXPORT_SYMBOL(vmalloc_32);

/**
 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
 *	@size:		allocation size
 *
 * The resulting memory area is 32bit addressable and zeroed so it can be
 * mapped to userspace without leaking data.
 */
void *vmalloc_32_user(unsigned long size)
{
	struct vm_struct *area;
	void *ret;

	ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
	if (ret) {
		write_lock(&vmlist_lock);
		area = __find_vm_area(ret);
		area->flags |= VM_USERMAP;
		write_unlock(&vmlist_lock);
	}
	return ret;
}
EXPORT_SYMBOL(vmalloc_32_user);

long vread(char *buf, char *addr, unsigned long count)
{
	struct vm_struct *tmp;
	char *vaddr, *buf_start = buf;
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

	read_lock(&vmlist_lock);
	for (tmp = vmlist; tmp; tmp = tmp->next) {
		vaddr = (char *) tmp->addr;
		if (addr >= vaddr + tmp->size - PAGE_SIZE)
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			*buf = '\0';
			buf++;
			addr++;
			count--;
		}
		n = vaddr + tmp->size - PAGE_SIZE - addr;
		do {
			if (count == 0)
				goto finished;
			*buf = *addr;
			buf++;
			addr++;
			count--;
		} while (--n > 0);
	}
finished:
	read_unlock(&vmlist_lock);
	return buf - buf_start;
}

long vwrite(char *buf, char *addr, unsigned long count)
{
	struct vm_struct *tmp;
	char *vaddr, *buf_start = buf;
	unsigned long n;

	/* Don't allow overflow */
	if ((unsigned long) addr + count < count)
		count = -(unsigned long) addr;

	read_lock(&vmlist_lock);
	for (tmp = vmlist; tmp; tmp = tmp->next) {
		vaddr = (char *) tmp->addr;
		if (addr >= vaddr + tmp->size - PAGE_SIZE)
			continue;
		while (addr < vaddr) {
			if (count == 0)
				goto finished;
			buf++;
			addr++;
			count--;
		}
		n = vaddr + tmp->size - PAGE_SIZE - addr;
		do {
			if (count == 0)
				goto finished;
			*addr = *buf;
			buf++;
			addr++;
			count--;
		} while (--n > 0);
	}
finished:
	read_unlock(&vmlist_lock);
	return buf - buf_start;
}

/**
 *	remap_vmalloc_range  -  map vmalloc pages to userspace
 *	@vma:		vma to cover (map full range of vma)
 *	@addr:		vmalloc memory
 *	@pgoff:		number of pages into addr before first page to map
 *	@returns:	0 for success, -Exxx on failure
 *
 *	This function checks that addr is a valid vmalloc'ed area, and
 *	that it is big enough to cover the vma. Will return failure if
 *	that criteria isn't met.
 *
 *	Similar to remap_pfn_range() (see mm/memory.c)
 */
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
						unsigned long pgoff)
{
	struct vm_struct *area;
	unsigned long uaddr = vma->vm_start;
	unsigned long usize = vma->vm_end - vma->vm_start;
	int ret;

	if ((PAGE_SIZE-1) & (unsigned long)addr)
		return -EINVAL;

	read_lock(&vmlist_lock);
	area = __find_vm_area(addr);
	if (!area)
		goto out_einval_locked;

	if (!(area->flags & VM_USERMAP))
		goto out_einval_locked;

	if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
		goto out_einval_locked;
	read_unlock(&vmlist_lock);

	addr += pgoff << PAGE_SHIFT;
	do {
		struct page *page = vmalloc_to_page(addr);
		ret = vm_insert_page(vma, uaddr, page);
		if (ret)
			return ret;

		uaddr += PAGE_SIZE;
		addr += PAGE_SIZE;
		usize -= PAGE_SIZE;
	} while (usize > 0);

	/* Prevent "things" like memory migration? VM_flags need a cleanup... */
	vma->vm_flags |= VM_RESERVED;

	return ret;

out_einval_locked:
	read_unlock(&vmlist_lock);
	return -EINVAL;
}
EXPORT_SYMBOL(remap_vmalloc_range);

/*
 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
 * have one.
 */
void  __attribute__((weak)) vmalloc_sync_all(void)
{
}


static int f(pte_t *pte, struct page *pmd_page, unsigned long addr, void *data)
{
	/* apply_to_page_range() does all the hard work. */
	return 0;
}

/**
 *	alloc_vm_area - allocate a range of kernel address space
 *	@size:		size of the area
 *	@returns:	NULL on failure, vm_struct on success
 *
 *	This function reserves a range of kernel address space, and
 *	allocates pagetables to map that range.  No actual mappings
 *	are created.  If the kernel address space is not shared
 *	between processes, it syncs the pagetable across all
 *	processes.
 */
struct vm_struct *alloc_vm_area(size_t size)
{
	struct vm_struct *area;

	area = get_vm_area(size, VM_IOREMAP);
	if (area == NULL)
		return NULL;

	/*
	 * This ensures that page tables are constructed for this region
	 * of kernel virtual address space and mapped into init_mm.
	 */
	if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
				area->size, f, NULL)) {
		free_vm_area(area);
		return NULL;
	}

	/* Make sure the pagetables are constructed in process kernel
	   mappings */
	vmalloc_sync_all();

	return area;
}
EXPORT_SYMBOL_GPL(alloc_vm_area);

void free_vm_area(struct vm_struct *area)
{
	struct vm_struct *ret;
	ret = remove_vm_area(area->addr);
	BUG_ON(ret != area);
	kfree(area);
}
EXPORT_SYMBOL_GPL(free_vm_area);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/*
 * QLogic Fibre Channel HBA Driver
 * Copyright (c)  2003-2008 QLogic Corporation
 *
 * See LICENSE.qla2xxx for copyright and licensing details.
 */
#include "qla_def.h"

#include <linux/moduleparam.h>
#include <linux/vmalloc.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/mutex.h>
#include <linux/kobject.h>

#include <scsi/scsi_tcq.h>
#include <scsi/scsicam.h>
#include <scsi/scsi_transport.h>
#include <scsi/scsi_transport_fc.h>

/*
 * Driver version
 */
char qla2x00_version_str[40];

/*
 * SRB allocation cache
 */
static struct kmem_cache *srb_cachep;

int ql2xlogintimeout = 20;
module_param(ql2xlogintimeout, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xlogintimeout,
		"Login timeout value in seconds.");

int qlport_down_retry;
module_param(qlport_down_retry, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(qlport_down_retry,
		"Maximum number of command retries to a port that returns "
		"a PORT-DOWN status.");

int ql2xplogiabsentdevice;
module_param(ql2xplogiabsentdevice, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(ql2xplogiabsentdevice,
		"Option to enable PLOGI to devices that are not present after "
		"a Fabric scan.  This is needed for several broken switches. "
		"Default is 0 - no PLOGI. 1 - perfom PLOGI.");

int ql2xloginretrycount = 0;
module_param(ql2xloginretrycount, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xloginretrycount,
		"Specify an alternate value for the NVRAM login retry count.");

int ql2xallocfwdump = 1;
module_param(ql2xallocfwdump, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xallocfwdump,
		"Option to enable allocation of memory for a firmware dump "
		"during HBA initialization.  Memory allocation requirements "
		"vary by ISP type.  Default is 1 - allocate memory.");

int ql2xextended_error_logging;
module_param(ql2xextended_error_logging, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(ql2xextended_error_logging,
		"Option to enable extended error logging, "
		"Default is 0 - no logging. 1 - log errors.");

static void qla2x00_free_device(scsi_qla_host_t *);

int ql2xfdmienable=1;
module_param(ql2xfdmienable, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xfdmienable,
		"Enables FDMI registratons "
		"Default is 0 - no FDMI. 1 - perfom FDMI.");

#define MAX_Q_DEPTH    32
static int ql2xmaxqdepth = MAX_Q_DEPTH;
module_param(ql2xmaxqdepth, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(ql2xmaxqdepth,
		"Maximum queue depth to report for target devices.");

int ql2xqfulltracking = 1;
module_param(ql2xqfulltracking, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(ql2xqfulltracking,
		"Controls whether the driver tracks queue full status "
		"returns and dynamically adjusts a scsi device's queue "
		"depth.  Default is 1, perform tracking.  Set to 0 to "
		"disable dynamic tracking and adjustment of queue depth.");

int ql2xqfullrampup = 120;
module_param(ql2xqfullrampup, int, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(ql2xqfullrampup,
		"Number of seconds to wait to begin to ramp-up the queue "
		"depth for a device after a queue-full condition has been "
		"detected.  Default is 120 seconds.");

int ql2xiidmaenable=1;
module_param(ql2xiidmaenable, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xiidmaenable,
		"Enables iIDMA settings "
		"Default is 1 - perform iIDMA. 0 - no iIDMA.");

int ql2xmaxqueues = 1;
module_param(ql2xmaxqueues, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xmaxqueues,
		"Enables MQ settings "
		"Default is 1 for single queue. Set it to number \
			of queues in MQ mode.");

int ql2xmultique_tag;
module_param(ql2xmultique_tag, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xmultique_tag,
		"Enables CPU affinity settings for the driver "
		"Default is 0 for no affinity of request and response IO. "
		"Set it to 1 to turn on the cpu affinity.");

int ql2xfwloadbin;
module_param(ql2xfwloadbin, int, S_IRUGO|S_IRUSR);
MODULE_PARM_DESC(ql2xfwloadbin,
		"Option to specify location from which to load ISP firmware:\n"
		" 2 -- load firmware via the request_firmware() (hotplug)\n"
		"      interface.\n"
		" 1 -- load firmware from flash.\n"
		" 0 -- use default semantics.\n");

/*
 * SCSI host template entry points
 */
static int qla2xxx_slave_configure(struct scsi_device * device);
static int qla2xxx_slave_alloc(struct scsi_device *);
static int qla2xxx_scan_finished(struct Scsi_Host *, unsigned long time);
static void qla2xxx_scan_start(struct Scsi_Host *);
static void qla2xxx_slave_destroy(struct scsi_device *);
static int qla2xxx_queuecommand(struct scsi_cmnd *cmd,
		void (*fn)(struct scsi_cmnd *));
static int qla2xxx_eh_abort(struct scsi_cmnd *);
static int qla2xxx_eh_device_reset(struct scsi_cmnd *);
static int qla2xxx_eh_target_reset(struct scsi_cmnd *);
static int qla2xxx_eh_bus_reset(struct scsi_cmnd *);
static int qla2xxx_eh_host_reset(struct scsi_cmnd *);

static int qla2x00_change_queue_depth(struct scsi_device *, int, int);
static int qla2x00_change_queue_type(struct scsi_device *, int);

struct scsi_host_template qla2xxx_driver_template = {
	.module			= THIS_MODULE,
	.name			= QLA2XXX_DRIVER_NAME,
	.queuecommand		= qla2xxx_queuecommand,

	.eh_abort_handler	= qla2xxx_eh_abort,
	.eh_device_reset_handler = qla2xxx_eh_device_reset,
	.eh_target_reset_handler = qla2xxx_eh_target_reset,
	.eh_bus_reset_handler	= qla2xxx_eh_bus_reset,
	.eh_host_reset_handler	= qla2xxx_eh_host_reset,

	.slave_configure	= qla2xxx_slave_configure,

	.slave_alloc		= qla2xxx_slave_alloc,
	.slave_destroy		= qla2xxx_slave_destroy,
	.scan_finished		= qla2xxx_scan_finished,
	.scan_start		= qla2xxx_scan_start,
	.change_queue_depth	= qla2x00_change_queue_depth,
	.change_queue_type	= qla2x00_change_queue_type,
	.this_id		= -1,
	.cmd_per_lun		= 3,
	.use_clustering		= ENABLE_CLUSTERING,
	.sg_tablesize		= SG_ALL,

	.max_sectors		= 0xFFFF,
	.shost_attrs		= qla2x00_host_attrs,
};

static struct scsi_transport_template *qla2xxx_transport_template = NULL;
struct scsi_transport_template *qla2xxx_transport_vport_template = NULL;

/* TODO Convert to inlines
 *
 * Timer routines
 */

__inline__ void
qla2x00_start_timer(scsi_qla_host_t *vha, void *func, unsigned long interval)
{
	init_timer(&vha->timer);
	vha->timer.expires = jiffies + interval * HZ;
	vha->timer.data = (unsigned long)vha;
	vha->timer.function = (void (*)(unsigned long))func;
	add_timer(&vha->timer);
	vha->timer_active = 1;
}

static inline void
qla2x00_restart_timer(scsi_qla_host_t *vha, unsigned long interval)
{
	mod_timer(&vha->timer, jiffies + interval * HZ);
}

static __inline__ void
qla2x00_stop_timer(scsi_qla_host_t *vha)
{
	del_timer_sync(&vha->timer);
	vha->timer_active = 0;
}

static int qla2x00_do_dpc(void *data);

static void qla2x00_rst_aen(scsi_qla_host_t *);

static int qla2x00_mem_alloc(struct qla_hw_data *, uint16_t, uint16_t,
	struct req_que **, struct rsp_que **);
static void qla2x00_mem_free(struct qla_hw_data *);
static void qla2x00_sp_free_dma(srb_t *);

/* -------------------------------------------------------------------------- */
static int qla2x00_alloc_queues(struct qla_hw_data *ha)
{
	ha->req_q_map = kzalloc(sizeof(struct req_que *) * ha->max_req_queues,
				GFP_KERNEL);
	if (!ha->req_q_map) {
		qla_printk(KERN_WARNING, ha,
			"Unable to allocate memory for request queue ptrs\n");
		goto fail_req_map;
	}

	ha->rsp_q_map = kzalloc(sizeof(struct rsp_que *) * ha->max_rsp_queues,
				GFP_KERNEL);
	if (!ha->rsp_q_map) {
		qla_printk(KERN_WARNING, ha,
			"Unable to allocate memory for response queue ptrs\n");
		goto fail_rsp_map;
	}
	set_bit(0, ha->rsp_qid_map);
	set_bit(0, ha->req_qid_map);
	return 1;

fail_rsp_map:
	kfree(ha->req_q_map);
	ha->req_q_map = NULL;
fail_req_map:
	return -ENOMEM;
}

static void qla2x00_free_req_que(struct qla_hw_data *ha, struct req_que *req)
{
	if (req && req->ring)
		dma_free_coherent(&ha->pdev->dev,
		(req->length + 1) * sizeof(request_t),
		req->ring, req->dma);

	kfree(req);
	req = NULL;
}

static void qla2x00_free_rsp_que(struct qla_hw_data *ha, struct rsp_que *rsp)
{
	if (rsp && rsp->ring)
		dma_free_coherent(&ha->pdev->dev,
		(rsp->length + 1) * sizeof(response_t),
		rsp->ring, rsp->dma);

	kfree(rsp);
	rsp = NULL;
}

static void qla2x00_free_queues(struct qla_hw_data *ha)
{
	struct req_que *req;
	struct rsp_que *rsp;
	int cnt;

	for (cnt = 0; cnt < ha->max_req_queues; cnt++) {
		req = ha->req_q_map[cnt];
		qla2x00_free_req_que(ha, req);
	}
	kfree(ha->req_q_map);
	ha->req_q_map = NULL;

	for (cnt = 0; cnt < ha->max_rsp_queues; cnt++) {
		rsp = ha->rsp_q_map[cnt];
		qla2x00_free_rsp_que(ha, rsp);
	}
	kfree(ha->rsp_q_map);
	ha->rsp_q_map = NULL;
}

static int qla25xx_setup_mode(struct scsi_qla_host *vha)
{
	uint16_t options = 0;
	int ques, req, ret;
	struct qla_hw_data *ha = vha->hw;

	if (!(ha->fw_attributes & BIT_6)) {
		qla_printk(KERN_INFO, ha,
			"Firmware is not multi-queue capable\n");
		goto fail;
	}
	if (ql2xmultique_tag) {
		/* create a request queue for IO */
		options |= BIT_7;
		req = qla25xx_create_req_que(ha, options, 0, 0, -1,
			QLA_DEFAULT_QUE_QOS);
		if (!req) {
			qla_printk(KERN_WARNING, ha,
				"Can't create request queue\n");
			goto fail;
		}
		ha->wq = create_workqueue("qla2xxx_wq");
		vha->req = ha->req_q_map[req];
		options |= BIT_1;
		for (ques = 1; ques < ha->max_rsp_queues; ques++) {
			ret = qla25xx_create_rsp_que(ha, options, 0, 0, req);
			if (!ret) {
				qla_printk(KERN_WARNING, ha,
					"Response Queue create failed\n");
				goto fail2;
			}
		}
		ha->flags.cpu_affinity_enabled = 1;

