1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
|
/* ************************************************************************** */
/* STACK RESOURCE POLICY */
/* ************************************************************************** */
#include <asm/atomic.h>
#include <linux/wait.h>
#include <litmus/litmus.h>
#include <litmus/sched_plugin.h>
#include <litmus/fdso.h>
#include <litmus/trace.h>
#ifdef CONFIG_SRP
struct srp_priority {
struct list_head list;
unsigned int period;
pid_t pid;
};
#define list2prio(l) list_entry(l, struct srp_priority, list)
/* SRP task priority comparison function. Smaller periods have highest
* priority, tie-break is PID. Special case: period == 0 <=> no priority
*/
static int srp_higher_prio(struct srp_priority* first,
struct srp_priority* second)
{
if (!first->period)
return 0;
else
return !second->period ||
first->period < second->period || (
first->period == second->period &&
first->pid < second->pid);
}
struct srp {
struct list_head ceiling;
wait_queue_head_t ceiling_blocked;
};
atomic_t srp_objects_in_use = ATOMIC_INIT(0);
DEFINE_PER_CPU(struct srp, srp);
/* Initialize SRP semaphores at boot time. */
static int __init srp_init(void)
{
int i;
printk("Initializing SRP per-CPU ceilings...");
for (i = 0; i < NR_CPUS; i++) {
init_waitqueue_head(&per_cpu(srp, i).ceiling_blocked);
INIT_LIST_HEAD(&per_cpu(srp, i).ceiling);
}
printk(" done!\n");
return 0;
}
module_init(srp_init);
#define system_ceiling(srp) list2prio(srp->ceiling.next)
#define UNDEF_SEM -2
/* struct for uniprocessor SRP "semaphore" */
struct srp_semaphore {
struct srp_priority ceiling;
struct task_struct* owner;
int cpu; /* cpu associated with this "semaphore" and resource */
};
#define ceiling2sem(c) container_of(c, struct srp_semaphore, ceiling)
static int srp_exceeds_ceiling(struct task_struct* first,
struct srp* srp)
{
return list_empty(&srp->ceiling) ||
get_rt_period(first) < system_ceiling(srp)->period ||
(get_rt_period(first) == system_ceiling(srp)->period &&
first->pid < system_ceiling(srp)->pid) ||
ceiling2sem(system_ceiling(srp))->owner == first;
}
static void srp_add_prio(struct srp* srp, struct srp_priority* prio)
{
struct list_head *pos;
if (in_list(&prio->list)) {
printk(KERN_CRIT "WARNING: SRP violation detected, prio is already in "
"ceiling list! cpu=%d, srp=%p\n", smp_processor_id(), ceiling2sem(prio));
return;
}
list_for_each(pos, &srp->ceiling)
if (unlikely(srp_higher_prio(prio, list2prio(pos)))) {
__list_add(&prio->list, pos->prev, pos);
return;
}
list_add_tail(&prio->list, &srp->ceiling);
}
static void* create_srp_semaphore(void)
{
struct srp_semaphore* sem;
sem = kmalloc(sizeof(*sem), GFP_KERNEL);
if (!sem)
return NULL;
INIT_LIST_HEAD(&sem->ceiling.list);
sem->ceiling.period = 0;
sem->cpu = UNDEF_SEM;
sem->owner = NULL;
atomic_inc(&srp_objects_in_use);
return sem;
}
static noinline int open_srp_semaphore(struct od_table_entry* entry, void* __user arg)
{
struct srp_semaphore* sem = (struct srp_semaphore*) entry->obj->obj;
int ret = 0;
struct task_struct* t = current;
struct srp_priority t_prio;
TRACE("opening SRP semaphore %p, cpu=%d\n", sem, sem->cpu);
if (!srp_active())
return -EBUSY;
if (sem->cpu == UNDEF_SEM)
sem->cpu = get_partition(t);
else if (sem->cpu != get_partition(t))
ret = -EPERM;
if (ret == 0) {
t_prio.period = get_rt_period(t);
t_prio.pid = t->pid;
if (srp_higher_prio(&t_prio, &sem->ceiling)) {
sem->ceiling.period = t_prio.period;
sem->ceiling.pid = t_prio.pid;
}
}
return ret;
}
