aboutsummaryrefslogtreecommitdiffstats
path: root/litmus/sched_psn_edf.c
blob: e66397b7e8a25cadbf65601ef537914d41080253 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
 * kernel/sched_psn_edf.c
 *
 * Implementation of the PSN-EDF scheduler plugin.
 * Based on kern/sched_part_edf.c and kern/sched_gsn_edf.c.
 *
 * Suspensions and non-preemptable sections are supported.
 * Priority inheritance is not supported.
 */

#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/module.h>

#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/preempt.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>

typedef struct {
	rt_domain_t 		domain;
	int          		cpu;
	struct task_struct* 	scheduled; /* only RT tasks */
/*
 * scheduling lock slock
 * protects the domain and serializes scheduling decisions
 */
#define slock domain.ready_lock

} psnedf_domain_t;

DEFINE_PER_CPU(psnedf_domain_t, psnedf_domains);

#define local_edf		(&__get_cpu_var(psnedf_domains).domain)
#define local_pedf		(&__get_cpu_var(psnedf_domains))
#define remote_edf(cpu)		(&per_cpu(psnedf_domains, cpu).domain)
#define remote_pedf(cpu)	(&per_cpu(psnedf_domains, cpu))
#define task_edf(task)		remote_edf(get_partition(task))
#define task_pedf(task)		remote_pedf(get_partition(task))


static void psnedf_domain_init(psnedf_domain_t* pedf,
			       check_resched_needed_t check,
			       release_jobs_t release,
			       int cpu)
{
	edf_domain_init(&pedf->domain, check, release);
	pedf->cpu      		= cpu;
	pedf->scheduled		= NULL;
}

static void requeue(struct task_struct* t, rt_domain_t *edf)
{
	if (t->state != TASK_RUNNING)
		TRACE_TASK(t, "requeue: !TASK_RUNNING\n");

	set_rt_flags(t, RT_F_RUNNING);
	if (is_released(t, litmus_clock()))
		__add_ready(edf, t);
	else
		add_release(edf, t); /* it has got to wait */
}

/* we assume the lock is being held */
static void preempt(psnedf_domain_t *pedf)
{
	preempt_if_preemptable(pedf->scheduled, pedf->cpu);
}

#ifdef CONFIG_LITMUS_LOCKING

static void boost_priority(struct task_struct* t)
{
	unsigned long		flags;
	psnedf_domain_t* 	pedf = task_pedf(t);
	lt_t			now;

	raw_spin_lock_irqsave(&pedf->slock, flags);
	now = litmus_clock();

	TRACE_TASK(t, "priority boosted at %llu\n", now);

	tsk_rt(t)->priority_boosted = 1;
	tsk_rt(t)->boost_start_time = now;

	if (pedf->scheduled != t) {
		/* holder may be queued: first stop queue changes */
		raw_spin_lock(&pedf->domain.release_lock);
		if (is_queued(t) &&
		    /* If it is queued, then we need to re-order. */
		    bheap_decrease(edf_ready_order, tsk_rt(t)->heap_node) &&
		    /* If we bubbled to the top, then we need to check for preemptions. */
		    edf_preemption_needed(&pedf->domain, pedf->scheduled))
				preempt(pedf);
		raw_spin_unlock(&pedf->domain.release_lock);
	} /* else: nothing to do since the job is not queued while scheduled */

	raw_spin_unlock_irqrestore(&pedf->slock, flags);
}

static void unboost_priority(struct task_struct* t)
{
	unsigned long		flags;
	psnedf_domain_t* 	pedf = task_pedf(t);
	lt_t			now;

	raw_spin_lock_irqsave(&pedf->slock, flags);
	now = litmus_clock();

	/* assumption: this only happens when the job is scheduled */
	BUG_ON(pedf->scheduled != t);

	TRACE_TASK(t, "priority restored at %llu\n", now);

	/* priority boosted jobs must be scheduled */
	BUG_ON(pedf->scheduled != t);

	tsk_rt(t)->priority_boosted = 0;
	tsk_rt(t)->boost_start_time = 0;

	/* check if this changes anything */
	if (edf_preemption_needed(&pedf->domain, pedf->scheduled))
		preempt(pedf);

	raw_spin_unlock_irqrestore(&pedf->slock, flags);
}

#endif

/* This check is trivial in partioned systems as we only have to consider
 * the CPU of the partition.
 */
static int psnedf_check_resched(rt_domain_t *edf)
{
	psnedf_domain_t *pedf = container_of(edf, psnedf_domain_t, domain);