		DEBUG2(qla_printk(KERN_INFO, ha,
			"CPU affinity mode enabled, no. of response"
			" queues:%d, no. of request queues:%d\n",
			ha->max_rsp_queues, ha->max_req_queues));
	}
	return 0;
fail2:
	qla25xx_delete_queues(vha);
	destroy_workqueue(ha->wq);
	ha->wq = NULL;
fail:
	ha->mqenable = 0;
	kfree(ha->req_q_map);
	kfree(ha->rsp_q_map);
	ha->max_req_queues = ha->max_rsp_queues = 1;
	return 1;
}

static char *
qla2x00_pci_info_str(struct scsi_qla_host *vha, char *str)
{
	struct qla_hw_data *ha = vha->hw;
	static char *pci_bus_modes[] = {
		"33", "66", "100", "133",
	};
	uint16_t pci_bus;

	strcpy(str, "PCI");
	pci_bus = (ha->pci_attr & (BIT_9 | BIT_10)) >> 9;
	if (pci_bus) {
		strcat(str, "-X (");
		strcat(str, pci_bus_modes[pci_bus]);
	} else {
		pci_bus = (ha->pci_attr & BIT_8) >> 8;
		strcat(str, " (");
		strcat(str, pci_bus_modes[pci_bus]);
	}
	strcat(str, " MHz)");

	return (str);
}

static char *
qla24xx_pci_info_str(struct scsi_qla_host *vha, char *str)
{
	static char *pci_bus_modes[] = { "33", "66", "100", "133", };
	struct qla_hw_data *ha = vha->hw;
	uint32_t pci_bus;
	int pcie_reg;

	pcie_reg = pci_find_capability(ha->pdev, PCI_CAP_ID_EXP);
	if (pcie_reg) {
		char lwstr[6];
		uint16_t pcie_lstat, lspeed, lwidth;

		pcie_reg += 0x12;
		pci_read_config_word(ha->pdev, pcie_reg, &pcie_lstat);
		lspeed = pcie_lstat & (BIT_0 | BIT_1 | BIT_2 | BIT_3);
		lwidth = (pcie_lstat &
		    (BIT_4 | BIT_5 | BIT_6 | BIT_7 | BIT_8 | BIT_9)) >> 4;

		strcpy(str, "PCIe (");
		if (lspeed == 1)
			strcat(str, "2.5GT/s ");
		else if (lspeed == 2)
			strcat(str, "5.0GT/s ");
		else
			strcat(str, "<unknown> ");
		snprintf(lwstr, sizeof(lwstr), "x%d)", lwidth);
		strcat(str, lwstr);

		return str;
	}

	strcpy(str, "PCI");
	pci_bus = (ha->pci_attr & CSRX_PCIX_BUS_MODE_MASK) >> 8;
	if (pci_bus == 0 || pci_bus == 8) {
		strcat(str, " (");
		strcat(str, pci_bus_modes[pci_bus >> 3]);
	} else {
		strcat(str, "-X ");
		if (pci_bus & BIT_2)
			strcat(str, "Mode 2");
		else
			strcat(str, "Mode 1");
		strcat(str, " (");
		strcat(str, pci_bus_modes[pci_bus & ~BIT_2]);
	}
	strcat(str, " MHz)");

	return str;
}

static char *
qla2x00_fw_version_str(struct scsi_qla_host *vha, char *str)
{
	char un_str[10];
	struct qla_hw_data *ha = vha->hw;

	sprintf(str, "%d.%02d.%02d ", ha->fw_major_version,
	    ha->fw_minor_version,
	    ha->fw_subminor_version);

	if (ha->fw_attributes & BIT_9) {
		strcat(str, "FLX");
		return (str);
	}

	switch (ha->fw_attributes & 0xFF) {
	case 0x7:
		strcat(str, "EF");
		break;
	case 0x17:
		strcat(str, "TP");
		break;
	case 0x37:
		strcat(str, "IP");
		break;
	case 0x77:
		strcat(str, "VI");
		break;
	default:
		sprintf(un_str, "(%x)", ha->fw_attributes);
		strcat(str, un_str);
		break;
	}
	if (ha->fw_attributes & 0x100)
		strcat(str, "X");

	return (str);
}

static char *
qla24xx_fw_version_str(struct scsi_qla_host *vha, char *str)
{
	struct qla_hw_data *ha = vha->hw;

	sprintf(str, "%d.%02d.%02d (%x)", ha->fw_major_version,
	    ha->fw_minor_version, ha->fw_subminor_version, ha->fw_attributes);
	return str;
}

static inline srb_t *
qla2x00_get_new_sp(scsi_qla_host_t *vha, fc_port_t *fcport,
    struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
	srb_t *sp;
	struct qla_hw_data *ha = vha->hw;

	sp = mempool_alloc(ha->srb_mempool, GFP_ATOMIC);
	if (!sp)
		return sp;

	sp->fcport = fcport;
	sp->cmd = cmd;
	sp->flags = 0;
	CMD_SP(cmd) = (void *)sp;
	cmd->scsi_done = done;
	sp->ctx = NULL;

	return sp;
}

static int
qla2xxx_queuecommand(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *))
{
	scsi_qla_host_t *vha = shost_priv(cmd->device->host);
	fc_port_t *fcport = (struct fc_port *) cmd->device->hostdata;
	struct fc_rport *rport = starget_to_rport(scsi_target(cmd->device));
	struct qla_hw_data *ha = vha->hw;
	struct scsi_qla_host *base_vha = pci_get_drvdata(ha->pdev);
	srb_t *sp;
	int rval;

	if (unlikely(pci_channel_offline(ha->pdev))) {
		if (ha->pdev->error_state == pci_channel_io_frozen)
			cmd->result = DID_REQUEUE << 16;
		else
			cmd->result = DID_NO_CONNECT << 16;
		goto qc24_fail_command;
	}

	rval = fc_remote_port_chkready(rport);
	if (rval) {
		cmd->result = rval;
		goto qc24_fail_command;
	}

	/* Close window on fcport/rport state-transitioning. */
	if (fcport->drport)
		goto qc24_target_busy;

	if (atomic_read(&fcport->state) != FCS_ONLINE) {
		if (atomic_read(&fcport->state) == FCS_DEVICE_DEAD ||
		    atomic_read(&base_vha->loop_state) == LOOP_DEAD) {
			cmd->result = DID_NO_CONNECT << 16;
			goto qc24_fail_command;
		}
		goto qc24_target_busy;
	}

	spin_unlock_irq(vha->host->host_lock);

	sp = qla2x00_get_new_sp(base_vha, fcport, cmd, done);
	if (!sp)
		goto qc24_host_busy_lock;

	rval = ha->isp_ops->start_scsi(sp);
	if (rval != QLA_SUCCESS)
		goto qc24_host_busy_free_sp;

	spin_lock_irq(vha->host->host_lock);

	return 0;

qc24_host_busy_free_sp:
	qla2x00_sp_free_dma(sp);
	mempool_free(sp, ha->srb_mempool);

qc24_host_busy_lock:
	spin_lock_irq(vha->host->host_lock);
	return SCSI_MLQUEUE_HOST_BUSY;

qc24_target_busy:
	return SCSI_MLQUEUE_TARGET_BUSY;

qc24_fail_command:
	done(cmd);

	return 0;
}


/*
 * qla2x00_eh_wait_on_command
 *    Waits for the command to be returned by the Firmware for some
 *    max time.
 *
 * Input:
 *    cmd = Scsi Command to wait on.
 *
 * Return:
 *    Not Found : 0
 *    Found : 1
 */
static int
qla2x00_eh_wait_on_command(struct scsi_cmnd *cmd)
{
#define ABORT_POLLING_PERIOD	1000
#define ABORT_WAIT_ITER		((10 * 1000) / (ABORT_POLLING_PERIOD))
	unsigned long wait_iter = ABORT_WAIT_ITER;
	int ret = QLA_SUCCESS;

	while (CMD_SP(cmd) && wait_iter--) {
		msleep(ABORT_POLLING_PERIOD);
	}
	if (CMD_SP(cmd))
		ret = QLA_FUNCTION_FAILED;

	return ret;
}

/*
 * qla2x00_wait_for_hba_online
 *    Wait till the HBA is online after going through
 *    <= MAX_RETRIES_OF_ISP_ABORT  or
 *    finally HBA is disabled ie marked offline
 *
 * Input:
 *     ha - pointer to host adapter structure
 *
 * Note:
 *    Does context switching-Release SPIN_LOCK
 *    (if any) before calling this routine.
 *
 * Return:
 *    Success (Adapter is online) : 0
 *    Failed  (Adapter is offline/disabled) : 1
 */
int
qla2x00_wait_for_hba_online(scsi_qla_host_t *vha)
{
	int		return_status;
	unsigned long	wait_online;
	struct qla_hw_data *ha = vha->hw;
	scsi_qla_host_t *base_vha = pci_get_drvdata(ha->pdev);

	wait_online = jiffies + (MAX_LOOP_TIMEOUT * HZ);
	while (((test_bit(ISP_ABORT_NEEDED, &base_vha->dpc_flags)) ||
	    test_bit(ABORT_ISP_ACTIVE, &base_vha->dpc_flags) ||
	    test_bit(ISP_ABORT_RETRY, &base_vha->dpc_flags) ||
	    ha->dpc_active) && time_before(jiffies, wait_online)) {

		msleep(1000);
	}
	if (base_vha->flags.online)
		return_status = QLA_SUCCESS;
	else
		return_status = QLA_FUNCTION_FAILED;

	return (return_status);
}

int
qla2x00_wait_for_chip_reset(scsi_qla_host_t *vha)
{
	int		return_status;
	unsigned long	wait_reset;
	struct qla_hw_data *ha = vha->hw;
	scsi_qla_host_t *base_vha = pci_get_drvdata(ha->pdev);

	wait_reset = jiffies + (MAX_LOOP_TIMEOUT * HZ);
	while (((test_bit(ISP_ABORT_NEEDED, &base_vha->dpc_flags)) ||
	    test_bit(ABORT_ISP_ACTIVE, &base_vha->dpc_flags) ||
	    test_bit(ISP_ABORT_RETRY, &base_vha->dpc_flags) ||
	    ha->dpc_active) && time_before(jiffies, wait_reset)) {

		msleep(1000);

		if (!test_bit(ISP_ABORT_NEEDED, &base_vha->dpc_flags) &&
		    ha->flags.chip_reset_done)
			break;
	}
	if (ha->flags.chip_reset_done)
		return_status = QLA_SUCCESS;
	else
		return_status = QLA_FUNCTION_FAILED;

	return return_status;
}

/*
 * qla2x00_wait_for_loop_ready
 *    Wait for MAX_LOOP_TIMEOUT(5 min) value for loop
 *    to be in LOOP_READY state.
 * Input:
 *     ha - pointer to host adapter structure
 *
 * Note:
 *    Does context switching-Release SPIN_LOCK
 *    (if any) before calling this routine.
 *
 *
 * Return:
 *    Success (LOOP_READY) : 0
 *    Failed  (LOOP_NOT_READY) : 1
 */
static inline int
qla2x00_wait_for_loop_ready(scsi_qla_host_t *vha)
{
	int 	 return_status = QLA_SUCCESS;
	unsigned long loop_timeout ;
	struct qla_hw_data *ha = vha->hw;
	scsi_qla_host_t *base_vha = pci_get_drvdata(ha->pdev);

	/* wait for 5 min at the max for loop to be ready */
	loop_timeout = jiffies + (MAX_LOOP_TIMEOUT * HZ);

	while ((!atomic_read(&base_vha->loop_down_timer) &&
	    atomic_read(&base_vha->loop_state) == LOOP_DOWN) ||
	    atomic_read(&base_vha->loop_state) != LOOP_READY) {
		if (atomic_read(&base_vha->loop_state) == LOOP_DEAD) {
			return_status = QLA_FUNCTION_FAILED;
			break;
		}
		msleep(1000);
		if (time_after_eq(jiffies, loop_timeout)) {
			return_status = QLA_FUNCTION_FAILED;
			break;
		}
	}
	return (return_status);
}

void
qla2x00_abort_fcport_cmds(fc_port_t *fcport)
{
	int cnt;
	unsigned long flags;
	srb_t *sp;
	scsi_qla_host_t *vha = fcport->vha;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req;

	spin_lock_irqsave(&ha->hardware_lock, flags);
	req = vha->req;
	for (cnt = 1; cnt < MAX_OUTSTANDING_COMMANDS; cnt++) {
		sp = req->outstanding_cmds[cnt];
		if (!sp)
			continue;
		if (sp->fcport != fcport)
			continue;
		if (sp->ctx)
			continue;

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
		if (ha->isp_ops->abort_command(sp)) {
			DEBUG2(qla_printk(KERN_WARNING, ha,
			"Abort failed --  %lx\n",
			sp->cmd->serial_number));
		} else {
			if (qla2x00_eh_wait_on_command(sp->cmd) !=
				QLA_SUCCESS)
				DEBUG2(qla_printk(KERN_WARNING, ha,
				"Abort failed while waiting --  %lx\n",
				sp->cmd->serial_number));
		}
		spin_lock_irqsave(&ha->hardware_lock, flags);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

/**************************************************************************
* qla2xxx_eh_abort
*
* Description:
*    The abort function will abort the specified command.
*
* Input:
*    cmd = Linux SCSI command packet to be aborted.
*
* Returns:
*    Either SUCCESS or FAILED.
*
* Note:
*    Only return FAILED if command not returned by firmware.
**************************************************************************/
static int
qla2xxx_eh_abort(struct scsi_cmnd *cmd)
{
	scsi_qla_host_t *vha = shost_priv(cmd->device->host);
	srb_t *sp;
	int ret, i;
	unsigned int id, lun;
	unsigned long serial;
	unsigned long flags;
	int wait = 0;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req = vha->req;
	srb_t *spt;

	fc_block_scsi_eh(cmd);

	if (!CMD_SP(cmd))
		return SUCCESS;

	ret = SUCCESS;

	id = cmd->device->id;
	lun = cmd->device->lun;
	serial = cmd->serial_number;
	spt = (srb_t *) CMD_SP(cmd);
	if (!spt)
		return SUCCESS;

	/* Check active list for command command. */
	spin_lock_irqsave(&ha->hardware_lock, flags);
	for (i = 1; i < MAX_OUTSTANDING_COMMANDS; i++) {
		sp = req->outstanding_cmds[i];

		if (sp == NULL)
			continue;
		if (sp->ctx)
			continue;
		if (sp->cmd != cmd)
			continue;

		DEBUG2(printk("%s(%ld): aborting sp %p from RISC."
		" pid=%ld.\n", __func__, vha->host_no, sp, serial));