static void destroy_srp_semaphore(void* sem)
{
/* XXX invariants */
atomic_dec(&srp_objects_in_use);
kfree(sem);
}
struct fdso_ops srp_sem_ops = {
.create = create_srp_semaphore,
.open = open_srp_semaphore,
.destroy = destroy_srp_semaphore
};
static void do_srp_down(struct srp_semaphore* sem)
{
/* Update ceiling. */
srp_add_prio(&__get_cpu_var(srp), &sem->ceiling);
WARN_ON(sem->owner != NULL);
sem->owner = current;
TRACE_CUR("acquired srp 0x%p\n", sem);
}
static void do_srp_up(struct srp_semaphore* sem)
{
/* Determine new system priority ceiling for this CPU. */
WARN_ON(!in_list(&sem->ceiling.list));
if (in_list(&sem->ceiling.list))
list_del(&sem->ceiling.list);
sem->owner = NULL;
/* Wake tasks on this CPU, if they exceed current ceiling. */
TRACE_CUR("released srp 0x%p\n", sem);
wake_up_all(&__get_cpu_var(srp).ceiling_blocked);
}
/* Adjust the system-wide priority ceiling if resource is claimed. */
asmlinkage long sys_srp_down(int sem_od)
{
int cpu;
int ret = -EINVAL;
struct srp_semaphore* sem;
/* disabling preemptions is sufficient protection since
* SRP is strictly per CPU and we don't interfere with any
* interrupt handlers
*/
preempt_disable();
TS_SRP_DOWN_START;
cpu = smp_processor_id();
sem = lookup_srp_sem(sem_od);
if (sem && sem->cpu == cpu) {
do_srp_down(sem);
ret = 0;
}
TS_SRP_DOWN_END;
preempt_enable();
return ret;
}
/* Adjust the system-wide priority ceiling if resource is freed. */
asmlinkage long sys_srp_up(int sem_od)
{
int cpu;
int ret = -EINVAL;
struct srp_semaphore* sem;
preempt_disable();
TS_SRP_UP_START;
cpu = smp_processor_id();
sem = lookup_srp_sem(sem_od);
if (sem && sem->cpu == cpu) {
do_srp_up(sem);
ret = 0;
}
TS_SRP_UP_END;
preempt_enable();
return ret;
}
static int srp_wake_up(wait_queue_t *wait, unsigned mode, int sync,
void *key)
{
int cpu = smp_processor_id();
struct task_struct *tsk = wait->private;
if (cpu != get_partition(tsk))
TRACE_TASK(tsk, "srp_wake_up on wrong cpu, partition is %d\b",
get_partition(tsk));
else if (srp_exceeds_ceiling(tsk, &__get_cpu_var(srp)))
return default_wake_function(wait, mode, sync, key);
return 0;
}
static void do_ceiling_block(struct task_struct *tsk)
{
wait_queue_t wait = {
.private = tsk,
.func = srp_wake_up,
.task_list = {NULL, NULL}
};
tsk->state = TASK_UNINTERRUPTIBLE;
add_wait_queue(&__get_cpu_var(srp).ceiling_blocked, &wait);
tsk->rt_param.srp_non_recurse = 1;
preempt_enable_no_resched();
schedule();
preempt_disable();
tsk->rt_param.srp_non_recurse = 0;
remove_wait_queue(&__get_cpu_var(srp).ceiling_blocked, &wait);
}
/* Wait for current task priority to exceed system-wide priority ceiling.
*/
void srp_ceiling_block(void)
{
struct task_struct *tsk = current;
/* Only applies to real-time tasks, but optimize for RT tasks. */
if (unlikely(!is_realtime(tsk)))
return;
/* Avoid recursive ceiling blocking. */
if (unlikely(tsk->rt_param.srp_non_recurse))
return;
/* Bail out early if there aren't any SRP resources around. */
if (likely(!atomic_read(&srp_objects_in_use)))
return;
preempt_disable();
if (!srp_exceeds_ceiling(tsk, &__get_cpu_var(srp))) {
TRACE_CUR("is priority ceiling blocked.\n");
while (!srp_exceeds_ceiling(tsk, &__get_cpu_var(srp)))
do_ceiling_block(tsk);
TRACE_CUR("finally exceeds system ceiling.\n");
} else
TRACE_CUR("is not priority ceiling blocked\n");
preempt_enable();
}
#else
asmlinkage long sys_srp_down(int sem_od)
{
return -ENOSYS;
}
asmlinkage long sys_srp_up(int sem_od)
{
return -ENOSYS;
}
struct fdso_ops srp_sem_ops = {};
#endif
|