	/* because this is a callback from rt_domain_t we already hold
	 * the necessary lock for the ready queue
	 */
	if (edf_preemption_needed(edf, pedf->scheduled)) {
		preempt(pedf);
		return 1;
	} else
		return 0;
}

static void job_completion(struct task_struct* t, int forced)
{
	sched_trace_task_completion(t,forced);
	TRACE_TASK(t, "job_completion().\n");

	set_rt_flags(t, RT_F_SLEEP);
	prepare_for_next_period(t);
}

static void psnedf_tick(struct task_struct *t)
{
	psnedf_domain_t *pedf = local_pedf;

	/* Check for inconsistency. We don't need the lock for this since
	 * ->scheduled is only changed in schedule, which obviously is not
	 *  executing in parallel on this CPU
	 */
	BUG_ON(is_realtime(t) && t != pedf->scheduled);

	if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
		if (!is_np(t)) {
			litmus_reschedule_local();
			TRACE("psnedf_scheduler_tick: "
			      "%d is preemptable "
			      " => FORCE_RESCHED\n", t->pid);
		} else if (is_user_np(t)) {
			TRACE("psnedf_scheduler_tick: "
			      "%d is non-preemptable, "
			      "preemption delayed.\n", t->pid);
			request_exit_np(t);
		}
	}
}

static struct task_struct* psnedf_schedule(struct task_struct * prev)
{
	psnedf_domain_t* 	pedf = local_pedf;
	rt_domain_t*		edf  = &pedf->domain;
	struct task_struct*	next;

	int 			out_of_time, sleep, preempt,
				np, exists, blocks, resched;

	raw_spin_lock(&pedf->slock);

	/* sanity checking
	 * differently from gedf, when a task exits (dead)
	 * pedf->schedule may be null and prev _is_ realtime
	 */
	BUG_ON(pedf->scheduled && pedf->scheduled != prev);
	BUG_ON(pedf->scheduled && !is_realtime(prev));

	/* (0) Determine state */
	exists      = pedf->scheduled != NULL;
	blocks      = exists && !is_running(pedf->scheduled);
	out_of_time = exists &&
				  budget_enforced(pedf->scheduled) &&
				  budget_exhausted(pedf->scheduled);
	np 	    = exists && is_np(pedf->scheduled);
	sleep	    = exists && get_rt_flags(pedf->scheduled) == RT_F_SLEEP;
	preempt     = edf_preemption_needed(edf, prev);

	/* If we need to preempt do so.
	 * The following checks set resched to 1 in case of special
	 * circumstances.
	 */
	resched = preempt;

	/* If a task blocks we have no choice but to reschedule.
	 */
	if (blocks)
		resched = 1;

	/* Request a sys_exit_np() call if we would like to preempt but cannot.
	 * Multiple calls to request_exit_np() don't hurt.
	 */
	if (np && (out_of_time || preempt || sleep))
		request_exit_np(pedf->scheduled);

	/* Any task that is preemptable and either exhausts its execution
	 * budget or wants to sleep completes. We may have to reschedule after
	 * this.
	 */
	if (!np && (out_of_time || sleep) && !blocks) {
		job_completion(pedf->scheduled, !sleep);
		resched = 1;
	}

	/* The final scheduling decision. Do we need to switch for some reason?
	 * Switch if we are in RT mode and have no task or if we need to
	 * resched.
	 */
	next = NULL;
	if ((!np || blocks) && (resched || !exists)) {
		/* When preempting a task that does not block, then
		 * re-insert it into either the ready queue or the
		 * release queue (if it completed). requeue() picks
		 * the appropriate queue.
		 */
		if (pedf->scheduled && !blocks)
			requeue(pedf->scheduled, edf);
		next = __take_ready(edf);
	} else
		/* Only override Linux scheduler if we have a real-time task
		 * scheduled that needs to continue.
		 */
		if (exists)
			next = prev;

	if (next) {
		TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
		set_rt_flags(next, RT_F_RUNNING);
	} else {
		TRACE("becoming idle at %llu\n", litmus_clock());
	}

	pedf->scheduled = next;
	sched_state_task_picked();
	raw_spin_unlock(&pedf->slock);

	return next;
}


/*	Prepare a task for running in RT mode
 */
static void psnedf_task_new(struct task_struct * t, int on_rq, int running)
{
	rt_domain_t* 		edf  = task_edf(t);
	psnedf_domain_t* 	pedf = task_pedf(t);
	unsigned long		flags;

	TRACE_TASK(t, "psn edf: task new, cpu = %d\n",
		   t->rt_param.task_params.cpu);

	trace_litmus_server_param(0 - t->pid, -1 - get_partition(t),
				  get_exec_time(t), get_rt_period(t));

	/* setup job parameters */
	release_at(t, litmus_clock());

