1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
|
/*
* litmus/sched_mcrit.c
*
* Mixed Criticality plugin
*
* Cloned from GSN-EDF
*
* "This version uses the simple approach and serializes all scheduling
* decisions by the use of a queue lock. This is probably not the
* best way to do it, but it should suffice for now." -GSN-EDF
*/
#include <linux/spinlock.h>
#include <linux/percpu.h>
#include <linux/sched.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
#include <litmus/sched_trace.h>
#include <litmus/bheap.h>
#include <linux/module.h>
/* Overview of GSN-EDF operations.
*
* For a detailed explanation of GSN-EDF have a look at the FMLP paper. This
* description only covers how the individual operations are implemented in
* LITMUS.
*
* link_task_to_cpu(T, cpu) - Low-level operation to update the linkage
* structure (NOT the actually scheduled
* task). If there is another linked task To
* already it will set To->linked_on = NO_CPU
* (thereby removing its association with this
* CPU). However, it will not requeue the
* previously linked task (if any). It will set
* T's state to RT_F_RUNNING and check whether
* it is already running somewhere else. If T
* is scheduled somewhere else it will link
* it to that CPU instead (and pull the linked
* task to cpu). T may be NULL.
*
* unlink(T) - Unlink removes T from all scheduler data
* structures. If it is linked to some CPU it
* will link NULL to that CPU. If it is
* currently queued in the mcrit queue it will
* be removed from the rt_domain. It is safe to
* call unlink(T) if T is not linked. T may not
* be NULL.
*
* requeue(T) - Requeue will insert T into the appropriate
* queue. If the system is in real-time mode and
* the T is released already, it will go into the
* ready queue. If the system is not in
* real-time mode is T, then T will go into the
* release queue. If T's release time is in the
* future, it will go into the release
* queue. That means that T's release time/job
* no/etc. has to be updated before requeu(T) is
* called. It is not safe to call requeue(T)
* when T is already queued. T may not be NULL.
*
* mcrit_job_arrival(T) - This is the catch all function when T enters
* the system after either a suspension or at a
* job release. It will queue T (which means it
* is not safe to call mcrit_job_arrival(T) if
* T is already queued) and then check whether a
* preemption is necessary. If a preemption is
* necessary it will update the linkage
* accordingly and cause scheduled to be called
* (either with an IPI or need_resched). It is
* safe to call mcrit_job_arrival(T) if T's
* next job has not been actually released yet
* (releast time in the future). T will be put
* on the release queue in that case.
*
* job_completion(T) - Take care of everything that needs to be done
* to prepare T for its next release and place
* it in the right queue with
* mcrit_job_arrival().
*
*
* When we now that T is linked to CPU then link_task_to_cpu(NULL, CPU) is
* equivalent to unlink(T). Note that if you unlink a task from a CPU none of
* the functions will automatically propagate pending task from the ready queue
* to a linked task. This is the job of the calling function ( by means of
* __take_ready).
*/
/* cpu_entry_t - maintain the linked and scheduled state
*/
typedef struct {
int cpu;
struct task_struct* linked; /* only RT tasks */
struct task_struct* scheduled; /* only RT tasks */
atomic_t will_schedule; /* prevent unneeded IPIs */
struct bheap_node* hn;
} cpu_entry_t;
DEFINE_PER_CPU(cpu_entry_t, mcrit_cpu_entries);
cpu_entry_t* mcrit_cpus[NR_CPUS];
#define set_will_schedule() \
(atomic_set(&__get_cpu_var(mcrit_cpu_entries).will_schedule, 1))
#define clear_will_schedule() \
(atomic_set(&__get_cpu_var(mcrit_cpu_entries).will_schedule, 0))
#define test_will_schedule(cpu) \
(atomic_read(&per_cpu(mcrit_cpu_entries, cpu).will_schedule))
/* the cpus queue themselves according to priority in here */
static struct bheap_node mcrit_heap_node[NR_CPUS];
static struct bheap mcrit_cpu_heap;
static rt_domain_t mcrit;
#define mcrit_lock (mcrit.ready_lock)
/* Uncomment this if you want to see all scheduling decisions in the
* TRACE() log.
