aboutsummaryrefslogtreecommitdiffstats
path: root/mm/sparse-vmemmap.c
blob: 1b7e22ab9b091bf34d857b5aeb36fd08039c0378 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
 * Virtual Memory Map support
 *
 * (C) 2007 sgi. Christoph Lameter.
 *
 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
 * virt_to_page, page_address() to be implemented as a base offset
 * calculation without memory access.
 *
 * However, virtual mappings need a page table and TLBs. Many Linux
 * architectures already map their physical space using 1-1 mappings
 * via TLBs. For those arches the virtual memory map is essentially
 * for free if we use the same page size as the 1-1 mappings. In that
 * case the overhead consists of a few additional pages that are
 * allocated to create a view of memory for vmemmap.
 *
 * The architecture is expected to provide a vmemmap_populate() function
 * to instantiate the mapping.
 */
#include <linux/mm.h>
#include <linux/mmzone.h>
#include <linux/bootmem.h>
#include <linux/highmem.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/sched.h>
#include <asm/dma.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>

/*
 * Allocate a block of memory to be used to back the virtual memory map
 * or to back the page tables that are used to create the mapping.
 * Uses the main allocators if they are available, else bootmem.
 */

static void * __init_refok __earlyonly_bootmem_alloc(int node,
				unsigned long size,
				unsigned long align,
				unsigned long goal)
{
	return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
}

static void *vmemmap_buf;
static void *vmemmap_buf_end;

void * __meminit vmemmap_alloc_block(unsigned long size, int node)
{
	/* If the main allocator is up use that, fallback to bootmem. */
	if (slab_is_available()) {
		struct page *page;

		if (node_state(node, N_HIGH_MEMORY))
			page = alloc_pages_node(node,
				GFP_KERNEL | __GFP_ZERO, get_order(size));
		else
			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
				get_order(size));
		if (page)
			return page_address(page);
		return NULL;
	} else
		return __earlyonly_bootmem_alloc(node, size, size,
				__pa(MAX_DMA_ADDRESS));
}

/* need to make sure size is all the same during early stage */
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
{
	void *ptr;

	if (!vmemmap_buf)
		return vmemmap_alloc_block(size, node);

	/* take the from buf */
	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
	if (ptr + size > vmemmap_buf_end)
		return vmemmap_alloc_block(size, node);

	vmemmap_buf = ptr + size;

	return ptr;
}

void __meminit vmemmap_verify(pte_t *pte, int node,
				unsigned long start, unsigned long end)
{
	unsigned long pfn = pte_pfn(*pte);
	int actual_node = early_pfn_to_nid(pfn);

	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
		printk(KERN_WARNING "[%lx-%lx] potential offnode "
			"page_structs\n", start, end - 1);
}

pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
{
	pte_t *pte = pte_offset_kernel(pmd, addr);
	if (pte_none(*pte)) {
		pte_t entry;
		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
		if (!p)
			return NULL;
		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
		set_pte_at(&init_mm, addr, pte, entry);
	}
	return pte;
}

pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
{
	pmd_t *pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd)) {
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
		if (!p)
			return NULL;
		pmd_populate_kernel(&init_mm, pmd, p);
	}
	return pmd;
}

pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
{
	pud_t *pud = pud_offset(pgd, addr);
	if (pud_none(*pud)) {
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
		if (!p)
			return NULL;
		pud_populate(&init_mm, pud, p);
	}
	return pud;
}

pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
{
	pgd_t *pgd = pgd_offset_k(addr);
	if (pgd_none(*pgd)) {
		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
		if (!p)
			return NULL;
		pgd_populate(&init_mm, pgd, p);
	}
	return pgd;
}

int __meminit vmemmap_populate_basepages(struct page *start_page,
						unsigned long size, int node)
{
	unsigned long addr = (unsigned long)start_page;
	unsigned long end = (unsigned long)(start_page + size);
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	for (; addr < end; addr += PAGE_SIZE) {
		pgd = vmemmap_pgd_populate(addr, node);
		if (!pgd)
			return -ENOMEM;
		pud = vmemmap_pud_populate(pgd, addr, node);
		if (!pud)
			return -ENOMEM;
		pmd = vmemmap_pmd_populate(pud, addr, node);
		if (!pmd)
			return -ENOMEM;
		pte = vmemmap_pte_populate(pmd, addr, node);
		if (!pte)
			return -ENOMEM;
		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
	}

	return 0;
}

struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
{
	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
	if (error)
		return NULL;

	return map;
}

void __init sparse_mem_maps_populate_node(struct page **map_map,
					  unsigned long pnum_begin,
					  unsigned long pnum_end,
					  unsigned long map_count, int nodeid)
{
	unsigned long pnum;
	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
	void *vmemmap_buf_start;

	size = ALIGN(size, PMD_SIZE);
	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));

	if (vmemmap_buf_start) {
		vmemmap_buf = vmemmap_buf_start;
		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
	}

	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
		struct mem_section *ms;

		if (!present_section_nr(pnum))
			continue;

		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
		if (map_map[pnum])
			continue;
		ms = __nr_to_section(pnum);
		printk(KERN_ERR "%s: sparsemem memory map backing failed "
			"some memory will not be available.\n", __func__);
		ms->section_mem_map = 0;
	}

	if (vmemmap_buf_start) {
		/* need to free left buf */
		free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
		vmemmap_buf = NULL;
		vmemmap_buf_end = NULL;
	}
}