	/* The task should be running in the queue, otherwise signal
	 * code will try to wake it up with fatal consequences.
	 */
	raw_spin_lock_irqsave(&pedf->slock, flags);
	if (running) {
		/* there shouldn't be anything else running at the time */
		BUG_ON(pedf->scheduled);
		pedf->scheduled = t;
	} else {
		requeue(t, edf);
		/* maybe we have to reschedule */
		preempt(pedf);
	}
	raw_spin_unlock_irqrestore(&pedf->slock, flags);
}

static void psnedf_task_wake_up(struct task_struct *task)
{
	unsigned long		flags;
	psnedf_domain_t* 	pedf = task_pedf(task);
	rt_domain_t* 		edf  = task_edf(task);
	lt_t			now;

	TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
	raw_spin_lock_irqsave(&pedf->slock, flags);
	BUG_ON(is_queued(task));
	now = litmus_clock();
	if (is_tardy(task, now)
#ifdef CONFIG_LITMUS_LOCKING
	/* We need to take suspensions because of semaphores into
	 * account! If a job resumes after being suspended due to acquiring
	 * a semaphore, it should never be treated as a new job release.
	 */
	    && !is_priority_boosted(task)
#endif
		) {
		/* new sporadic release */
		release_at(task, now);
		sched_trace_task_release(task);
	}

	/* Only add to ready queue if it is not the currently-scheduled
	 * task. This could be the case if a task was woken up concurrently
	 * on a remote CPU before the executing CPU got around to actually
	 * de-scheduling the task, i.e., wake_up() raced with schedule()
	 * and won.
	 */
	if (pedf->scheduled != task)
		requeue(task, edf);

	raw_spin_unlock_irqrestore(&pedf->slock, flags);
	TRACE_TASK(task, "wake up done\n");
}

static void psnedf_task_block(struct task_struct *t)
{
	/* only running tasks can block, thus t is in no queue */
	TRACE_TASK(t, "block at %llu, state=%d\n", litmus_clock(), t->state);

	BUG_ON(!is_realtime(t));
	BUG_ON(is_queued(t));
}

static void psnedf_task_exit(struct task_struct * t)
{
	unsigned long flags;
	psnedf_domain_t* 	pedf = task_pedf(t);
	rt_domain_t*		edf;

	raw_spin_lock_irqsave(&pedf->slock, flags);
	if (is_queued(t)) {
		/* dequeue */
		edf  = task_edf(t);
		remove(edf, t);
	}
	if (pedf->scheduled == t)
		pedf->scheduled = NULL;

	TRACE_TASK(t, "RIP, now reschedule\n");

	preempt(pedf);
	raw_spin_unlock_irqrestore(&pedf->slock, flags);
}

#ifdef CONFIG_LITMUS_LOCKING

#include <litmus/fdso.h>
#include <litmus/srp.h>

/* ******************** SRP support ************************ */

static unsigned int psnedf_get_srp_prio(struct task_struct* t)
{
	/* assumes implicit deadlines */
	return get_rt_period(t);
}

static long psnedf_activate_plugin(void)
{
	get_srp_prio = psnedf_get_srp_prio;
	return 0;
}

/* ******************** FMLP support ********************** */

/* struct for semaphore with priority inheritance */
struct fmlp_semaphore {
	struct litmus_lock litmus_lock;

	/* current resource holder */
	struct task_struct *owner;

	/* FIFO queue of waiting tasks */
	wait_queue_head_t wait;
};

static inline struct fmlp_semaphore* fmlp_from_lock(struct litmus_lock* lock)
{
	return container_of(lock, struct fmlp_semaphore, litmus_lock);
}
int psnedf_fmlp_lock(struct litmus_lock* l)
{
	struct task_struct* t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	wait_queue_t wait;
	unsigned long flags;

	if (!is_realtime(t))
		return -EPERM;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner) {
		/* resource is not free => must suspend and wait */

		init_waitqueue_entry(&wait, t);

		/* FIXME: interruptible would be nice some day */
		set_task_state(t, TASK_UNINTERRUPTIBLE);

		__add_wait_queue_tail_exclusive(&sem->wait, &wait);

		/* release lock before sleeping */
		spin_unlock_irqrestore(&sem->wait.lock, flags);

		/* We depend on the FIFO order.  Thus, we don't need to recheck
		 * when we wake up; we are guaranteed to have the lock since
		 * there is only one wake up per release.
		 */

		schedule();

		/* Since we hold the lock, no other task will change
		 * ->owner. We can thus check it without acquiring the spin
		 * lock. */
		BUG_ON(sem->owner != t);