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
		if (ha->isp_ops->abort_command(sp)) {
			DEBUG2(printk("%s(%ld): abort_command "
			"mbx failed.\n", __func__, vha->host_no));
			ret = FAILED;
		} else {
			DEBUG3(printk("%s(%ld): abort_command "
			"mbx success.\n", __func__, vha->host_no));
			wait = 1;
		}
		spin_lock_irqsave(&ha->hardware_lock, flags);
		break;
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	/* Wait for the command to be returned. */
	if (wait) {
		if (qla2x00_eh_wait_on_command(cmd) != QLA_SUCCESS) {
			qla_printk(KERN_ERR, ha,
			    "scsi(%ld:%d:%d): Abort handler timed out -- %lx "
			    "%x.\n", vha->host_no, id, lun, serial, ret);
			ret = FAILED;
		}
	}

	qla_printk(KERN_INFO, ha,
	    "scsi(%ld:%d:%d): Abort command issued -- %d %lx %x.\n",
	    vha->host_no, id, lun, wait, serial, ret);

	return ret;
}

enum nexus_wait_type {
	WAIT_HOST = 0,
	WAIT_TARGET,
	WAIT_LUN,
};

static int
qla2x00_eh_wait_for_pending_commands(scsi_qla_host_t *vha, unsigned int t,
	unsigned int l, srb_t *sp, enum nexus_wait_type type)
{
	int cnt, match, status;
	unsigned long flags;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req;

	status = QLA_SUCCESS;
	if (!sp)
		return status;

	spin_lock_irqsave(&ha->hardware_lock, flags);
	req = vha->req;
	for (cnt = 1; status == QLA_SUCCESS &&
		cnt < MAX_OUTSTANDING_COMMANDS; cnt++) {
		sp = req->outstanding_cmds[cnt];
		if (!sp)
			continue;
		if (sp->ctx)
			continue;
		if (vha->vp_idx != sp->fcport->vha->vp_idx)
			continue;
		match = 0;
		switch (type) {
		case WAIT_HOST:
			match = 1;
			break;
		case WAIT_TARGET:
			match = sp->cmd->device->id == t;
			break;
		case WAIT_LUN:
			match = (sp->cmd->device->id == t &&
				sp->cmd->device->lun == l);
			break;
		}
		if (!match)
			continue;

		spin_unlock_irqrestore(&ha->hardware_lock, flags);
		status = qla2x00_eh_wait_on_command(sp->cmd);
		spin_lock_irqsave(&ha->hardware_lock, flags);
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	return status;
}

static char *reset_errors[] = {
	"HBA not online",
	"HBA not ready",
	"Task management failed",
	"Waiting for command completions",
};

static int
__qla2xxx_eh_generic_reset(char *name, enum nexus_wait_type type,
    struct scsi_cmnd *cmd, int (*do_reset)(struct fc_port *, unsigned int, int))
{
	scsi_qla_host_t *vha = shost_priv(cmd->device->host);
	fc_port_t *fcport = (struct fc_port *) cmd->device->hostdata;
	int err;

	fc_block_scsi_eh(cmd);

	if (!fcport)
		return FAILED;

	qla_printk(KERN_INFO, vha->hw, "scsi(%ld:%d:%d): %s RESET ISSUED.\n",
	    vha->host_no, cmd->device->id, cmd->device->lun, name);

	err = 0;
	if (qla2x00_wait_for_hba_online(vha) != QLA_SUCCESS)
		goto eh_reset_failed;
	err = 1;
	if (qla2x00_wait_for_loop_ready(vha) != QLA_SUCCESS)
		goto eh_reset_failed;
	err = 2;
	if (do_reset(fcport, cmd->device->lun, cmd->request->cpu + 1)
		!= QLA_SUCCESS)
		goto eh_reset_failed;
	err = 3;
	if (qla2x00_eh_wait_for_pending_commands(vha, cmd->device->id,
	    cmd->device->lun, (srb_t *) CMD_SP(cmd), type) != QLA_SUCCESS)
		goto eh_reset_failed;

	qla_printk(KERN_INFO, vha->hw, "scsi(%ld:%d:%d): %s RESET SUCCEEDED.\n",
	    vha->host_no, cmd->device->id, cmd->device->lun, name);

	return SUCCESS;

 eh_reset_failed:
	qla_printk(KERN_INFO, vha->hw, "scsi(%ld:%d:%d): %s RESET FAILED: %s.\n"
	    , vha->host_no, cmd->device->id, cmd->device->lun, name,
	    reset_errors[err]);
	return FAILED;
}

static int
qla2xxx_eh_device_reset(struct scsi_cmnd *cmd)
{
	scsi_qla_host_t *vha = shost_priv(cmd->device->host);
	struct qla_hw_data *ha = vha->hw;

	return __qla2xxx_eh_generic_reset("DEVICE", WAIT_LUN, cmd,
	    ha->isp_ops->lun_reset);
}

static int
qla2xxx_eh_target_reset(struct scsi_cmnd *cmd)
{
	scsi_qla_host_t *vha = shost_priv(cmd->device->host);
	struct qla_hw_data *ha = vha->hw;

	return __qla2xxx_eh_generic_reset("TARGET", WAIT_TARGET, cmd,
	    ha->isp_ops->target_reset);
}

/**************************************************************************
* qla2xxx_eh_bus_reset
*
* Description:
*    The bus reset function will reset the bus and abort any executing
*    commands.
*
* Input:
*    cmd = Linux SCSI command packet of the command that cause the
*          bus reset.
*
* Returns:
*    SUCCESS/FAILURE (defined as macro in scsi.h).
*
**************************************************************************/
static int
qla2xxx_eh_bus_reset(struct scsi_cmnd *cmd)
{
	scsi_qla_host_t *vha = shost_priv(cmd->device->host);
	fc_port_t *fcport = (struct fc_port *) cmd->device->hostdata;
	int ret = FAILED;
	unsigned int id, lun;
	unsigned long serial;
	srb_t *sp = (srb_t *) CMD_SP(cmd);

	fc_block_scsi_eh(cmd);

	id = cmd->device->id;
	lun = cmd->device->lun;
	serial = cmd->serial_number;

	if (!fcport)
		return ret;

	qla_printk(KERN_INFO, vha->hw,
	    "scsi(%ld:%d:%d): BUS RESET ISSUED.\n", vha->host_no, id, lun);

	if (qla2x00_wait_for_hba_online(vha) != QLA_SUCCESS) {
		DEBUG2(printk("%s failed:board disabled\n",__func__));
		goto eh_bus_reset_done;
	}

	if (qla2x00_wait_for_loop_ready(vha) == QLA_SUCCESS) {
		if (qla2x00_loop_reset(vha) == QLA_SUCCESS)
			ret = SUCCESS;
	}
	if (ret == FAILED)
		goto eh_bus_reset_done;

	/* Flush outstanding commands. */
	if (qla2x00_eh_wait_for_pending_commands(vha, 0, 0, sp, WAIT_HOST) !=
	    QLA_SUCCESS)
		ret = FAILED;

eh_bus_reset_done:
	qla_printk(KERN_INFO, vha->hw, "%s: reset %s\n", __func__,
	    (ret == FAILED) ? "failed" : "succeded");

	return ret;
}

/**************************************************************************
* qla2xxx_eh_host_reset
*
* Description:
*    The reset function will reset the Adapter.
*
* Input:
*      cmd = Linux SCSI command packet of the command that cause the
*            adapter reset.
*
* Returns:
*      Either SUCCESS or FAILED.
*
* Note:
**************************************************************************/
static int
qla2xxx_eh_host_reset(struct scsi_cmnd *cmd)
{
	scsi_qla_host_t *vha = shost_priv(cmd->device->host);
	fc_port_t *fcport = (struct fc_port *) cmd->device->hostdata;
	struct qla_hw_data *ha = vha->hw;
	int ret = FAILED;
	unsigned int id, lun;
	unsigned long serial;
	srb_t *sp = (srb_t *) CMD_SP(cmd);
	scsi_qla_host_t *base_vha = pci_get_drvdata(ha->pdev);

	fc_block_scsi_eh(cmd);

	id = cmd->device->id;
	lun = cmd->device->lun;
	serial = cmd->serial_number;

	if (!fcport)
		return ret;

	qla_printk(KERN_INFO, ha,
	    "scsi(%ld:%d:%d): ADAPTER RESET ISSUED.\n", vha->host_no, id, lun);

	if (qla2x00_wait_for_hba_online(vha) != QLA_SUCCESS)
		goto eh_host_reset_lock;

	/*
	 * Fixme-may be dpc thread is active and processing
	 * loop_resync,so wait a while for it to
	 * be completed and then issue big hammer.Otherwise
	 * it may cause I/O failure as big hammer marks the
	 * devices as lost kicking of the port_down_timer
	 * while dpc is stuck for the mailbox to complete.
	 */
	qla2x00_wait_for_loop_ready(vha);
	if (vha != base_vha) {
		if (qla2x00_vp_abort_isp(vha))
			goto eh_host_reset_lock;
	} else {
		if (ha->wq)
			flush_workqueue(ha->wq);

		set_bit(ABORT_ISP_ACTIVE, &base_vha->dpc_flags);
		if (qla2x00_abort_isp(base_vha)) {
			clear_bit(ABORT_ISP_ACTIVE, &base_vha->dpc_flags);
			/* failed. schedule dpc to try */
			set_bit(ISP_ABORT_NEEDED, &base_vha->dpc_flags);

			if (qla2x00_wait_for_hba_online(vha) != QLA_SUCCESS)
				goto eh_host_reset_lock;
		}
		clear_bit(ABORT_ISP_ACTIVE, &base_vha->dpc_flags);
	}

	/* Waiting for command to be returned to OS.*/
	if (qla2x00_eh_wait_for_pending_commands(vha, 0, 0, sp, WAIT_HOST) ==
		QLA_SUCCESS)
		ret = SUCCESS;

eh_host_reset_lock:
	qla_printk(KERN_INFO, ha, "%s: reset %s\n", __func__,
	    (ret == FAILED) ? "failed" : "succeded");

	return ret;
}

/*
* qla2x00_loop_reset
*      Issue loop reset.
*
* Input:
*      ha = adapter block pointer.
*
* Returns:
*      0 = success
*/
int
qla2x00_loop_reset(scsi_qla_host_t *vha)
{
	int ret;
	struct fc_port *fcport;
	struct qla_hw_data *ha = vha->hw;

	if (ha->flags.enable_lip_full_login && !IS_QLA81XX(ha)) {
		ret = qla2x00_full_login_lip(vha);
		if (ret != QLA_SUCCESS) {
			DEBUG2_3(printk("%s(%ld): failed: "
			    "full_login_lip=%d.\n", __func__, vha->host_no,
			    ret));
		}
		atomic_set(&vha->loop_state, LOOP_DOWN);
		atomic_set(&vha->loop_down_timer, LOOP_DOWN_TIME);
		qla2x00_mark_all_devices_lost(vha, 0);
		qla2x00_wait_for_loop_ready(vha);
	}

	if (ha->flags.enable_lip_reset) {
		ret = qla2x00_lip_reset(vha);
		if (ret != QLA_SUCCESS) {
			DEBUG2_3(printk("%s(%ld): failed: "
			    "lip_reset=%d.\n", __func__, vha->host_no, ret));
		} else
			qla2x00_wait_for_loop_ready(vha);
	}

	if (ha->flags.enable_target_reset) {
		list_for_each_entry(fcport, &vha->vp_fcports, list) {
			if (fcport->port_type != FCT_TARGET)
				continue;

			ret = ha->isp_ops->target_reset(fcport, 0, 0);
			if (ret != QLA_SUCCESS) {
				DEBUG2_3(printk("%s(%ld): bus_reset failed: "
				    "target_reset=%d d_id=%x.\n", __func__,
				    vha->host_no, ret, fcport->d_id.b24));
			}
		}
	}
	/* Issue marker command only when we are going to start the I/O */
	vha->marker_needed = 1;

	return QLA_SUCCESS;
}

void
qla2x00_abort_all_cmds(scsi_qla_host_t *vha, int res)
{
	int que, cnt;
	unsigned long flags;
	srb_t *sp;
	struct srb_ctx *ctx;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req;

	spin_lock_irqsave(&ha->hardware_lock, flags);
	for (que = 0; que < ha->max_req_queues; que++) {
		req = ha->req_q_map[que];
		if (!req)
			continue;
		for (cnt = 1; cnt < MAX_OUTSTANDING_COMMANDS; cnt++) {
			sp = req->outstanding_cmds[cnt];
			if (sp) {
				req->outstanding_cmds[cnt] = NULL;
				if (!sp->ctx) {
					sp->cmd->result = res;
					qla2x00_sp_compl(ha, sp);
				} else {
					ctx = sp->ctx;
					del_timer_sync(&ctx->timer);
					ctx->free(sp);
				}
			}
		}
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static int
qla2xxx_slave_alloc(struct scsi_device *sdev)
{
	struct fc_rport *rport = starget_to_rport(scsi_target(sdev));

	if (!rport || fc_remote_port_chkready(rport))
		return -ENXIO;

	sdev->hostdata = *(fc_port_t **)rport->dd_data;

	return 0;
}

static int
qla2xxx_slave_configure(struct scsi_device *sdev)
{
	scsi_qla_host_t *vha = shost_priv(sdev->host);
	struct qla_hw_data *ha = vha->hw;
	struct fc_rport *rport = starget_to_rport(sdev->sdev_target);
	fc_port_t *fcport = *(fc_port_t **)rport->dd_data;
	struct req_que *req = vha->req;

	if (sdev->tagged_supported)
		scsi_activate_tcq(sdev, req->max_q_depth);
	else
		scsi_deactivate_tcq(sdev, req->max_q_depth);

	rport->dev_loss_tmo = ha->port_down_retry_count;
	if (sdev->type == TYPE_TAPE)
		fcport->flags |= FCF_TAPE_PRESENT;

	return 0;
}

static void
qla2xxx_slave_destroy(struct scsi_device *sdev)
{
	sdev->hostdata = NULL;
}

static int
qla2x00_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
{
	if (reason != SCSI_QDEPTH_DEFAULT)
		return -EOPNOTSUPP;

	scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
	return sdev->queue_depth;
}

static int
qla2x00_change_queue_type(struct scsi_device *sdev, int tag_type)
{
	if (sdev->tagged_supported) {
		scsi_set_tag_type(sdev, tag_type);
		if (tag_type)
			scsi_activate_tcq(sdev, sdev->queue_depth);
		else
			scsi_deactivate_tcq(sdev, sdev->queue_depth);
	} else
		tag_type = 0;

	return tag_type;
}

/**
 * qla2x00_config_dma_addressing() - Configure OS DMA addressing method.
 * @ha: HA context
 *
 * At exit, the @ha's flags.enable_64bit_addressing set to indicated
 * supported addressing method.
 */
static void
qla2x00_config_dma_addressing(struct qla_hw_data *ha)
{
	/* Assume a 32bit DMA mask. */
	ha->flags.enable_64bit_addressing = 0;

	if (!dma_set_mask(&ha->pdev->dev, DMA_BIT_MASK(64))) {
		/* Any upper-dword bits set? */
		if (MSD(dma_get_required_mask(&ha->pdev->dev)) &&
		    !pci_set_consistent_dma_mask(ha->pdev, DMA_BIT_MASK(64))) {
			/* Ok, a 64bit DMA mask is applicable. */
			ha->flags.enable_64bit_addressing = 1;
			ha->isp_ops->calc_req_entries = qla2x00_calc_iocbs_64;
			ha->isp_ops->build_iocbs = qla2x00_build_scsi_iocbs_64;
			return;
		}
	}

	dma_set_mask(&ha->pdev->dev, DMA_BIT_MASK(32));
	pci_set_consistent_dma_mask(ha->pdev, DMA_BIT_MASK(32));
}

static void
qla2x00_enable_intrs(struct qla_hw_data *ha)
{
	unsigned long flags = 0;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	spin_lock_irqsave(&ha->hardware_lock, flags);
	ha->interrupts_on = 1;
	/* enable risc and host interrupts */
	WRT_REG_WORD(&reg->ictrl, ICR_EN_INT | ICR_EN_RISC);
	RD_REG_WORD(&reg->ictrl);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

