aboutsummaryrefslogtreecommitdiffstats
path: root/mm/sparse.c
blob: e06f514fe04faa748c5e50e3f4cb25789d977238 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
/*
 * sparse memory mappings.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <asm/dma.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>

/*
 * Permanent SPARSEMEM data:
 *
 * 1) mem_section	- memory sections, mem_map's for valid memory
 */
#ifdef CONFIG_SPARSEMEM_EXTREME
struct mem_section *mem_section[NR_SECTION_ROOTS]
	____cacheline_internodealigned_in_smp;
#else
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
	____cacheline_internodealigned_in_smp;
#endif
EXPORT_SYMBOL(mem_section);

#ifdef NODE_NOT_IN_PAGE_FLAGS
/*
 * If we did not store the node number in the page then we have to
 * do a lookup in the section_to_node_table in order to find which
 * node the page belongs to.
 */
#if MAX_NUMNODES <= 256
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#else
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
#endif

int page_to_nid(struct page *page)
{
	return section_to_node_table[page_to_section(page)];
}
EXPORT_SYMBOL(page_to_nid);

static void set_section_nid(unsigned long section_nr, int nid)
{
	section_to_node_table[section_nr] = nid;
}
#else /* !NODE_NOT_IN_PAGE_FLAGS */
static inline void set_section_nid(unsigned long section_nr, int nid)
{
}
#endif

#ifdef CONFIG_SPARSEMEM_EXTREME
static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
{
	struct mem_section *section = NULL;
	unsigned long array_size = SECTIONS_PER_ROOT *
				   sizeof(struct mem_section);

	if (slab_is_available())
		section = kmalloc_node(array_size, GFP_KERNEL, nid);
	else
		section = alloc_bootmem_node(NODE_DATA(nid), array_size);

	if (section)
		memset(section, 0, array_size);

	return section;
}

static int __meminit sparse_index_init(unsigned long section_nr, int nid)
{
	static DEFINE_SPINLOCK(index_init_lock);
	unsigned long root = SECTION_NR_TO_ROOT(section_nr);
	struct mem_section *section;
	int ret = 0;

	if (mem_section[root])
		return -EEXIST;

	section = sparse_index_alloc(nid);
	/*
	 * This lock keeps two different sections from
	 * reallocating for the same index
	 */
	spin_lock(&index_init_lock);

	if (mem_section[root]) {
		ret = -EEXIST;
		goto out;
	}

	mem_section[root] = section;
out:
	spin_unlock(&index_init_lock);
	return ret;
}
#else /* !SPARSEMEM_EXTREME */
static inline int sparse_index_init(unsigned long section_nr, int nid)
{
	return 0;
}
#endif

/*
 * Although written for the SPARSEMEM_EXTREME case, this happens
 * to also work for the flat array case because
 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
 */
int __section_nr(struct mem_section* ms)
{
	unsigned long root_nr;
	struct mem_section* root;

	for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
		root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
		if (!root)
			continue;

		if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
		     break;
	}

	return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
}

/*
 * During early boot, before section_mem_map is used for an actual
 * mem_map, we use section_mem_map to store the section's NUMA
 * node.  This keeps us from having to use another data structure.  The
 * node information is cleared just before we store the real mem_map.
 */
static inline unsigned long sparse_encode_early_nid(int nid)
{
	return (nid << SECTION_NID_SHIFT);
}

static inline int sparse_early_nid(struct mem_section *section)
{
	return (section->section_mem_map >> SECTION_NID_SHIFT);
}

/* Record a memory area against a node. */
void __init memory_present(int nid, unsigned long start, unsigned long end)
{
	unsigned long pfn;

	start &= PAGE_SECTION_MASK;
	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
		unsigned long section = pfn_to_section_nr(pfn);
		struct mem_section *ms;

		sparse_index_init(section, nid);
		set_section_nid(section, nid);

		ms = __nr_to_section(section);
		if (!ms->section_mem_map)
			ms->section_mem_map = sparse_encode_early_nid(nid) |
							SECTION_MARKED_PRESENT;
	}
}

/*
 * Only used by the i386 NUMA architecures, but relatively
 * generic code.
 */
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
						     unsigned long end_pfn)
{
	unsigned long pfn;
	unsigned long nr_pages = 0;

	for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
		if (nid != early_pfn_to_nid(pfn))
			continue;

		if (pfn_present(pfn))
			nr_pages += PAGES_PER_SECTION;
	}

	return nr_pages * sizeof(struct page);
}

/*
 * Subtle, we encode the real pfn into the mem_map such that
 * the identity pfn - section_mem_map will return the actual
 * physical page frame number.
 */
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
{
	return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
}

