aboutsummaryrefslogtreecommitdiffstats
path: root/mm/readahead.c
blob: 5b3c9b7d70faa23e35863b7271060dfc4cfb61fb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/*
 * mm/readahead.c - address_space-level file readahead.
 *
 * Copyright (C) 2002, Linus Torvalds
 *
 * 09Apr2002	akpm@zip.com.au
 *		Initial version.
 */

#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/pagevec.h>

void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
}
EXPORT_SYMBOL(default_unplug_io_fn);

/*
 * Convienent macros for min/max read-ahead pages.
 * Note that MAX_RA_PAGES is rounded down, while MIN_RA_PAGES is rounded up.
 * The latter is necessary for systems with large page size(i.e. 64k).
 */
#define MAX_RA_PAGES	(VM_MAX_READAHEAD*1024 / PAGE_CACHE_SIZE)
#define MIN_RA_PAGES	DIV_ROUND_UP(VM_MIN_READAHEAD*1024, PAGE_CACHE_SIZE)

struct backing_dev_info default_backing_dev_info = {
	.ra_pages	= MAX_RA_PAGES,
	.state		= 0,
	.capabilities	= BDI_CAP_MAP_COPY,
	.unplug_io_fn	= default_unplug_io_fn,
};
EXPORT_SYMBOL_GPL(default_backing_dev_info);

/*
 * Initialise a struct file's readahead state.  Assumes that the caller has
 * memset *ra to zero.
 */
void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
	ra->ra_pages = mapping->backing_dev_info->ra_pages;
	ra->prev_index = -1;
}
EXPORT_SYMBOL_GPL(file_ra_state_init);

#define list_to_page(head) (list_entry((head)->prev, struct page, lru))

/**
 * read_cache_pages - populate an address space with some pages & start reads against them
 * @mapping: the address_space
 * @pages: The address of a list_head which contains the target pages.  These
 *   pages have their ->index populated and are otherwise uninitialised.
 * @filler: callback routine for filling a single page.
 * @data: private data for the callback routine.
 *
 * Hides the details of the LRU cache etc from the filesystems.
 */
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
			int (*filler)(void *, struct page *), void *data)
{
	struct page *page;
	struct pagevec lru_pvec;
	int ret = 0;

	pagevec_init(&lru_pvec, 0);

	while (!list_empty(pages)) {
		page = list_to_page(pages);
		list_del(&page->lru);
		if (add_to_page_cache(page, mapping, page->index, GFP_KERNEL)) {
			page_cache_release(page);
			continue;
		}
		ret = filler(data, page);
		if (!pagevec_add(&lru_pvec, page))
			__pagevec_lru_add(&lru_pvec);
		if (ret) {
			put_pages_list(pages);
			break;
		}
		task_io_account_read(PAGE_CACHE_SIZE);
	}
	pagevec_lru_add(&lru_pvec);
	return ret;
}

EXPORT_SYMBOL(read_cache_pages);

static int read_pages(struct address_space *mapping, struct file *filp,
		struct list_head *pages, unsigned nr_pages)
{
	unsigned page_idx;
	struct pagevec lru_pvec;
	int ret;

	if (mapping->a_ops->readpages) {
		ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
		/* Clean up the remaining pages */
		put_pages_list(pages);
		goto out;
	}

	pagevec_init(&lru_pvec, 0);
	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
		struct page *page = list_to_page(pages);
		list_del(&page->lru);
		if (!add_to_page_cache(page, mapping,
					page->index, GFP_KERNEL)) {
			mapping->a_ops->readpage(filp, page);
			if (!pagevec_add(&lru_pvec, page))
				__pagevec_lru_add(&lru_pvec);
		} else
			page_cache_release(page);
	}
	pagevec_lru_add(&lru_pvec);
	ret = 0;
out:
	return ret;
}

/*
 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
 * the pages first, then submits them all for I/O. This avoids the very bad
 * behaviour which would occur if page allocations are causing VM writeback.
 * We really don't want to intermingle reads and writes like that.
 *
 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 *
 * do_page_cache_readahead() returns -1 if it encountered request queue
 * congestion.
 */
static int
__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
			pgoff_t offset, unsigned long nr_to_read,
			unsigned long lookahead_size)
{
	struct inode *inode = mapping->host;
	struct page *page;
	unsigned long end_index;	/* The last page we want to read */
	LIST_HEAD(page_pool);
	int page_idx;
	int ret = 0;
	loff_t isize = i_size_read(inode);

	if (isize == 0)
		goto out;

	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);