}

static void
qla2x00_disable_intrs(struct qla_hw_data *ha)
{
	unsigned long flags = 0;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;

	spin_lock_irqsave(&ha->hardware_lock, flags);
	ha->interrupts_on = 0;
	/* disable risc and host interrupts */
	WRT_REG_WORD(&reg->ictrl, 0);
	RD_REG_WORD(&reg->ictrl);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static void
qla24xx_enable_intrs(struct qla_hw_data *ha)
{
	unsigned long flags = 0;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	spin_lock_irqsave(&ha->hardware_lock, flags);
	ha->interrupts_on = 1;
	WRT_REG_DWORD(&reg->ictrl, ICRX_EN_RISC_INT);
	RD_REG_DWORD(&reg->ictrl);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static void
qla24xx_disable_intrs(struct qla_hw_data *ha)
{
	unsigned long flags = 0;
	struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;

	if (IS_NOPOLLING_TYPE(ha))
		return;
	spin_lock_irqsave(&ha->hardware_lock, flags);
	ha->interrupts_on = 0;
	WRT_REG_DWORD(&reg->ictrl, 0);
	RD_REG_DWORD(&reg->ictrl);
	spin_unlock_irqrestore(&ha->hardware_lock, flags);
}

static struct isp_operations qla2100_isp_ops = {
	.pci_config		= qla2100_pci_config,
	.reset_chip		= qla2x00_reset_chip,
	.chip_diag		= qla2x00_chip_diag,
	.config_rings		= qla2x00_config_rings,
	.reset_adapter		= qla2x00_reset_adapter,
	.nvram_config		= qla2x00_nvram_config,
	.update_fw_options	= qla2x00_update_fw_options,
	.load_risc		= qla2x00_load_risc,
	.pci_info_str		= qla2x00_pci_info_str,
	.fw_version_str		= qla2x00_fw_version_str,
	.intr_handler		= qla2100_intr_handler,
	.enable_intrs		= qla2x00_enable_intrs,
	.disable_intrs		= qla2x00_disable_intrs,
	.abort_command		= qla2x00_abort_command,
	.target_reset		= qla2x00_abort_target,
	.lun_reset		= qla2x00_lun_reset,
	.fabric_login		= qla2x00_login_fabric,
	.fabric_logout		= qla2x00_fabric_logout,
	.calc_req_entries	= qla2x00_calc_iocbs_32,
	.build_iocbs		= qla2x00_build_scsi_iocbs_32,
	.prep_ms_iocb		= qla2x00_prep_ms_iocb,
	.prep_ms_fdmi_iocb	= qla2x00_prep_ms_fdmi_iocb,
	.read_nvram		= qla2x00_read_nvram_data,
	.write_nvram		= qla2x00_write_nvram_data,
	.fw_dump		= qla2100_fw_dump,
	.beacon_on		= NULL,
	.beacon_off		= NULL,
	.beacon_blink		= NULL,
	.read_optrom		= qla2x00_read_optrom_data,
	.write_optrom		= qla2x00_write_optrom_data,
	.get_flash_version	= qla2x00_get_flash_version,
	.start_scsi		= qla2x00_start_scsi,
};

static struct isp_operations qla2300_isp_ops = {
	.pci_config		= qla2300_pci_config,
	.reset_chip		= qla2x00_reset_chip,
	.chip_diag		= qla2x00_chip_diag,
	.config_rings		= qla2x00_config_rings,
	.reset_adapter		= qla2x00_reset_adapter,
	.nvram_config		= qla2x00_nvram_config,
	.update_fw_options	= qla2x00_update_fw_options,
	.load_risc		= qla2x00_load_risc,
	.pci_info_str		= qla2x00_pci_info_str,
	.fw_version_str		= qla2x00_fw_version_str,
	.intr_handler		= qla2300_intr_handler,
	.enable_intrs		= qla2x00_enable_intrs,
	.disable_intrs		= qla2x00_disable_intrs,
	.abort_command		= qla2x00_abort_command,
	.target_reset		= qla2x00_abort_target,
	.lun_reset		= qla2x00_lun_reset,
	.fabric_login		= qla2x00_login_fabric,
	.fabric_logout		= qla2x00_fabric_logout,
	.calc_req_entries	= qla2x00_calc_iocbs_32,
	.build_iocbs		= qla2x00_build_scsi_iocbs_32,
	.prep_ms_iocb		= qla2x00_prep_ms_iocb,
	.prep_ms_fdmi_iocb	= qla2x00_prep_ms_fdmi_iocb,
	.read_nvram		= qla2x00_read_nvram_data,
	.write_nvram		= qla2x00_write_nvram_data,
	.fw_dump		= qla2300_fw_dump,
	.beacon_on		= qla2x00_beacon_on,
	.beacon_off		= qla2x00_beacon_off,
	.beacon_blink		= qla2x00_beacon_blink,
	.read_optrom		= qla2x00_read_optrom_data,
	.write_optrom		= qla2x00_write_optrom_data,
	.get_flash_version	= qla2x00_get_flash_version,
	.start_scsi		= qla2x00_start_scsi,
};

static struct isp_operations qla24xx_isp_ops = {
	.pci_config		= qla24xx_pci_config,
	.reset_chip		= qla24xx_reset_chip,
	.chip_diag		= qla24xx_chip_diag,
	.config_rings		= qla24xx_config_rings,
	.reset_adapter		= qla24xx_reset_adapter,
	.nvram_config		= qla24xx_nvram_config,
	.update_fw_options	= qla24xx_update_fw_options,
	.load_risc		= qla24xx_load_risc,
	.pci_info_str		= qla24xx_pci_info_str,
	.fw_version_str		= qla24xx_fw_version_str,
	.intr_handler		= qla24xx_intr_handler,
	.enable_intrs		= qla24xx_enable_intrs,
	.disable_intrs		= qla24xx_disable_intrs,
	.abort_command		= qla24xx_abort_command,
	.target_reset		= qla24xx_abort_target,
	.lun_reset		= qla24xx_lun_reset,
	.fabric_login		= qla24xx_login_fabric,
	.fabric_logout		= qla24xx_fabric_logout,
	.calc_req_entries	= NULL,
	.build_iocbs		= NULL,
	.prep_ms_iocb		= qla24xx_prep_ms_iocb,
	.prep_ms_fdmi_iocb	= qla24xx_prep_ms_fdmi_iocb,
	.read_nvram		= qla24xx_read_nvram_data,
	.write_nvram		= qla24xx_write_nvram_data,
	.fw_dump		= qla24xx_fw_dump,
	.beacon_on		= qla24xx_beacon_on,
	.beacon_off		= qla24xx_beacon_off,
	.beacon_blink		= qla24xx_beacon_blink,
	.read_optrom		= qla24xx_read_optrom_data,
	.write_optrom		= qla24xx_write_optrom_data,
	.get_flash_version	= qla24xx_get_flash_version,
	.start_scsi		= qla24xx_start_scsi,
};

static struct isp_operations qla25xx_isp_ops = {
	.pci_config		= qla25xx_pci_config,
	.reset_chip		= qla24xx_reset_chip,
	.chip_diag		= qla24xx_chip_diag,
	.config_rings		= qla24xx_config_rings,
	.reset_adapter		= qla24xx_reset_adapter,
	.nvram_config		= qla24xx_nvram_config,
	.update_fw_options	= qla24xx_update_fw_options,
	.load_risc		= qla24xx_load_risc,
	.pci_info_str		= qla24xx_pci_info_str,
	.fw_version_str		= qla24xx_fw_version_str,
	.intr_handler		= qla24xx_intr_handler,
	.enable_intrs		= qla24xx_enable_intrs,
	.disable_intrs		= qla24xx_disable_intrs,
	.abort_command		= qla24xx_abort_command,
	.target_reset		= qla24xx_abort_target,
	.lun_reset		= qla24xx_lun_reset,
	.fabric_login		= qla24xx_login_fabric,
	.fabric_logout		= qla24xx_fabric_logout,
	.calc_req_entries	= NULL,
	.build_iocbs		= NULL,
	.prep_ms_iocb		= qla24xx_prep_ms_iocb,
	.prep_ms_fdmi_iocb	= qla24xx_prep_ms_fdmi_iocb,
	.read_nvram		= qla25xx_read_nvram_data,
	.write_nvram		= qla25xx_write_nvram_data,
	.fw_dump		= qla25xx_fw_dump,
	.beacon_on		= qla24xx_beacon_on,
	.beacon_off		= qla24xx_beacon_off,
	.beacon_blink		= qla24xx_beacon_blink,
	.read_optrom		= qla25xx_read_optrom_data,
	.write_optrom		= qla24xx_write_optrom_data,
	.get_flash_version	= qla24xx_get_flash_version,
	.start_scsi		= qla24xx_start_scsi,
};

static struct isp_operations qla81xx_isp_ops = {
	.pci_config		= qla25xx_pci_config,
	.reset_chip		= qla24xx_reset_chip,
	.chip_diag		= qla24xx_chip_diag,
	.config_rings		= qla24xx_config_rings,
	.reset_adapter		= qla24xx_reset_adapter,
	.nvram_config		= qla81xx_nvram_config,
	.update_fw_options	= qla81xx_update_fw_options,
	.load_risc		= qla81xx_load_risc,
	.pci_info_str		= qla24xx_pci_info_str,
	.fw_version_str		= qla24xx_fw_version_str,
	.intr_handler		= qla24xx_intr_handler,
	.enable_intrs		= qla24xx_enable_intrs,
	.disable_intrs		= qla24xx_disable_intrs,
	.abort_command		= qla24xx_abort_command,
	.target_reset		= qla24xx_abort_target,
	.lun_reset		= qla24xx_lun_reset,
	.fabric_login		= qla24xx_login_fabric,
	.fabric_logout		= qla24xx_fabric_logout,
	.calc_req_entries	= NULL,
	.build_iocbs		= NULL,
	.prep_ms_iocb		= qla24xx_prep_ms_iocb,
	.prep_ms_fdmi_iocb	= qla24xx_prep_ms_fdmi_iocb,
	.read_nvram		= NULL,
	.write_nvram		= NULL,
	.fw_dump		= qla81xx_fw_dump,
	.beacon_on		= qla24xx_beacon_on,
	.beacon_off		= qla24xx_beacon_off,
	.beacon_blink		= qla24xx_beacon_blink,
	.read_optrom		= qla25xx_read_optrom_data,
	.write_optrom		= qla24xx_write_optrom_data,
	.get_flash_version	= qla24xx_get_flash_version,
	.start_scsi		= qla24xx_start_scsi,
};

static inline void
qla2x00_set_isp_flags(struct qla_hw_data *ha)
{
	ha->device_type = DT_EXTENDED_IDS;
	switch (ha->pdev->device) {
	case PCI_DEVICE_ID_QLOGIC_ISP2100:
		ha->device_type |= DT_ISP2100;
		ha->device_type &= ~DT_EXTENDED_IDS;
		ha->fw_srisc_address = RISC_START_ADDRESS_2100;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP2200:
		ha->device_type |= DT_ISP2200;
		ha->device_type &= ~DT_EXTENDED_IDS;
		ha->fw_srisc_address = RISC_START_ADDRESS_2100;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP2300:
		ha->device_type |= DT_ISP2300;
		ha->device_type |= DT_ZIO_SUPPORTED;
		ha->fw_srisc_address = RISC_START_ADDRESS_2300;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP2312:
		ha->device_type |= DT_ISP2312;
		ha->device_type |= DT_ZIO_SUPPORTED;
		ha->fw_srisc_address = RISC_START_ADDRESS_2300;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP2322:
		ha->device_type |= DT_ISP2322;
		ha->device_type |= DT_ZIO_SUPPORTED;
		if (ha->pdev->subsystem_vendor == 0x1028 &&
		    ha->pdev->subsystem_device == 0x0170)
			ha->device_type |= DT_OEM_001;
		ha->fw_srisc_address = RISC_START_ADDRESS_2300;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP6312:
		ha->device_type |= DT_ISP6312;
		ha->fw_srisc_address = RISC_START_ADDRESS_2300;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP6322:
		ha->device_type |= DT_ISP6322;
		ha->fw_srisc_address = RISC_START_ADDRESS_2300;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP2422:
		ha->device_type |= DT_ISP2422;
		ha->device_type |= DT_ZIO_SUPPORTED;
		ha->device_type |= DT_FWI2;
		ha->device_type |= DT_IIDMA;
		ha->fw_srisc_address = RISC_START_ADDRESS_2400;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP2432:
		ha->device_type |= DT_ISP2432;
		ha->device_type |= DT_ZIO_SUPPORTED;
		ha->device_type |= DT_FWI2;
		ha->device_type |= DT_IIDMA;
		ha->fw_srisc_address = RISC_START_ADDRESS_2400;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP8432:
		ha->device_type |= DT_ISP8432;
		ha->device_type |= DT_ZIO_SUPPORTED;
		ha->device_type |= DT_FWI2;
		ha->device_type |= DT_IIDMA;
		ha->fw_srisc_address = RISC_START_ADDRESS_2400;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP5422:
		ha->device_type |= DT_ISP5422;
		ha->device_type |= DT_FWI2;
		ha->fw_srisc_address = RISC_START_ADDRESS_2400;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP5432:
		ha->device_type |= DT_ISP5432;
		ha->device_type |= DT_FWI2;
		ha->fw_srisc_address = RISC_START_ADDRESS_2400;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP2532:
		ha->device_type |= DT_ISP2532;
		ha->device_type |= DT_ZIO_SUPPORTED;
		ha->device_type |= DT_FWI2;
		ha->device_type |= DT_IIDMA;
		ha->fw_srisc_address = RISC_START_ADDRESS_2400;
		break;
	case PCI_DEVICE_ID_QLOGIC_ISP8001:
		ha->device_type |= DT_ISP8001;
		ha->device_type |= DT_ZIO_SUPPORTED;
		ha->device_type |= DT_FWI2;
		ha->device_type |= DT_IIDMA;
		ha->fw_srisc_address = RISC_START_ADDRESS_2400;
		break;
	}

	/* Get adapter physical port no from interrupt pin register. */
	pci_read_config_byte(ha->pdev, PCI_INTERRUPT_PIN, &ha->port_no);
	if (ha->port_no & 1)
		ha->flags.port0 = 1;
	else
		ha->flags.port0 = 0;
}

static int
qla2x00_iospace_config(struct qla_hw_data *ha)
{
	resource_size_t pio;
	uint16_t msix;
	int cpus;

	if (pci_request_selected_regions(ha->pdev, ha->bars,
	    QLA2XXX_DRIVER_NAME)) {
		qla_printk(KERN_WARNING, ha,
		    "Failed to reserve PIO/MMIO regions (%s)\n",
		    pci_name(ha->pdev));

		goto iospace_error_exit;
	}
	if (!(ha->bars & 1))
		goto skip_pio;