/*
 * We need this if we ever free the mem_maps.  While not implemented yet,
 * this function is included for parity with its sibling.
 */
static __attribute((unused))
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
{
	return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
}

static int __meminit sparse_init_one_section(struct mem_section *ms,
		unsigned long pnum, struct page *mem_map,
		unsigned long *pageblock_bitmap)
{
	if (!present_section(ms))
		return -EINVAL;

	ms->section_mem_map &= ~SECTION_MAP_MASK;
	ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
							SECTION_HAS_MEM_MAP;
 	ms->pageblock_flags = pageblock_bitmap;

	return 1;
}

static unsigned long usemap_size(void)
{
	unsigned long size_bytes;
	size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
	size_bytes = roundup(size_bytes, sizeof(unsigned long));
	return size_bytes;
}

#ifdef CONFIG_MEMORY_HOTPLUG
static unsigned long *__kmalloc_section_usemap(void)
{
	return kmalloc(usemap_size(), GFP_KERNEL);
}
#endif /* CONFIG_MEMORY_HOTPLUG */

static unsigned long *sparse_early_usemap_alloc(unsigned long pnum)
{
	unsigned long *usemap;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

	usemap = alloc_bootmem_node(NODE_DATA(nid), usemap_size());
	if (usemap)
		return usemap;

	/* Stupid: suppress gcc warning for SPARSEMEM && !NUMA */
	nid = 0;

	printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__);
	return NULL;
}

#ifndef CONFIG_SPARSEMEM_VMEMMAP
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
{
	struct page *map;

	map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
	if (map)
		return map;

	map = alloc_bootmem_node(NODE_DATA(nid),
			sizeof(struct page) * PAGES_PER_SECTION);
	return map;
}
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */

struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
{
	struct page *map;
	struct mem_section *ms = __nr_to_section(pnum);
	int nid = sparse_early_nid(ms);

	map = sparse_mem_map_populate(pnum, nid);
	if (map)
		return map;

	printk(KERN_ERR "%s: sparsemem memory map backing failed "
			"some memory will not be available.\n", __FUNCTION__);
	ms->section_mem_map = 0;
	return NULL;
}

/*
 * Allocate the accumulated non-linear sections, allocate a mem_map
 * for each and record the physical to section mapping.
 */
void __init sparse_init(void)
{
	unsigned long pnum;
	struct page *map;
	unsigned long *usemap;

	for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
		if (!present_section_nr(pnum))
			continue;

		map = sparse_early_mem_map_alloc(pnum);
		if (!map)
			continue;

		usemap = sparse_early_usemap_alloc(pnum);
		if (!usemap)
			continue;

		sparse_init_one_section(__nr_to_section(pnum), pnum, map,
								usemap);
	}
}

#ifdef CONFIG_MEMORY_HOTPLUG
#ifdef CONFIG_SPARSEMEM_VMEMMAP
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						 unsigned long nr_pages)
{
	/* This will make the necessary allocations eventually. */
	return sparse_mem_map_populate(pnum, nid);
}
static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
	return; /* XXX: Not implemented yet */
}
#else
static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
{
	struct page *page, *ret;
	unsigned long memmap_size = sizeof(struct page) * nr_pages;

	page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
	if (page)
		goto got_map_page;

	ret = vmalloc(memmap_size);
	if (ret)
		goto got_map_ptr;

	return NULL;
got_map_page:
	ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
got_map_ptr:
	memset(ret, 0, memmap_size);

	return ret;
}

static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
						  unsigned long nr_pages)
{
	return __kmalloc_section_memmap(nr_pages);
}

static int vaddr_in_vmalloc_area(void *addr)
{
	if (addr >= (void *)VMALLOC_START &&
	    addr < (void *)VMALLOC_END)
		return 1;
	return 0;
}

static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
{
	if (vaddr_in_vmalloc_area(memmap))
		vfree(memmap);
	else
		free_pages((unsigned long)memmap,
			   get_order(sizeof(struct page) * nr_pages));
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */

/*
 * returns the number of sections whose mem_maps were properly
 * set.  If this is <=0, then that means that the passed-in
 * map was not consumed and must be freed.
 */
int sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
			   int nr_pages)
{
	unsigned long section_nr = pfn_to_section_nr(start_pfn);
	struct pglist_data *pgdat = zone->zone_pgdat;
	struct mem_section *ms;
	struct page *memmap;
	unsigned long *usemap;
	unsigned long flags;
	int ret;

	/*
	 * no locking for this, because it does its own
	 * plus, it does a kmalloc
	 */
	sparse_index_init(section_nr, pgdat->node_id);
	memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
	usemap = __kmalloc_section_usemap();

	pgdat_resize_lock(pgdat, &flags);

	ms = __pfn_to_section(start_pfn);
	if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
		ret = -EEXIST;
		goto out;
	}

	if (!usemap) {
		ret = -ENOMEM;
		goto out;
	}
	ms->section_mem_map |= SECTION_MARKED_PRESENT;

	ret = sparse_init_one_section(ms, section_nr, memmap, usemap);

out:
	pgdat_resize_unlock(pgdat, &flags);
	if (ret <= 0)
		__kfree_section_memmap(memmap, nr_pages);
	return ret;
}
#endif