		/* FIXME: could we punt the dequeuing to the previous job,
		 * which is holding the spinlock anyway? */
		remove_wait_queue(&sem->wait, &wait);
	} else {
		/* it's ours now */
		sem->owner = t;

		/* mark the task as priority-boosted. */
		boost_priority(t);

		spin_unlock_irqrestore(&sem->wait.lock, flags);
	}

	return 0;
}

int psnedf_fmlp_unlock(struct litmus_lock* l)
{
	struct task_struct *t = current, *next;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;
	int err = 0;

	spin_lock_irqsave(&sem->wait.lock, flags);

	if (sem->owner != t) {
		err = -EINVAL;
		goto out;
	}

	/* we lose the benefit of priority boosting */

	unboost_priority(t);

	/* check if there are jobs waiting for this resource */
	next = waitqueue_first(&sem->wait);
	if (next) {
		/* boost next job */
		boost_priority(next);

		/* next becomes the resouce holder */
		sem->owner = next;

		/* wake up next */
		wake_up_process(next);
	} else
		/* resource becomes available */
		sem->owner = NULL;

out:
	spin_unlock_irqrestore(&sem->wait.lock, flags);
	return err;
}

int psnedf_fmlp_close(struct litmus_lock* l)
{
	struct task_struct *t = current;
	struct fmlp_semaphore *sem = fmlp_from_lock(l);
	unsigned long flags;

	int owner;

	spin_lock_irqsave(&sem->wait.lock, flags);

	owner = sem->owner == t;

	spin_unlock_irqrestore(&sem->wait.lock, flags);

	if (owner)
		psnedf_fmlp_unlock(l);

	return 0;
}

void psnedf_fmlp_free(struct litmus_lock* lock)
{
	kfree(fmlp_from_lock(lock));
}

static struct litmus_lock_ops psnedf_fmlp_lock_ops = {
	.close  = psnedf_fmlp_close,
	.lock   = psnedf_fmlp_lock,
	.unlock = psnedf_fmlp_unlock,
	.deallocate = psnedf_fmlp_free,
};

static struct litmus_lock* psnedf_new_fmlp(void)
{
	struct fmlp_semaphore* sem;

	sem = kmalloc(sizeof(*sem), GFP_KERNEL);
	if (!sem)
		return NULL;

	sem->owner   = NULL;
	init_waitqueue_head(&sem->wait);
	sem->litmus_lock.ops = &psnedf_fmlp_lock_ops;

	return &sem->litmus_lock;
}

/* **** lock constructor **** */


static long psnedf_allocate_lock(struct litmus_lock **lock, int type,
				 void* __user unused)
{
	int err = -ENXIO;
	struct srp_semaphore* srp;

	/* PSN-EDF currently supports the SRP for local resources and the FMLP
	 * for global resources. */
	switch (type) {
	case FMLP_SEM:
		/* Flexible Multiprocessor Locking Protocol */
		*lock = psnedf_new_fmlp();
		if (*lock)
			err = 0;
		else
			err = -ENOMEM;
		break;

	case SRP_SEM:
		/* Baker's Stack Resource Policy */
		srp = allocate_srp_semaphore();
		if (srp) {
			*lock = &srp->litmus_lock;
			err = 0;
		} else
			err = -ENOMEM;
		break;
	};

	return err;
}

#endif

static long psnedf_admit_task(struct task_struct* tsk)
{
	return task_cpu(tsk) == tsk->rt_param.task_params.cpu ? 0 : -EINVAL;
}

/*	Plugin object	*/
static struct sched_plugin psn_edf_plugin __cacheline_aligned_in_smp = {
	.plugin_name		= "PSN-EDF",
	.tick			= psnedf_tick,
	.task_new		= psnedf_task_new,
	.complete_job		= complete_job,
	.task_exit		= psnedf_task_exit,
	.schedule		= psnedf_schedule,
	.task_wake_up		= psnedf_task_wake_up,
	.task_block		= psnedf_task_block,
	.admit_task		= psnedf_admit_task,
#ifdef CONFIG_LITMUS_LOCKING
	.allocate_lock		= psnedf_allocate_lock,
	.activate_plugin	= psnedf_activate_plugin,
#endif
};


static int __init init_psn_edf(void)
{
	int i;

	/* We do not really want to support cpu hotplug, do we? ;)
	 * However, if we are so crazy to do so,
	 * we cannot use num_online_cpu()
	 */
	for (i = 0; i < num_online_cpus(); i++) {
		psnedf_domain_init(remote_pedf(i),
				   psnedf_check_resched,
				   NULL, i);
	}
	return register_sched_plugin(&psn_edf_plugin);
}

module_init(init_psn_edf);