	/* We only need PIO for Flash operations on ISP2312 v2 chips. */
	pio = pci_resource_start(ha->pdev, 0);
	if (pci_resource_flags(ha->pdev, 0) & IORESOURCE_IO) {
		if (pci_resource_len(ha->pdev, 0) < MIN_IOBASE_LEN) {
			qla_printk(KERN_WARNING, ha,
			    "Invalid PCI I/O region size (%s)...\n",
				pci_name(ha->pdev));
			pio = 0;
		}
	} else {
		qla_printk(KERN_WARNING, ha,
		    "region #0 not a PIO resource (%s)...\n",
		    pci_name(ha->pdev));
		pio = 0;
	}
	ha->pio_address = pio;

skip_pio:
	/* Use MMIO operations for all accesses. */
	if (!(pci_resource_flags(ha->pdev, 1) & IORESOURCE_MEM)) {
		qla_printk(KERN_ERR, ha,
		    "region #1 not an MMIO resource (%s), aborting\n",
		    pci_name(ha->pdev));
		goto iospace_error_exit;
	}
	if (pci_resource_len(ha->pdev, 1) < MIN_IOBASE_LEN) {
		qla_printk(KERN_ERR, ha,
		    "Invalid PCI mem region size (%s), aborting\n",
			pci_name(ha->pdev));
		goto iospace_error_exit;
	}

	ha->iobase = ioremap(pci_resource_start(ha->pdev, 1), MIN_IOBASE_LEN);
	if (!ha->iobase) {
		qla_printk(KERN_ERR, ha,
		    "cannot remap MMIO (%s), aborting\n", pci_name(ha->pdev));

		goto iospace_error_exit;
	}

	/* Determine queue resources */
	ha->max_req_queues = ha->max_rsp_queues = 1;
	if ((ql2xmaxqueues <= 1 || ql2xmultique_tag < 1) &&
		(!IS_QLA25XX(ha) && !IS_QLA81XX(ha)))
		goto mqiobase_exit;
	ha->mqiobase = ioremap(pci_resource_start(ha->pdev, 3),
			pci_resource_len(ha->pdev, 3));
	if (ha->mqiobase) {
		/* Read MSIX vector size of the board */
		pci_read_config_word(ha->pdev, QLA_PCI_MSIX_CONTROL, &msix);
		ha->msix_count = msix;
		/* Max queues are bounded by available msix vectors */
		/* queue 0 uses two msix vectors */
		if (ql2xmultique_tag) {
			cpus = num_online_cpus();
			ha->max_rsp_queues = (ha->msix_count - 1 > cpus) ?
				(cpus + 1) : (ha->msix_count - 1);
			ha->max_req_queues = 2;
		} else if (ql2xmaxqueues > 1) {
			ha->max_req_queues = ql2xmaxqueues > QLA_MQ_SIZE ?
						QLA_MQ_SIZE : ql2xmaxqueues;
			DEBUG2(qla_printk(KERN_INFO, ha, "QoS mode set, max no"
			" of request queues:%d\n", ha->max_req_queues));
		}
		qla_printk(KERN_INFO, ha,
			"MSI-X vector count: %d\n", msix);
	} else
		qla_printk(KERN_INFO, ha, "BAR 3 not enabled\n");

mqiobase_exit:
	ha->msix_count = ha->max_rsp_queues + 1;
	return (0);

iospace_error_exit:
	return (-ENOMEM);
}

static void
qla2xxx_scan_start(struct Scsi_Host *shost)
{
	scsi_qla_host_t *vha = shost_priv(shost);

	if (vha->hw->flags.running_gold_fw)
		return;

	set_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags);
	set_bit(LOCAL_LOOP_UPDATE, &vha->dpc_flags);
	set_bit(RSCN_UPDATE, &vha->dpc_flags);
	set_bit(NPIV_CONFIG_NEEDED, &vha->dpc_flags);
}

static int
qla2xxx_scan_finished(struct Scsi_Host *shost, unsigned long time)
{
	scsi_qla_host_t *vha = shost_priv(shost);

	if (!vha->host)
		return 1;
	if (time > vha->hw->loop_reset_delay * HZ)
		return 1;

	return atomic_read(&vha->loop_state) == LOOP_READY;
}

/*
 * PCI driver interface
 */
static int __devinit
qla2x00_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int	ret = -ENODEV;
	struct Scsi_Host *host;
	scsi_qla_host_t *base_vha = NULL;
	struct qla_hw_data *ha;
	char pci_info[30];
	char fw_str[30];
	struct scsi_host_template *sht;
	int bars, max_id, mem_only = 0;
	uint16_t req_length = 0, rsp_length = 0;
	struct req_que *req = NULL;
	struct rsp_que *rsp = NULL;

	bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
	sht = &qla2xxx_driver_template;
	if (pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2422 ||
	    pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2432 ||
	    pdev->device == PCI_DEVICE_ID_QLOGIC_ISP8432 ||
	    pdev->device == PCI_DEVICE_ID_QLOGIC_ISP5422 ||
	    pdev->device == PCI_DEVICE_ID_QLOGIC_ISP5432 ||
	    pdev->device == PCI_DEVICE_ID_QLOGIC_ISP2532 ||
	    pdev->device == PCI_DEVICE_ID_QLOGIC_ISP8001) {
		bars = pci_select_bars(pdev, IORESOURCE_MEM);
		mem_only = 1;
	}

	if (mem_only) {
		if (pci_enable_device_mem(pdev))
			goto probe_out;
	} else {
		if (pci_enable_device(pdev))
			goto probe_out;
	}

	/* This may fail but that's ok */
	pci_enable_pcie_error_reporting(pdev);

	ha = kzalloc(sizeof(struct qla_hw_data), GFP_KERNEL);
	if (!ha) {
		DEBUG(printk("Unable to allocate memory for ha\n"));
		goto probe_out;
	}
	ha->pdev = pdev;

	/* Clear our data area */
	ha->bars = bars;
	ha->mem_only = mem_only;
	spin_lock_init(&ha->hardware_lock);

	/* Set ISP-type information. */
	qla2x00_set_isp_flags(ha);
	/* Configure PCI I/O space */
	ret = qla2x00_iospace_config(ha);
	if (ret)
		goto probe_hw_failed;

	qla_printk(KERN_INFO, ha,
	    "Found an ISP%04X, irq %d, iobase 0x%p\n", pdev->device, pdev->irq,
	    ha->iobase);

	ha->prev_topology = 0;
	ha->init_cb_size = sizeof(init_cb_t);
	ha->link_data_rate = PORT_SPEED_UNKNOWN;
	ha->optrom_size = OPTROM_SIZE_2300;

	/* Assign ISP specific operations. */
	max_id = MAX_TARGETS_2200;
	if (IS_QLA2100(ha)) {
		max_id = MAX_TARGETS_2100;
		ha->mbx_count = MAILBOX_REGISTER_COUNT_2100;
		req_length = REQUEST_ENTRY_CNT_2100;
		rsp_length = RESPONSE_ENTRY_CNT_2100;
		ha->max_loop_id = SNS_LAST_LOOP_ID_2100;
		ha->gid_list_info_size = 4;
		ha->flash_conf_off = ~0;
		ha->flash_data_off = ~0;
		ha->nvram_conf_off = ~0;
		ha->nvram_data_off = ~0;
		ha->isp_ops = &qla2100_isp_ops;
	} else if (IS_QLA2200(ha)) {
		ha->mbx_count = MAILBOX_REGISTER_COUNT;
		req_length = REQUEST_ENTRY_CNT_2200;
		rsp_length = RESPONSE_ENTRY_CNT_2100;
		ha->max_loop_id = SNS_LAST_LOOP_ID_2100;
		ha->gid_list_info_size = 4;
		ha->flash_conf_off = ~0;
		ha->flash_data_off = ~0;
		ha->nvram_conf_off = ~0;
		ha->nvram_data_off = ~0;
		ha->isp_ops = &qla2100_isp_ops;
	} else if (IS_QLA23XX(ha)) {
		ha->mbx_count = MAILBOX_REGISTER_COUNT;
		req_length = REQUEST_ENTRY_CNT_2200;
		rsp_length = RESPONSE_ENTRY_CNT_2300;
		ha->max_loop_id = SNS_LAST_LOOP_ID_2300;
		ha->gid_list_info_size = 6;
		if (IS_QLA2322(ha) || IS_QLA6322(ha))
			ha->optrom_size = OPTROM_SIZE_2322;
		ha->flash_conf_off = ~0;
		ha->flash_data_off = ~0;
		ha->nvram_conf_off = ~0;
		ha->nvram_data_off = ~0;
		ha->isp_ops = &qla2300_isp_ops;
	} else if (IS_QLA24XX_TYPE(ha)) {
		ha->mbx_count = MAILBOX_REGISTER_COUNT;
		req_length = REQUEST_ENTRY_CNT_24XX;
		rsp_length = RESPONSE_ENTRY_CNT_2300;
		ha->max_loop_id = SNS_LAST_LOOP_ID_2300;
		ha->init_cb_size = sizeof(struct mid_init_cb_24xx);
		ha->gid_list_info_size = 8;
		ha->optrom_size = OPTROM_SIZE_24XX;
		ha->nvram_npiv_size = QLA_MAX_VPORTS_QLA24XX;
		ha->isp_ops = &qla24xx_isp_ops;
		ha->flash_conf_off = FARX_ACCESS_FLASH_CONF;
		ha->flash_data_off = FARX_ACCESS_FLASH_DATA;
		ha->nvram_conf_off = FARX_ACCESS_NVRAM_CONF;
		ha->nvram_data_off = FARX_ACCESS_NVRAM_DATA;
	} else if (IS_QLA25XX(ha)) {
		ha->mbx_count = MAILBOX_REGISTER_COUNT;
		req_length = REQUEST_ENTRY_CNT_24XX;
		rsp_length = RESPONSE_ENTRY_CNT_2300;
		ha->max_loop_id = SNS_LAST_LOOP_ID_2300;
		ha->init_cb_size = sizeof(struct mid_init_cb_24xx);
		ha->gid_list_info_size = 8;
		ha->optrom_size = OPTROM_SIZE_25XX;
		ha->nvram_npiv_size = QLA_MAX_VPORTS_QLA25XX;
		ha->isp_ops = &qla25xx_isp_ops;
		ha->flash_conf_off = FARX_ACCESS_FLASH_CONF;
		ha->flash_data_off = FARX_ACCESS_FLASH_DATA;
		ha->nvram_conf_off = FARX_ACCESS_NVRAM_CONF;
		ha->nvram_data_off = FARX_ACCESS_NVRAM_DATA;
	} else if (IS_QLA81XX(ha)) {
		ha->mbx_count = MAILBOX_REGISTER_COUNT;
		req_length = REQUEST_ENTRY_CNT_24XX;
		rsp_length = RESPONSE_ENTRY_CNT_2300;
		ha->max_loop_id = SNS_LAST_LOOP_ID_2300;
		ha->init_cb_size = sizeof(struct mid_init_cb_81xx);
		ha->gid_list_info_size = 8;
		ha->optrom_size = OPTROM_SIZE_81XX;
		ha->nvram_npiv_size = QLA_MAX_VPORTS_QLA25XX;
		ha->isp_ops = &qla81xx_isp_ops;
		ha->flash_conf_off = FARX_ACCESS_FLASH_CONF_81XX;
		ha->flash_data_off = FARX_ACCESS_FLASH_DATA_81XX;
		ha->nvram_conf_off = ~0;
		ha->nvram_data_off = ~0;
	}

	mutex_init(&ha->vport_lock);
	init_completion(&ha->mbx_cmd_comp);
	complete(&ha->mbx_cmd_comp);
	init_completion(&ha->mbx_intr_comp);

	set_bit(0, (unsigned long *) ha->vp_idx_map);

	qla2x00_config_dma_addressing(ha);
	ret = qla2x00_mem_alloc(ha, req_length, rsp_length, &req, &rsp);
	if (!ret) {
		qla_printk(KERN_WARNING, ha,
		    "[ERROR] Failed to allocate memory for adapter\n");

		goto probe_hw_failed;
	}

	req->max_q_depth = MAX_Q_DEPTH;
	if (ql2xmaxqdepth != 0 && ql2xmaxqdepth <= 0xffffU)
		req->max_q_depth = ql2xmaxqdepth;


	base_vha = qla2x00_create_host(sht, ha);
	if (!base_vha) {
		qla_printk(KERN_WARNING, ha,
		    "[ERROR] Failed to allocate memory for scsi_host\n");

		ret = -ENOMEM;
		qla2x00_mem_free(ha);
		qla2x00_free_req_que(ha, req);
		qla2x00_free_rsp_que(ha, rsp);
		goto probe_hw_failed;
	}

	pci_set_drvdata(pdev, base_vha);

	host = base_vha->host;
	base_vha->req = req;
	host->can_queue = req->length + 128;
	if (IS_QLA2XXX_MIDTYPE(ha))
		base_vha->mgmt_svr_loop_id = 10 + base_vha->vp_idx;
	else
		base_vha->mgmt_svr_loop_id = MANAGEMENT_SERVER +
						base_vha->vp_idx;
	if (IS_QLA2100(ha))
		host->sg_tablesize = 32;
	host->max_id = max_id;
	host->this_id = 255;
	host->cmd_per_lun = 3;
	host->unique_id = host->host_no;
	host->max_cmd_len = MAX_CMDSZ;
	host->max_channel = MAX_BUSES - 1;
	host->max_lun = MAX_LUNS;
	host->transportt = qla2xxx_transport_template;

	/* Set up the irqs */
	ret = qla2x00_request_irqs(ha, rsp);
	if (ret)
		goto probe_init_failed;
	/* Alloc arrays of request and response ring ptrs */
que_init:
	if (!qla2x00_alloc_queues(ha)) {
		qla_printk(KERN_WARNING, ha,
		"[ERROR] Failed to allocate memory for queue"
		" pointers\n");
		goto probe_init_failed;
	}
	ha->rsp_q_map[0] = rsp;
	ha->req_q_map[0] = req;
	rsp->req = req;
	req->rsp = rsp;
	set_bit(0, ha->req_qid_map);
	set_bit(0, ha->rsp_qid_map);
	/* FWI2-capable only. */
	req->req_q_in = &ha->iobase->isp24.req_q_in;
	req->req_q_out = &ha->iobase->isp24.req_q_out;
	rsp->rsp_q_in = &ha->iobase->isp24.rsp_q_in;
	rsp->rsp_q_out = &ha->iobase->isp24.rsp_q_out;
	if (ha->mqenable) {
		req->req_q_in = &ha->mqiobase->isp25mq.req_q_in;
		req->req_q_out = &ha->mqiobase->isp25mq.req_q_out;
		rsp->rsp_q_in = &ha->mqiobase->isp25mq.rsp_q_in;
		rsp->rsp_q_out =  &ha->mqiobase->isp25mq.rsp_q_out;
	}

	if (qla2x00_initialize_adapter(base_vha)) {
		qla_printk(KERN_WARNING, ha,
		    "Failed to initialize adapter\n");

		DEBUG2(printk("scsi(%ld): Failed to initialize adapter - "
		    "Adapter flags %x.\n",
		    base_vha->host_no, base_vha->device_flags));

		ret = -ENODEV;
		goto probe_failed;
	}

	if (ha->mqenable) {
		if (qla25xx_setup_mode(base_vha)) {
			qla_printk(KERN_WARNING, ha,
				"Can't create queues, falling back to single"
				" queue mode\n");
			goto que_init;
		}
	}

	if (ha->flags.running_gold_fw)
		goto skip_dpc;

	/*
	 * Startup the kernel thread for this host adapter
	 */
	ha->dpc_thread = kthread_create(qla2x00_do_dpc, ha,
			"%s_dpc", base_vha->host_str);
	if (IS_ERR(ha->dpc_thread)) {
		qla_printk(KERN_WARNING, ha,
		    "Unable to start DPC thread!\n");
		ret = PTR_ERR(ha->dpc_thread);
		goto probe_failed;
	}

skip_dpc:
	list_add_tail(&base_vha->list, &ha->vp_list);
	base_vha->host->irq = ha->pdev->irq;

	/* Initialized the timer */
	qla2x00_start_timer(base_vha, qla2x00_timer, WATCH_INTERVAL);