	/*
	 * Preallocate as many pages as we will need.
	 */
	read_lock_irq(&mapping->tree_lock);
	for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
		pgoff_t page_offset = offset + page_idx;

		if (page_offset > end_index)
			break;

		page = radix_tree_lookup(&mapping->page_tree, page_offset);
		if (page)
			continue;

		read_unlock_irq(&mapping->tree_lock);
		page = page_cache_alloc_cold(mapping);
		read_lock_irq(&mapping->tree_lock);
		if (!page)
			break;
		page->index = page_offset;
		list_add(&page->lru, &page_pool);
		if (page_idx == nr_to_read - lookahead_size)
			SetPageReadahead(page);
		ret++;
	}
	read_unlock_irq(&mapping->tree_lock);

	/*
	 * Now start the IO.  We ignore I/O errors - if the page is not
	 * uptodate then the caller will launch readpage again, and
	 * will then handle the error.
	 */
	if (ret)
		read_pages(mapping, filp, &page_pool, ret);
	BUG_ON(!list_empty(&page_pool));
out:
	return ret;
}

/*
 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 * memory at once.
 */
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
		pgoff_t offset, unsigned long nr_to_read)
{
	int ret = 0;

	if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
		return -EINVAL;

	while (nr_to_read) {
		int err;

		unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;

		if (this_chunk > nr_to_read)
			this_chunk = nr_to_read;
		err = __do_page_cache_readahead(mapping, filp,
						offset, this_chunk, 0);
		if (err < 0) {
			ret = err;
			break;
		}
		ret += err;
		offset += this_chunk;
		nr_to_read -= this_chunk;
	}
	return ret;
}

/*
 * This version skips the IO if the queue is read-congested, and will tell the
 * block layer to abandon the readahead if request allocation would block.
 *
 * force_page_cache_readahead() will ignore queue congestion and will block on
 * request queues.
 */
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
			pgoff_t offset, unsigned long nr_to_read)
{
	if (bdi_read_congested(mapping->backing_dev_info))
		return -1;

	return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
}

/*
 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
 * sensible upper limit.
 */
unsigned long max_sane_readahead(unsigned long nr)
{
	return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
		+ node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
}

/*
 * Submit IO for the read-ahead request in file_ra_state.
 */
unsigned long ra_submit(struct file_ra_state *ra,
		       struct address_space *mapping, struct file *filp)
{
	unsigned long ra_size;
	unsigned long la_size;
	int actual;

	ra_size = ra_readahead_size(ra);
	la_size = ra_lookahead_size(ra);
	actual = __do_page_cache_readahead(mapping, filp,
					ra->ra_index, ra_size, la_size);

	return actual;
}
EXPORT_SYMBOL_GPL(ra_submit);

/*
 * Set the initial window size, round to next power of 2 and square
 * for small size, x 4 for medium, and x 2 for large
 * for 128k (32 page) max ra
 * 1-8 page = 32k initial, > 8 page = 128k initial
 */
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
{
	unsigned long newsize = roundup_pow_of_two(size);

	if (newsize <= max / 32)
		newsize = newsize * 4;
	else if (newsize <= max / 4)
		newsize = newsize * 2;
	else
		newsize = max;

	return newsize;
}

/*
 *  Get the previous window size, ramp it up, and
 *  return it as the new window size.
 */
static unsigned long get_next_ra_size(struct file_ra_state *ra,
						unsigned long max)
{
	unsigned long cur = ra->readahead_index - ra->ra_index;
	unsigned long newsize;

	if (cur < max / 16)
		newsize = 4 * cur;
	else
		newsize = 2 * cur;