	DEBUG2(printk("DEBUG: detect hba %ld at address = %p\n",
	    base_vha->host_no, ha));

	base_vha->flags.init_done = 1;
	base_vha->flags.online = 1;

	ret = scsi_add_host(host, &pdev->dev);
	if (ret)
		goto probe_failed;

	ha->isp_ops->enable_intrs(ha);

	scsi_scan_host(host);

	qla2x00_alloc_sysfs_attr(base_vha);

	qla2x00_init_host_attr(base_vha);

	qla2x00_dfs_setup(base_vha);

	qla_printk(KERN_INFO, ha, "\n"
	    " QLogic Fibre Channel HBA Driver: %s\n"
	    "  QLogic %s - %s\n"
	    "  ISP%04X: %s @ %s hdma%c, host#=%ld, fw=%s\n",
	    qla2x00_version_str, ha->model_number,
	    ha->model_desc ? ha->model_desc : "", pdev->device,
	    ha->isp_ops->pci_info_str(base_vha, pci_info), pci_name(pdev),
	    ha->flags.enable_64bit_addressing ? '+' : '-', base_vha->host_no,
	    ha->isp_ops->fw_version_str(base_vha, fw_str));

	return 0;

probe_init_failed:
	qla2x00_free_req_que(ha, req);
	qla2x00_free_rsp_que(ha, rsp);
	ha->max_req_queues = ha->max_rsp_queues = 0;

probe_failed:
	if (base_vha->timer_active)
		qla2x00_stop_timer(base_vha);
	base_vha->flags.online = 0;
	if (ha->dpc_thread) {
		struct task_struct *t = ha->dpc_thread;

		ha->dpc_thread = NULL;
		kthread_stop(t);
	}

	qla2x00_free_device(base_vha);

	scsi_host_put(base_vha->host);

probe_hw_failed:
	if (ha->iobase)
		iounmap(ha->iobase);

	pci_release_selected_regions(ha->pdev, ha->bars);
	kfree(ha);
	ha = NULL;

probe_out:
	pci_disable_device(pdev);
	return ret;
}

static void
qla2x00_remove_one(struct pci_dev *pdev)
{
	scsi_qla_host_t *base_vha, *vha, *temp;
	struct qla_hw_data  *ha;

	base_vha = pci_get_drvdata(pdev);
	ha = base_vha->hw;

	list_for_each_entry_safe(vha, temp, &ha->vp_list, list) {
		if (vha && vha->fc_vport)
			fc_vport_terminate(vha->fc_vport);
	}

	set_bit(UNLOADING, &base_vha->dpc_flags);

	qla2x00_abort_all_cmds(base_vha, DID_NO_CONNECT << 16);

	qla2x00_dfs_remove(base_vha);

	qla84xx_put_chip(base_vha);

	/* Disable timer */
	if (base_vha->timer_active)
		qla2x00_stop_timer(base_vha);

	base_vha->flags.online = 0;

	/* Flush the work queue and remove it */
	if (ha->wq) {
		flush_workqueue(ha->wq);
		destroy_workqueue(ha->wq);
		ha->wq = NULL;
	}

	/* Kill the kernel thread for this host */
	if (ha->dpc_thread) {
		struct task_struct *t = ha->dpc_thread;

		/*
		 * qla2xxx_wake_dpc checks for ->dpc_thread
		 * so we need to zero it out.
		 */
		ha->dpc_thread = NULL;
		kthread_stop(t);
	}

	qla2x00_free_sysfs_attr(base_vha);

	fc_remove_host(base_vha->host);

	scsi_remove_host(base_vha->host);

	qla2x00_free_device(base_vha);

	scsi_host_put(base_vha->host);

	if (ha->iobase)
		iounmap(ha->iobase);

	if (ha->mqiobase)
		iounmap(ha->mqiobase);

	pci_release_selected_regions(ha->pdev, ha->bars);
	kfree(ha);
	ha = NULL;

	pci_disable_device(pdev);
	pci_set_drvdata(pdev, NULL);
}

static void
qla2x00_free_device(scsi_qla_host_t *vha)
{
	struct qla_hw_data *ha = vha->hw;

	qla25xx_delete_queues(vha);

	if (ha->flags.fce_enabled)
		qla2x00_disable_fce_trace(vha, NULL, NULL);

	if (ha->eft)
		qla2x00_disable_eft_trace(vha);

	/* Stop currently executing firmware. */
	qla2x00_try_to_stop_firmware(vha);

	/* turn-off interrupts on the card */
	if (ha->interrupts_on)
		ha->isp_ops->disable_intrs(ha);

	qla2x00_free_irqs(vha);

	qla2x00_mem_free(ha);

	qla2x00_free_queues(ha);
}

static inline void
qla2x00_schedule_rport_del(struct scsi_qla_host *vha, fc_port_t *fcport,
    int defer)
{
	struct fc_rport *rport;
	scsi_qla_host_t *base_vha;

	if (!fcport->rport)
		return;

	rport = fcport->rport;
	if (defer) {
		base_vha = pci_get_drvdata(vha->hw->pdev);
		spin_lock_irq(vha->host->host_lock);
		fcport->drport = rport;
		spin_unlock_irq(vha->host->host_lock);
		set_bit(FCPORT_UPDATE_NEEDED, &base_vha->dpc_flags);
		qla2xxx_wake_dpc(base_vha);
	} else
		fc_remote_port_delete(rport);
}

/*
 * qla2x00_mark_device_lost Updates fcport state when device goes offline.
 *
 * Input: ha = adapter block pointer.  fcport = port structure pointer.
 *
 * Return: None.
 *
 * Context:
 */
void qla2x00_mark_device_lost(scsi_qla_host_t *vha, fc_port_t *fcport,
    int do_login, int defer)
{
	if (atomic_read(&fcport->state) == FCS_ONLINE &&
	    vha->vp_idx == fcport->vp_idx) {
		atomic_set(&fcport->state, FCS_DEVICE_LOST);
		qla2x00_schedule_rport_del(vha, fcport, defer);
	}
	/*
	 * We may need to retry the login, so don't change the state of the
	 * port but do the retries.
	 */
	if (atomic_read(&fcport->state) != FCS_DEVICE_DEAD)
		atomic_set(&fcport->state, FCS_DEVICE_LOST);

	if (!do_login)
		return;

	if (fcport->login_retry == 0) {
		fcport->login_retry = vha->hw->login_retry_count;
		set_bit(RELOGIN_NEEDED, &vha->dpc_flags);

		DEBUG(printk("scsi(%ld): Port login retry: "
		    "%02x%02x%02x%02x%02x%02x%02x%02x, "
		    "id = 0x%04x retry cnt=%d\n",
		    vha->host_no,
		    fcport->port_name[0],
		    fcport->port_name[1],
		    fcport->port_name[2],
		    fcport->port_name[3],
		    fcport->port_name[4],
		    fcport->port_name[5],
		    fcport->port_name[6],
		    fcport->port_name[7],
		    fcport->loop_id,
		    fcport->login_retry));
	}
}

/*
 * qla2x00_mark_all_devices_lost
 *	Updates fcport state when device goes offline.
 *
 * Input:
 *	ha = adapter block pointer.
 *	fcport = port structure pointer.
 *
 * Return:
 *	None.
 *
 * Context:
 */
void
qla2x00_mark_all_devices_lost(scsi_qla_host_t *vha, int defer)
{
	fc_port_t *fcport;

	list_for_each_entry(fcport, &vha->vp_fcports, list) {
		if (vha->vp_idx != 0 && vha->vp_idx != fcport->vp_idx)
			continue;

		/*
		 * No point in marking the device as lost, if the device is
		 * already DEAD.
		 */
		if (atomic_read(&fcport->state) == FCS_DEVICE_DEAD)
			continue;
		if (atomic_read(&fcport->state) == FCS_ONLINE) {
			if (defer)
				qla2x00_schedule_rport_del(vha, fcport, defer);
			else if (vha->vp_idx == fcport->vp_idx)
				qla2x00_schedule_rport_del(vha, fcport, defer);
		}
		atomic_set(&fcport->state, FCS_DEVICE_LOST);
	}
}

/*
* qla2x00_mem_alloc
*      Allocates adapter memory.
*
* Returns:
*      0  = success.
*      !0  = failure.
*/
static int
qla2x00_mem_alloc(struct qla_hw_data *ha, uint16_t req_len, uint16_t rsp_len,
	struct req_que **req, struct rsp_que **rsp)
{
	char	name[16];

	ha->init_cb = dma_alloc_coherent(&ha->pdev->dev, ha->init_cb_size,
		&ha->init_cb_dma, GFP_KERNEL);
	if (!ha->init_cb)
		goto fail;

	ha->gid_list = dma_alloc_coherent(&ha->pdev->dev, GID_LIST_SIZE,
		&ha->gid_list_dma, GFP_KERNEL);
	if (!ha->gid_list)
		goto fail_free_init_cb;

	ha->srb_mempool = mempool_create_slab_pool(SRB_MIN_REQ, srb_cachep);
	if (!ha->srb_mempool)
		goto fail_free_gid_list;

	/* Get memory for cached NVRAM */
	ha->nvram = kzalloc(MAX_NVRAM_SIZE, GFP_KERNEL);
	if (!ha->nvram)
		goto fail_free_srb_mempool;

	snprintf(name, sizeof(name), "%s_%d", QLA2XXX_DRIVER_NAME,
		ha->pdev->device);
	ha->s_dma_pool = dma_pool_create(name, &ha->pdev->dev,
		DMA_POOL_SIZE, 8, 0);
	if (!ha->s_dma_pool)
		goto fail_free_nvram;

	/* Allocate memory for SNS commands */
	if (IS_QLA2100(ha) || IS_QLA2200(ha)) {
	/* Get consistent memory allocated for SNS commands */
		ha->sns_cmd = dma_alloc_coherent(&ha->pdev->dev,
		sizeof(struct sns_cmd_pkt), &ha->sns_cmd_dma, GFP_KERNEL);
		if (!ha->sns_cmd)
			goto fail_dma_pool;
	} else {
	/* Get consistent memory allocated for MS IOCB */
		ha->ms_iocb = dma_pool_alloc(ha->s_dma_pool, GFP_KERNEL,
			&ha->ms_iocb_dma);
		if (!ha->ms_iocb)
			goto fail_dma_pool;
	/* Get consistent memory allocated for CT SNS commands */
		ha->ct_sns = dma_alloc_coherent(&ha->pdev->dev,
			sizeof(struct ct_sns_pkt), &ha->ct_sns_dma, GFP_KERNEL);
		if (!ha->ct_sns)
			goto fail_free_ms_iocb;
	}

	/* Allocate memory for request ring */
	*req = kzalloc(sizeof(struct req_que), GFP_KERNEL);
	if (!*req) {
		DEBUG(printk("Unable to allocate memory for req\n"));
		goto fail_req;
	}
	(*req)->length = req_len;
	(*req)->ring = dma_alloc_coherent(&ha->pdev->dev,
		((*req)->length + 1) * sizeof(request_t),
		&(*req)->dma, GFP_KERNEL);
	if (!(*req)->ring) {
		DEBUG(printk("Unable to allocate memory for req_ring\n"));
		goto fail_req_ring;
	}
	/* Allocate memory for response ring */
	*rsp = kzalloc(sizeof(struct rsp_que), GFP_KERNEL);
	if (!*rsp) {
		qla_printk(KERN_WARNING, ha,
			"Unable to allocate memory for rsp\n");
		goto fail_rsp;
	}
	(*rsp)->hw = ha;
	(*rsp)->length = rsp_len;
	(*rsp)->ring = dma_alloc_coherent(&ha->pdev->dev,
		((*rsp)->length + 1) * sizeof(response_t),
		&(*rsp)->dma, GFP_KERNEL);
	if (!(*rsp)->ring) {
		qla_printk(KERN_WARNING, ha,
			"Unable to allocate memory for rsp_ring\n");
		goto fail_rsp_ring;
	}
	(*req)->rsp = *rsp;
	(*rsp)->req = *req;
	/* Allocate memory for NVRAM data for vports */
	if (ha->nvram_npiv_size) {
		ha->npiv_info = kzalloc(sizeof(struct qla_npiv_entry) *
					ha->nvram_npiv_size, GFP_KERNEL);
		if (!ha->npiv_info) {
			qla_printk(KERN_WARNING, ha,
				"Unable to allocate memory for npiv info\n");
			goto fail_npiv_info;
		}
	} else
		ha->npiv_info = NULL;

	/* Get consistent memory allocated for EX-INIT-CB. */
	if (IS_QLA81XX(ha)) {
		ha->ex_init_cb = dma_pool_alloc(ha->s_dma_pool, GFP_KERNEL,
		    &ha->ex_init_cb_dma);
		if (!ha->ex_init_cb)
			goto fail_ex_init_cb;
	}

	INIT_LIST_HEAD(&ha->vp_list);
	return 1;

fail_ex_init_cb:
	kfree(ha->npiv_info);
fail_npiv_info:
	dma_free_coherent(&ha->pdev->dev, ((*rsp)->length + 1) *
		sizeof(response_t), (*rsp)->ring, (*rsp)->dma);
	(*rsp)->ring = NULL;
	(*rsp)->dma = 0;
fail_rsp_ring:
	kfree(*rsp);
fail_rsp:
	dma_free_coherent(&ha->pdev->dev, ((*req)->length + 1) *
		sizeof(request_t), (*req)->ring, (*req)->dma);
	(*req)->ring = NULL;
	(*req)->dma = 0;
fail_req_ring:
	kfree(*req);
fail_req:
	dma_free_coherent(&ha->pdev->dev, sizeof(struct ct_sns_pkt),
		ha->ct_sns, ha->ct_sns_dma);
	ha->ct_sns = NULL;
	ha->ct_sns_dma = 0;
fail_free_ms_iocb:
	dma_pool_free(ha->s_dma_pool, ha->ms_iocb, ha->ms_iocb_dma);
	ha->ms_iocb = NULL;
	ha->ms_iocb_dma = 0;
fail_dma_pool:
	dma_pool_destroy(ha->s_dma_pool);
	ha->s_dma_pool = NULL;
fail_free_nvram:
	kfree(ha->nvram);
	ha->nvram = NULL;
fail_free_srb_mempool:
	mempool_destroy(ha->srb_mempool);
	ha->srb_mempool = NULL;
fail_free_gid_list:
	dma_free_coherent(&ha->pdev->dev, GID_LIST_SIZE, ha->gid_list,
	ha->gid_list_dma);
	ha->gid_list = NULL;
	ha->gid_list_dma = 0;
fail_free_init_cb:
	dma_free_coherent(&ha->pdev->dev, ha->init_cb_size, ha->init_cb,
	ha->init_cb_dma);
	ha->init_cb = NULL;
	ha->init_cb_dma = 0;
fail:
	DEBUG(printk("%s: Memory allocation failure\n", __func__));
	return -ENOMEM;
}

/*
* qla2x00_mem_free
*      Frees all adapter allocated memory.
*
* Input:
*      ha = adapter block pointer.
*/
static void
qla2x00_mem_free(struct qla_hw_data *ha)
{
	if (ha->srb_mempool)
		mempool_destroy(ha->srb_mempool);

	if (ha->fce)
		dma_free_coherent(&ha->pdev->dev, FCE_SIZE, ha->fce,
		ha->fce_dma);

	if (ha->fw_dump) {
		if (ha->eft)
			dma_free_coherent(&ha->pdev->dev,
			ntohl(ha->fw_dump->eft_size), ha->eft, ha->eft_dma);
		vfree(ha->fw_dump);
	}

	if (ha->dcbx_tlv)
		dma_free_coherent(&ha->pdev->dev, DCBX_TLV_DATA_SIZE,
		    ha->dcbx_tlv, ha->dcbx_tlv_dma);

	if (ha->xgmac_data)
		dma_free_coherent(&ha->pdev->dev, XGMAC_DATA_SIZE,
		    ha->xgmac_data, ha->xgmac_data_dma);

	if (ha->sns_cmd)
		dma_free_coherent(&ha->pdev->dev, sizeof(struct sns_cmd_pkt),
		ha->sns_cmd, ha->sns_cmd_dma);

	if (ha->ct_sns)
		dma_free_coherent(&ha->pdev->dev, sizeof(struct ct_sns_pkt),
		ha->ct_sns, ha->ct_sns_dma);

	if (ha->sfp_data)
		dma_pool_free(ha->s_dma_pool, ha->sfp_data, ha->sfp_data_dma);

	if (ha->edc_data)
		dma_pool_free(ha->s_dma_pool, ha->edc_data, ha->edc_data_dma);

	if (ha->ms_iocb)
		dma_pool_free(ha->s_dma_pool, ha->ms_iocb, ha->ms_iocb_dma);

	if (ha->ex_init_cb)
		dma_pool_free(ha->s_dma_pool, ha->ex_init_cb, ha->ex_init_cb_dma);

	if (ha->s_dma_pool)
		dma_pool_destroy(ha->s_dma_pool);

	if (ha->gid_list)
		dma_free_coherent(&ha->pdev->dev, GID_LIST_SIZE, ha->gid_list,
		ha->gid_list_dma);

	if (ha->init_cb)
		dma_free_coherent(&ha->pdev->dev, ha->init_cb_size,
		ha->init_cb, ha->init_cb_dma);
	vfree(ha->optrom_buffer);
	kfree(ha->nvram);
	kfree(ha->npiv_info);

	ha->srb_mempool = NULL;
	ha->eft = NULL;
	ha->eft_dma = 0;
	ha->sns_cmd = NULL;
	ha->sns_cmd_dma = 0;
	ha->ct_sns = NULL;
	ha->ct_sns_dma = 0;
	ha->ms_iocb = NULL;
	ha->ms_iocb_dma = 0;
	ha->init_cb = NULL;
	ha->init_cb_dma = 0;
	ha->ex_init_cb = NULL;
	ha->ex_init_cb_dma = 0;

	ha->s_dma_pool = NULL;

	ha->gid_list = NULL;
	ha->gid_list_dma = 0;

	ha->fw_dump = NULL;
	ha->fw_dumped = 0;
	ha->fw_dump_reading = 0;
}

struct scsi_qla_host *qla2x00_create_host(struct scsi_host_template *sht,
						struct qla_hw_data *ha)
{
	struct Scsi_Host *host;
	struct scsi_qla_host *vha = NULL;

	host = scsi_host_alloc(sht, sizeof(scsi_qla_host_t));
	if (host == NULL) {
		printk(KERN_WARNING
		"qla2xxx: Couldn't allocate host from scsi layer!\n");
		goto fail;
	}

	/* Clear our data area */
	vha = shost_priv(host);
	memset(vha, 0, sizeof(scsi_qla_host_t));

	vha->host = host;
	vha->host_no = host->host_no;
	vha->hw = ha;

	INIT_LIST_HEAD(&vha->vp_fcports);
	INIT_LIST_HEAD(&vha->work_list);
	INIT_LIST_HEAD(&vha->list);

	spin_lock_init(&vha->work_lock);

	sprintf(vha->host_str, "%s_%ld", QLA2XXX_DRIVER_NAME, vha->host_no);
	return vha;

fail:
	return vha;
}

static struct qla_work_evt *
qla2x00_alloc_work(struct scsi_qla_host *vha, enum qla_work_type type)
{
	struct qla_work_evt *e;

	e = kzalloc(sizeof(struct qla_work_evt), GFP_ATOMIC);
	if (!e)
		return NULL;

	INIT_LIST_HEAD(&e->list);
	e->type = type;
	e->flags = QLA_EVT_FLAG_FREE;
	return e;
}

static int
qla2x00_post_work(struct scsi_qla_host *vha, struct qla_work_evt *e)
{
	unsigned long flags;

	spin_lock_irqsave(&vha->work_lock, flags);
	list_add_tail(&e->list, &vha->work_list);
	spin_unlock_irqrestore(&vha->work_lock, flags);
	qla2xxx_wake_dpc(vha);

	return QLA_SUCCESS;
}

int
qla2x00_post_aen_work(struct scsi_qla_host *vha, enum fc_host_event_code code,
    u32 data)
{
	struct qla_work_evt *e;

	e = qla2x00_alloc_work(vha, QLA_EVT_AEN);
	if (!e)
		return QLA_FUNCTION_FAILED;

	e->u.aen.code = code;
	e->u.aen.data = data;
	return qla2x00_post_work(vha, e);
}

int
qla2x00_post_idc_ack_work(struct scsi_qla_host *vha, uint16_t *mb)
{
	struct qla_work_evt *e;

	e = qla2x00_alloc_work(vha, QLA_EVT_IDC_ACK);
	if (!e)
		return QLA_FUNCTION_FAILED;

	memcpy(e->u.idc_ack.mb, mb, QLA_IDC_ACK_REGS * sizeof(uint16_t));
	return qla2x00_post_work(vha, e);
}

#define qla2x00_post_async_work(name, type)	\
int qla2x00_post_async_##name##_work(		\
    struct scsi_qla_host *vha,			\
    fc_port_t *fcport, uint16_t *data)		\
{						\
	struct qla_work_evt *e;			\
						\
	e = qla2x00_alloc_work(vha, type);	\
	if (!e)					\
		return QLA_FUNCTION_FAILED;	\
						\
	e->u.logio.fcport = fcport;		\
	if (data) {				\
		e->u.logio.data[0] = data[0];	\
		e->u.logio.data[1] = data[1];	\
	}					\
	return qla2x00_post_work(vha, e);	\
}

qla2x00_post_async_work(login, QLA_EVT_ASYNC_LOGIN);
qla2x00_post_async_work(login_done, QLA_EVT_ASYNC_LOGIN_DONE);
qla2x00_post_async_work(logout, QLA_EVT_ASYNC_LOGOUT);
qla2x00_post_async_work(logout_done, QLA_EVT_ASYNC_LOGOUT_DONE);

int
qla2x00_post_uevent_work(struct scsi_qla_host *vha, u32 code)
{
	struct qla_work_evt *e;

	e = qla2x00_alloc_work(vha, QLA_EVT_UEVENT);
	if (!e)
		return QLA_FUNCTION_FAILED;

	e->u.uevent.code = code;
	return qla2x00_post_work(vha, e);
}

static void
qla2x00_uevent_emit(struct scsi_qla_host *vha, u32 code)
{
	char event_string[40];
	char *envp[] = { event_string, NULL };

	switch (code) {
	case QLA_UEVENT_CODE_FW_DUMP:
		snprintf(event_string, sizeof(event_string), "FW_DUMP=%ld",
		    vha->host_no);
		break;
	default:
		/* do nothing */
		break;
	}
	kobject_uevent_env(&vha->hw->pdev->dev.kobj, KOBJ_CHANGE, envp);
}

void
qla2x00_do_work(struct scsi_qla_host *vha)
{
	struct qla_work_evt *e, *tmp;
	unsigned long flags;
	LIST_HEAD(work);

	spin_lock_irqsave(&vha->work_lock, flags);
	list_splice_init(&vha->work_list, &work);
	spin_unlock_irqrestore(&vha->work_lock, flags);

	list_for_each_entry_safe(e, tmp, &work, list) {
		list_del_init(&e->list);

		switch (e->type) {
		case QLA_EVT_AEN:
			fc_host_post_event(vha->host, fc_get_event_number(),
			    e->u.aen.code, e->u.aen.data);
			break;
		case QLA_EVT_IDC_ACK:
			qla81xx_idc_ack(vha, e->u.idc_ack.mb);
			break;
		case QLA_EVT_ASYNC_LOGIN:
			qla2x00_async_login(vha, e->u.logio.fcport,
			    e->u.logio.data);
			break;
		case QLA_EVT_ASYNC_LOGIN_DONE:
			qla2x00_async_login_done(vha, e->u.logio.fcport,
			    e->u.logio.data);
			break;
		case QLA_EVT_ASYNC_LOGOUT:
			qla2x00_async_logout(vha, e->u.logio.fcport);
			break;
		case QLA_EVT_ASYNC_LOGOUT_DONE:
			qla2x00_async_logout_done(vha, e->u.logio.fcport,
			    e->u.logio.data);
			break;
		case QLA_EVT_UEVENT:
			qla2x00_uevent_emit(vha, e->u.uevent.code);
			break;
		}
		if (e->flags & QLA_EVT_FLAG_FREE)
			kfree(e);
	}
}

/* Relogins all the fcports of a vport
 * Context: dpc thread
 */
void qla2x00_relogin(struct scsi_qla_host *vha)
{
	fc_port_t       *fcport;
	int status;
	uint16_t        next_loopid = 0;
	struct qla_hw_data *ha = vha->hw;
	uint16_t data[2];

	list_for_each_entry(fcport, &vha->vp_fcports, list) {
	/*
	 * If the port is not ONLINE then try to login
	 * to it if we haven't run out of retries.
	 */
		if (atomic_read(&fcport->state) !=
			FCS_ONLINE && fcport->login_retry) {

			fcport->login_retry--;
			if (fcport->flags & FCF_FABRIC_DEVICE) {
				if (fcport->flags & FCF_TAPE_PRESENT)
					ha->isp_ops->fabric_logout(vha,
							fcport->loop_id,
							fcport->d_id.b.domain,
							fcport->d_id.b.area,
							fcport->d_id.b.al_pa);

				if (IS_ALOGIO_CAPABLE(ha)) {
					data[0] = 0;
					data[1] = QLA_LOGIO_LOGIN_RETRIED;
					status = qla2x00_post_async_login_work(
					    vha, fcport, data);
					if (status == QLA_SUCCESS)
						continue;
					/* Attempt a retry. */
					status = 1;
				} else
					status = qla2x00_fabric_login(vha,
					    fcport, &next_loopid);
			} else
				status = qla2x00_local_device_login(vha,
								fcport);

			if (status == QLA_SUCCESS) {
				fcport->old_loop_id = fcport->loop_id;

				DEBUG(printk("scsi(%ld): port login OK: logged "
				"in ID 0x%x\n", vha->host_no, fcport->loop_id));

				qla2x00_update_fcport(vha, fcport);

			} else if (status == 1) {
				set_bit(RELOGIN_NEEDED, &vha->dpc_flags);
				/* retry the login again */
				DEBUG(printk("scsi(%ld): Retrying"
				" %d login again loop_id 0x%x\n",
				vha->host_no, fcport->login_retry,
						fcport->loop_id));
			} else {
				fcport->login_retry = 0;
			}

			if (fcport->login_retry == 0 && status != QLA_SUCCESS)
				fcport->loop_id = FC_NO_LOOP_ID;
		}
		if (test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags))
			break;
	}
}

/**************************************************************************
* qla2x00_do_dpc
*   This kernel thread is a task that is schedule by the interrupt handler
*   to perform the background processing for interrupts.
*
* Notes:
* This task always run in the context of a kernel thread.  It
* is kick-off by the driver's detect code and starts up
* up one per adapter. It immediately goes to sleep and waits for
* some fibre event.  When either the interrupt handler or
* the timer routine detects a event it will one of the task
* bits then wake us up.
**************************************************************************/
static int
qla2x00_do_dpc(void *data)
{
	int		rval;
	scsi_qla_host_t *base_vha;
	struct qla_hw_data *ha;

	ha = (struct qla_hw_data *)data;
	base_vha = pci_get_drvdata(ha->pdev);

	set_user_nice(current, -20);

	while (!kthread_should_stop()) {
		DEBUG3(printk("qla2x00: DPC handler sleeping\n"));

		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		__set_current_state(TASK_RUNNING);

		DEBUG3(printk("qla2x00: DPC handler waking up\n"));

		/* Initialization not yet finished. Don't do anything yet. */
		if (!base_vha->flags.init_done)
			continue;

		DEBUG3(printk("scsi(%ld): DPC handler\n", base_vha->host_no));

		ha->dpc_active = 1;

		if (ha->flags.mbox_busy) {
			ha->dpc_active = 0;
			continue;
		}

		qla2x00_do_work(base_vha);

		if (test_and_clear_bit(ISP_ABORT_NEEDED,
						&base_vha->dpc_flags)) {

			DEBUG(printk("scsi(%ld): dpc: sched "
			    "qla2x00_abort_isp ha = %p\n",
			    base_vha->host_no, ha));
			if (!(test_and_set_bit(ABORT_ISP_ACTIVE,
			    &base_vha->dpc_flags))) {

				if (qla2x00_abort_isp(base_vha)) {
					/* failed. retry later */
					set_bit(ISP_ABORT_NEEDED,
					    &base_vha->dpc_flags);
				}
				clear_bit(ABORT_ISP_ACTIVE,
						&base_vha->dpc_flags);
			}

			DEBUG(printk("scsi(%ld): dpc: qla2x00_abort_isp end\n",
			    base_vha->host_no));
		}

		if (test_bit(FCPORT_UPDATE_NEEDED, &base_vha->dpc_flags)) {
			qla2x00_update_fcports(base_vha);
			clear_bit(FCPORT_UPDATE_NEEDED, &base_vha->dpc_flags);
		}

		if (test_and_clear_bit(RESET_MARKER_NEEDED,
							&base_vha->dpc_flags) &&
		    (!(test_and_set_bit(RESET_ACTIVE, &base_vha->dpc_flags)))) {

			DEBUG(printk("scsi(%ld): qla2x00_reset_marker()\n",
			    base_vha->host_no));

			qla2x00_rst_aen(base_vha);
			clear_bit(RESET_ACTIVE, &base_vha->dpc_flags);
		}

		/* Retry each device up to login retry count */
		if ((test_and_clear_bit(RELOGIN_NEEDED,
						&base_vha->dpc_flags)) &&
		    !test_bit(LOOP_RESYNC_NEEDED, &base_vha->dpc_flags) &&
		    atomic_read(&base_vha->loop_state) != LOOP_DOWN) {

			DEBUG(printk("scsi(%ld): qla2x00_port_login()\n",
					base_vha->host_no));
			qla2x00_relogin(base_vha);

			DEBUG(printk("scsi(%ld): qla2x00_port_login - end\n",
			    base_vha->host_no));
		}

		if (test_and_clear_bit(LOOP_RESYNC_NEEDED,
							&base_vha->dpc_flags)) {

			DEBUG(printk("scsi(%ld): qla2x00_loop_resync()\n",
				base_vha->host_no));

			if (!(test_and_set_bit(LOOP_RESYNC_ACTIVE,
			    &base_vha->dpc_flags))) {

				rval = qla2x00_loop_resync(base_vha);

				clear_bit(LOOP_RESYNC_ACTIVE,
						&base_vha->dpc_flags);
			}

			DEBUG(printk("scsi(%ld): qla2x00_loop_resync - end\n",
			    base_vha->host_no));
		}

		if (test_bit(NPIV_CONFIG_NEEDED, &base_vha->dpc_flags) &&
		    atomic_read(&base_vha->loop_state) == LOOP_READY) {
			clear_bit(NPIV_CONFIG_NEEDED, &base_vha->dpc_flags);
			qla2xxx_flash_npiv_conf(base_vha);
		}

		if (!ha->interrupts_on)
			ha->isp_ops->enable_intrs(ha);

		if (test_and_clear_bit(BEACON_BLINK_NEEDED,
					&base_vha->dpc_flags))
			ha->isp_ops->beacon_blink(base_vha);

		qla2x00_do_dpc_all_vps(base_vha);

		ha->dpc_active = 0;
	} /* End of while(1) */

	DEBUG(printk("scsi(%ld): DPC handler exiting\n", base_vha->host_no));

	/*
	 * Make sure that nobody tries to wake us up again.
	 */
	ha->dpc_active = 0;

	/* Cleanup any residual CTX SRBs. */
	qla2x00_abort_all_cmds(base_vha, DID_NO_CONNECT << 16);

	return 0;
}

void
qla2xxx_wake_dpc(struct scsi_qla_host *vha)
{
	struct qla_hw_data *ha = vha->hw;
	struct task_struct *t = ha->dpc_thread;

	if (!test_bit(UNLOADING, &vha->dpc_flags) && t)
		wake_up_process(t);
}

/*
*  qla2x00_rst_aen
*      Processes asynchronous reset.
*
* Input:
*      ha  = adapter block pointer.
*/
static void
qla2x00_rst_aen(scsi_qla_host_t *vha)
{
	if (vha->flags.online && !vha->flags.reset_active &&
	    !atomic_read(&vha->loop_down_timer) &&
	    !(test_bit(ABORT_ISP_ACTIVE, &vha->dpc_flags))) {
		do {
			clear_bit(RESET_MARKER_NEEDED, &vha->dpc_flags);