	return min(newsize, max);
}

/*
 * On-demand readahead design.
 *
 * The fields in struct file_ra_state represent the most-recently-executed
 * readahead attempt:
 *
 *                    |-------- last readahead window -------->|
 *       |-- application walking here -->|
 * ======#============|==================#=====================|
 *       ^la_index    ^ra_index          ^lookahead_index      ^readahead_index
 *
 * [ra_index, readahead_index) represents the last readahead window.
 *
 * [la_index, lookahead_index] is where the application would be walking(in
 * the common case of cache-cold sequential reads): the last window was
 * established when the application was at la_index, and the next window will
 * be bring in when the application reaches lookahead_index.
 *
 * To overlap application thinking time and disk I/O time, we do
 * `readahead pipelining': Do not wait until the application consumed all
 * readahead pages and stalled on the missing page at readahead_index;
 * Instead, submit an asynchronous readahead I/O as early as the application
 * reads on the page at lookahead_index. Normally lookahead_index will be
 * equal to ra_index, for maximum pipelining.
 *
 * In interleaved sequential reads, concurrent streams on the same fd can
 * be invalidating each other's readahead state. So we flag the new readahead
 * page at lookahead_index with PG_readahead, and use it as readahead
 * indicator. The flag won't be set on already cached pages, to avoid the
 * readahead-for-nothing fuss, saving pointless page cache lookups.
 *
 * prev_index tracks the last visited page in the _previous_ read request.
 * It should be maintained by the caller, and will be used for detecting
 * small random reads. Note that the readahead algorithm checks loosely
 * for sequential patterns. Hence interleaved reads might be served as
 * sequential ones.
 *
 * There is a special-case: if the first page which the application tries to
 * read happens to be the first page of the file, it is assumed that a linear
 * read is about to happen and the window is immediately set to the initial size
 * based on I/O request size and the max_readahead.
 *
 * The code ramps up the readahead size aggressively at first, but slow down as
 * it approaches max_readhead.
 */

/*
 * A minimal readahead algorithm for trivial sequential/random reads.
 */
static unsigned long
ondemand_readahead(struct address_space *mapping,
		   struct file_ra_state *ra, struct file *filp,
		   struct page *page, pgoff_t offset,
		   unsigned long req_size)
{
	unsigned long max;	/* max readahead pages */
	pgoff_t ra_index;	/* readahead index */
	unsigned long ra_size;	/* readahead size */
	unsigned long la_size;	/* lookahead size */
	int sequential;

	max = ra->ra_pages;
	sequential = (offset - ra->prev_index <= 1UL) || (req_size > max);

	/*
	 * Lookahead/readahead hit, assume sequential access.
	 * Ramp up sizes, and push forward the readahead window.
	 */
	if (offset && (offset == ra->lookahead_index ||
			offset == ra->readahead_index)) {
		ra_index = ra->readahead_index;
		ra_size = get_next_ra_size(ra, max);
		la_size = ra_size;
		goto fill_ra;
	}

	/*
	 * Standalone, small read.
	 * Read as is, and do not pollute the readahead state.
	 */
	if (!page && !sequential) {
		return __do_page_cache_readahead(mapping, filp,
						offset, req_size, 0);
	}

	/*
	 * It may be one of
	 * 	- first read on start of file
	 * 	- sequential cache miss
	 * 	- oversize random read
	 * Start readahead for it.
	 */
	ra_index = offset;
	ra_size = get_init_ra_size(req_size, max);
	la_size = ra_size > req_size ? ra_size - req_size : ra_size;

	/*
	 * Hit on a lookahead page without valid readahead state.
	 * E.g. interleaved reads.
	 * Not knowing its readahead pos/size, bet on the minimal possible one.
	 */
	if (page) {
		ra_index++;
		ra_size = min(4 * ra_size, max);
	}

fill_ra:
	ra_set_index(ra, offset, ra_index);
	ra_set_size(ra, ra_size, la_size);

	return ra_submit(ra, mapping, filp);
}

/**
 * page_cache_readahead_ondemand - generic file readahead
 * @mapping: address_space which holds the pagecache and I/O vectors
 * @ra: file_ra_state which holds the readahead state
 * @filp: passed on to ->readpage() and ->readpages()
 * @page: the page at @offset, or NULL if non-present
 * @offset: start offset into @mapping, in PAGE_CACHE_SIZE units
 * @req_size: hint: total size of the read which the caller is performing in
 *            PAGE_CACHE_SIZE units
 *
 * page_cache_readahead_ondemand() is the entry point of readahead logic.
 * This function should be called when it is time to perform readahead:
 * 1) @page == NULL
 *    A cache miss happened, time for synchronous readahead.
 * 2) @page != NULL && PageReadahead(@page)
 *    A look-ahead hit occured, time for asynchronous readahead.
 */
unsigned long
page_cache_readahead_ondemand(struct address_space *mapping,
				struct file_ra_state *ra, struct file *filp,
				struct page *page, pgoff_t offset,
				unsigned long req_size)
{
	/* no read-ahead */
	if (!ra->ra_pages)
		return 0;

	if (page) {
		ClearPageReadahead(page);

		/*
		 * Defer asynchronous read-ahead on IO congestion.
		 */
		if (bdi_read_congested(mapping->backing_dev_info))
			return 0;
	}

	/* do read-ahead */
	return ondemand_readahead(mapping, ra, filp, page,
					offset, req_size);
}
EXPORT_SYMBOL_GPL(page_cache_readahead_ondemand);