			/*
			 * Issue marker command only when we are going to start
			 * the I/O.
			 */
			vha->marker_needed = 1;
		} while (!atomic_read(&vha->loop_down_timer) &&
		    (test_bit(RESET_MARKER_NEEDED, &vha->dpc_flags)));
	}
}

static void
qla2x00_sp_free_dma(srb_t *sp)
{
	struct scsi_cmnd *cmd = sp->cmd;

	if (sp->flags & SRB_DMA_VALID) {
		scsi_dma_unmap(cmd);
		sp->flags &= ~SRB_DMA_VALID;
	}
	CMD_SP(cmd) = NULL;
}

void
qla2x00_sp_compl(struct qla_hw_data *ha, srb_t *sp)
{
	struct scsi_cmnd *cmd = sp->cmd;

	qla2x00_sp_free_dma(sp);

	mempool_free(sp, ha->srb_mempool);

	cmd->scsi_done(cmd);
}

/**************************************************************************
*   qla2x00_timer
*
* Description:
*   One second timer
*
* Context: Interrupt
***************************************************************************/
void
qla2x00_timer(scsi_qla_host_t *vha)
{
	unsigned long	cpu_flags = 0;
	fc_port_t	*fcport;
	int		start_dpc = 0;
	int		index;
	srb_t		*sp;
	int		t;
	struct qla_hw_data *ha = vha->hw;
	struct req_que *req;
	/*
	 * Ports - Port down timer.
	 *
	 * Whenever, a port is in the LOST state we start decrementing its port
	 * down timer every second until it reaches zero. Once  it reaches zero
	 * the port it marked DEAD.
	 */
	t = 0;
	list_for_each_entry(fcport, &vha->vp_fcports, list) {
		if (fcport->port_type != FCT_TARGET)
			continue;

		if (atomic_read(&fcport->state) == FCS_DEVICE_LOST) {

			if (atomic_read(&fcport->port_down_timer) == 0)
				continue;

			if (atomic_dec_and_test(&fcport->port_down_timer) != 0)
				atomic_set(&fcport->state, FCS_DEVICE_DEAD);

			DEBUG(printk("scsi(%ld): fcport-%d - port retry count: "
			    "%d remaining\n",
			    vha->host_no,
			    t, atomic_read(&fcport->port_down_timer)));
		}
		t++;
	} /* End of for fcport  */


	/* Loop down handler. */
	if (atomic_read(&vha->loop_down_timer) > 0 &&
	    !(test_bit(ABORT_ISP_ACTIVE, &vha->dpc_flags))
		&& vha->flags.online) {

		if (atomic_read(&vha->loop_down_timer) ==
		    vha->loop_down_abort_time) {

			DEBUG(printk("scsi(%ld): Loop Down - aborting the "
			    "queues before time expire\n",
			    vha->host_no));

			if (!IS_QLA2100(ha) && vha->link_down_timeout)
				atomic_set(&vha->loop_state, LOOP_DEAD);

			/* Schedule an ISP abort to return any tape commands. */
			/* NPIV - scan physical port only */
			if (!vha->vp_idx) {
				spin_lock_irqsave(&ha->hardware_lock,
				    cpu_flags);
				req = ha->req_q_map[0];
				for (index = 1;
				    index < MAX_OUTSTANDING_COMMANDS;
				    index++) {
					fc_port_t *sfcp;

					sp = req->outstanding_cmds[index];
					if (!sp)
						continue;
					if (sp->ctx)
						continue;
					sfcp = sp->fcport;
					if (!(sfcp->flags & FCF_TAPE_PRESENT))
						continue;

					set_bit(ISP_ABORT_NEEDED,
							&vha->dpc_flags);
					break;
				}
				spin_unlock_irqrestore(&ha->hardware_lock,
								cpu_flags);
			}
			start_dpc++;
		}

		/* if the loop has been down for 4 minutes, reinit adapter */
		if (atomic_dec_and_test(&vha->loop_down_timer) != 0) {
			if (!(vha->device_flags & DFLG_NO_CABLE)) {
				DEBUG(printk("scsi(%ld): Loop down - "
				    "aborting ISP.\n",
				    vha->host_no));
				qla_printk(KERN_WARNING, ha,
				    "Loop down - aborting ISP.\n");

				set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags);
			}
		}
		DEBUG3(printk("scsi(%ld): Loop Down - seconds remaining %d\n",
		    vha->host_no,
		    atomic_read(&vha->loop_down_timer)));
	}

	/* Check if beacon LED needs to be blinked */
	if (ha->beacon_blink_led == 1) {
		set_bit(BEACON_BLINK_NEEDED, &vha->dpc_flags);
		start_dpc++;
	}

	/* Process any deferred work. */
	if (!list_empty(&vha->work_list))
		start_dpc++;

	/* Schedule the DPC routine if needed */
	if ((test_bit(ISP_ABORT_NEEDED, &vha->dpc_flags) ||
	    test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags) ||
	    test_bit(FCPORT_UPDATE_NEEDED, &vha->dpc_flags) ||
	    start_dpc ||
	    test_bit(RESET_MARKER_NEEDED, &vha->dpc_flags) ||
	    test_bit(BEACON_BLINK_NEEDED, &vha->dpc_flags) ||
	    test_bit(VP_DPC_NEEDED, &vha->dpc_flags) ||
	    test_bit(RELOGIN_NEEDED, &vha->dpc_flags)))
		qla2xxx_wake_dpc(vha);

	qla2x00_restart_timer(vha, WATCH_INTERVAL);
}

/* Firmware interface routines. */

#define FW_BLOBS	7
#define FW_ISP21XX	0
#define FW_ISP22XX	1
#define FW_ISP2300	2
#define FW_ISP2322	3
#define FW_ISP24XX	4
#define FW_ISP25XX	5
#define FW_ISP81XX	6

#define FW_FILE_ISP21XX	"ql2100_fw.bin"
#define FW_FILE_ISP22XX	"ql2200_fw.bin"
#define FW_FILE_ISP2300	"ql2300_fw.bin"
#define FW_FILE_ISP2322	"ql2322_fw.bin"
#define FW_FILE_ISP24XX	"ql2400_fw.bin"
#define FW_FILE_ISP25XX	"ql2500_fw.bin"
#define FW_FILE_ISP81XX	"ql8100_fw.bin"

static DEFINE_MUTEX(qla_fw_lock);

static struct fw_blob qla_fw_blobs[FW_BLOBS] = {
	{ .name = FW_FILE_ISP21XX, .segs = { 0x1000, 0 }, },
	{ .name = FW_FILE_ISP22XX, .segs = { 0x1000, 0 }, },
	{ .name = FW_FILE_ISP2300, .segs = { 0x800, 0 }, },
	{ .name = FW_FILE_ISP2322, .segs = { 0x800, 0x1c000, 0x1e000, 0 }, },
	{ .name = FW_FILE_ISP24XX, },
	{ .name = FW_FILE_ISP25XX, },
	{ .name = FW_FILE_ISP81XX, },
};

struct fw_blob *
qla2x00_request_firmware(scsi_qla_host_t *vha)
{
	struct qla_hw_data *ha = vha->hw;
	struct fw_blob *blob;

	blob = NULL;
	if (IS_QLA2100(ha)) {
		blob = &qla_fw_blobs[FW_ISP21XX];
	} else if (IS_QLA2200(ha)) {
		blob = &qla_fw_blobs[FW_ISP22XX];
	} else if (IS_QLA2300(ha) || IS_QLA2312(ha) || IS_QLA6312(ha)) {
		blob = &qla_fw_blobs[FW_ISP2300];
	} else if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
		blob = &qla_fw_blobs[FW_ISP2322];
	} else if (IS_QLA24XX_TYPE(ha)) {
		blob = &qla_fw_blobs[FW_ISP24XX];
	} else if (IS_QLA25XX(ha)) {
		blob = &qla_fw_blobs[FW_ISP25XX];
	} else if (IS_QLA81XX(ha)) {
		blob = &qla_fw_blobs[FW_ISP81XX];
	}

	mutex_lock(&qla_fw_lock);
	if (blob->fw)
		goto out;

	if (request_firmware(&blob->fw, blob->name, &ha->pdev->dev)) {
		DEBUG2(printk("scsi(%ld): Failed to load firmware image "
		    "(%s).\n", vha->host_no, blob->name));
		blob->fw = NULL;
		blob = NULL;
		goto out;
	}

out:
	mutex_unlock(&qla_fw_lock);
	return blob;
}

static void
qla2x00_release_firmware(void)
{
	int idx;

	mutex_lock(&qla_fw_lock);
	for (idx = 0; idx < FW_BLOBS; idx++)
		if (qla_fw_blobs[idx].fw)
			release_firmware(qla_fw_blobs[idx].fw);
	mutex_unlock(&qla_fw_lock);
}

static pci_ers_result_t
qla2xxx_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
{
	scsi_qla_host_t *base_vha = pci_get_drvdata(pdev);

	switch (state) {
	case pci_channel_io_normal:
		return PCI_ERS_RESULT_CAN_RECOVER;
	case pci_channel_io_frozen:
		pci_disable_device(pdev);
		return PCI_ERS_RESULT_NEED_RESET;
	case pci_channel_io_perm_failure:
		qla2x00_abort_all_cmds(base_vha, DID_NO_CONNECT << 16);
		return PCI_ERS_RESULT_DISCONNECT;
	}
	return PCI_ERS_RESULT_NEED_RESET;
}

static pci_ers_result_t
qla2xxx_pci_mmio_enabled(struct pci_dev *pdev)
{
	int risc_paused = 0;
	uint32_t stat;
	unsigned long flags;
	scsi_qla_host_t *base_vha = pci_get_drvdata(pdev);
	struct qla_hw_data *ha = base_vha->hw;
	struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
	struct device_reg_24xx __iomem *reg24 = &ha->iobase->isp24;

	spin_lock_irqsave(&ha->hardware_lock, flags);
	if (IS_QLA2100(ha) || IS_QLA2200(ha)){
		stat = RD_REG_DWORD(&reg->hccr);
		if (stat & HCCR_RISC_PAUSE)
			risc_paused = 1;
	} else if (IS_QLA23XX(ha)) {
		stat = RD_REG_DWORD(&reg->u.isp2300.host_status);
		if (stat & HSR_RISC_PAUSED)
			risc_paused = 1;
	} else if (IS_FWI2_CAPABLE(ha)) {
		stat = RD_REG_DWORD(&reg24->host_status);
		if (stat & HSRX_RISC_PAUSED)
			risc_paused = 1;
	}
	spin_unlock_irqrestore(&ha->hardware_lock, flags);

	if (risc_paused) {
		qla_printk(KERN_INFO, ha, "RISC paused -- mmio_enabled, "
		    "Dumping firmware!\n");
		ha->isp_ops->fw_dump(base_vha, 0);

		return PCI_ERS_RESULT_NEED_RESET;
	} else
		return PCI_ERS_RESULT_RECOVERED;
}

static pci_ers_result_t
qla2xxx_pci_slot_reset(struct pci_dev *pdev)
{
	pci_ers_result_t ret = PCI_ERS_RESULT_DISCONNECT;
	scsi_qla_host_t *base_vha = pci_get_drvdata(pdev);
	struct qla_hw_data *ha = base_vha->hw;
	int rc;

	if (ha->mem_only)
		rc = pci_enable_device_mem(pdev);
	else
		rc = pci_enable_device(pdev);

	if (rc) {
		qla_printk(KERN_WARNING, ha,
		    "Can't re-enable PCI device after reset.\n");

		return ret;
	}
	pci_set_master(pdev);

	if (ha->isp_ops->pci_config(base_vha))
		return ret;

	set_bit(ABORT_ISP_ACTIVE, &base_vha->dpc_flags);
	if (qla2x00_abort_isp(base_vha) == QLA_SUCCESS)
		ret =  PCI_ERS_RESULT_RECOVERED;
	clear_bit(ABORT_ISP_ACTIVE, &base_vha->dpc_flags);

	return ret;
}

static void
qla2xxx_pci_resume(struct pci_dev *pdev)
{
	scsi_qla_host_t *base_vha = pci_get_drvdata(pdev);
	struct qla_hw_data *ha = base_vha->hw;
	int ret;

	ret = qla2x00_wait_for_hba_online(base_vha);
	if (ret != QLA_SUCCESS) {
		qla_printk(KERN_ERR, ha,
		    "the device failed to resume I/O "
		    "from slot/link_reset");
	}
	pci_cleanup_aer_uncorrect_error_status(pdev);
}

static struct pci_error_handlers qla2xxx_err_handler = {
	.error_detected = qla2xxx_pci_error_detected,
	.mmio_enabled = qla2xxx_pci_mmio_enabled,
	.slot_reset = qla2xxx_pci_slot_reset,
	.resume = qla2xxx_pci_resume,
};

static struct pci_device_id qla2xxx_pci_tbl[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2100) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2200) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2300) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2312) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2322) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP6312) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP6322) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2422) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2432) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP8432) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP5422) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP5432) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP2532) },
	{ PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, PCI_DEVICE_ID_QLOGIC_ISP8001) },
	{ 0 },
};
MODULE_DEVICE_TABLE(pci, qla2xxx_pci_tbl);

static struct pci_driver qla2xxx_pci_driver = {
	.name		= QLA2XXX_DRIVER_NAME,
	.driver		= {
		.owner		= THIS_MODULE,
	},
	.id_table	= qla2xxx_pci_tbl,
	.probe		= qla2x00_probe_one,
	.remove		= qla2x00_remove_one,
	.err_handler	= &qla2xxx_err_handler,
};

/**
 * qla2x00_module_init - Module initialization.
 **/
static int __init
qla2x00_module_init(void)
{
	int ret = 0;

	/* Allocate cache for SRBs. */
	srb_cachep = kmem_cache_create("qla2xxx_srbs", sizeof(srb_t), 0,
	    SLAB_HWCACHE_ALIGN, NULL);
	if (srb_cachep == NULL) {
		printk(KERN_ERR
		    "qla2xxx: Unable to allocate SRB cache...Failing load!\n");
		return -ENOMEM;
	}

	/* Derive version string. */
	strcpy(qla2x00_version_str, QLA2XXX_VERSION);
	if (ql2xextended_error_logging)
		strcat(qla2x00_version_str, "-debug");

	qla2xxx_transport_template =
	    fc_attach_transport(&qla2xxx_transport_functions);
	if (!qla2xxx_transport_template) {
		kmem_cache_destroy(srb_cachep);
		return -ENODEV;
	}
	qla2xxx_transport_vport_template =
	    fc_attach_transport(&qla2xxx_transport_vport_functions);
	if (!qla2xxx_transport_vport_template) {
		kmem_cache_destroy(srb_cachep);
		fc_release_transport(qla2xxx_transport_template);
		return -ENODEV;
	}

	printk(KERN_INFO "QLogic Fibre Channel HBA Driver: %s\n",
	    qla2x00_version_str);
	ret = pci_register_driver(&qla2xxx_pci_driver);
	if (ret) {
		kmem_cache_destroy(srb_cachep);
		fc_release_transport(qla2xxx_transport_template);
		fc_release_transport(qla2xxx_transport_vport_template);
	}
	return ret;
}

/**
 * qla2x00_module_exit - Module cleanup.
 **/
static void __exit
qla2x00_module_exit(void)
{
	pci_unregister_driver(&qla2xxx_pci_driver);
	qla2x00_release_firmware();
	kmem_cache_destroy(srb_cachep);
	fc_release_transport(qla2xxx_transport_template);
	fc_release_transport(qla2xxx_transport_vport_template);
}

module_init(qla2x00_module_init);
module_exit(qla2x00_module_exit);

MODULE_AUTHOR("QLogic Corporation");
MODULE_DESCRIPTION("QLogic Fibre Channel HBA Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(QLA2XXX_VERSION);
MODULE_FIRMWARE(FW_FILE_ISP21XX);
MODULE_FIRMWARE(FW_FILE_ISP22XX);
MODULE_FIRMWARE(FW_FILE_ISP2300);
MODULE_FIRMWARE(FW_FILE_ISP2322);
MODULE_FIRMWARE(FW_FILE_ISP24XX);
MODULE_FIRMWARE(FW_FILE_ISP25XX);
MODULE_FIRMWARE(FW_FILE_ISP81XX);