#define WANT_ALL_SCHED_EVENTS
*/
static int cpu_lower_prio(struct bheap_node *_a, struct bheap_node *_b)
{
cpu_entry_t *a, *b;
a = _a->value;
b = _b->value;
/* Note that a and b are inverted: we want the lowest-priority CPU at
* the top of the heap.
*/
if (get_crit(b->linked) == get_crit(a->linked)) {
return edf_higher_prio(b->linked, a->linked);
}
else {
return get_crit(b->linked) < get_crit(a->linked); /* lower criticality number == higher criticality */
}
}
/* update_cpu_position - Move the cpu entry to the correct place to maintain
* order in the cpu queue. Caller must hold mcrit lock.
*/
static void update_cpu_position(cpu_entry_t *entry)
{
if (likely(bheap_node_in_heap(entry->hn)))
bheap_delete(cpu_lower_prio, &mcrit_cpu_heap, entry->hn);
bheap_insert(cpu_lower_prio, &mcrit_cpu_heap, entry->hn);
}
/* caller must hold mcrit lock */
static cpu_entry_t* lowest_prio_cpu(void)
{
struct bheap_node* hn;
hn = bheap_peek(cpu_lower_prio, &mcrit_cpu_heap);
return hn->value;
}
/* link_task_to_cpu - Update the link of a CPU.
* Handles the case where the to-be-linked task is already
* scheduled on a different CPU.
*/
static noinline void link_task_to_cpu(struct task_struct* linked,
cpu_entry_t *entry)
{
cpu_entry_t *sched;
struct task_struct* tmp;
int on_cpu;
BUG_ON(linked && !is_realtime(linked));
/* Currently linked task is set to be unlinked. */
if (entry->linked) {
entry->linked->rt_param.linked_on = NO_CPU;
}
/* Link new task to CPU. */
if (linked) {
set_rt_flags(linked, RT_F_RUNNING);
/* handle task is already scheduled somewhere! */
on_cpu = linked->rt_param.scheduled_on;
if (on_cpu != NO_CPU) {
sched = &per_cpu(mcrit_cpu_entries, on_cpu);
/* this should only happen if not linked already */
BUG_ON(sched->linked == linked);
/* If we are already scheduled on the CPU to which we
* wanted to link, we don't need to do the swap --
* we just link ourselves to the CPU and depend on
* the caller to get things right.
*/
if (entry != sched) {
TRACE_TASK(linked,
"already scheduled on %d, updating link.\n",
sched->cpu);
tmp = sched->linked;
linked->rt_param.linked_on = sched->cpu;
sched->linked = linked;
update_cpu_position(sched);
linked = tmp;
}
}
if (linked) /* might be NULL due to swap */
linked->rt_param.linked_on = entry->cpu;
}
entry->linked = linked;
#ifdef WANT_ALL_SCHED_EVENTS
if (linked)
TRACE_TASK(linked, "linked to %d.\n", entry->cpu);
else
TRACE("NULL linked to %d.\n", entry->cpu);
#endif
update_cpu_position(entry);
}
/* unlink - Make sure a task is not linked any longer to an entry
* where it was linked before. Must hold mcrit_lock.
*/
static noinline void unlink(struct task_struct* t)
{
cpu_entry_t *entry;
if (unlikely(!t)) {
TRACE_BUG_ON(!t);
return;
}
if (t->rt_param.linked_on != NO_CPU) {
/* unlink */
entry = &per_cpu(mcrit_cpu_entries, t->rt_param.linked_on);
t->rt_param.linked_on = NO_CPU;
link_task_to_cpu(NULL, entry);
} else if (is_queued(t)) {
/* This is an interesting situation: t is scheduled,
* but was just recently unlinked. It cannot be
* linked anywhere else (because then it would have
* been relinked to this CPU), thus it must be in some
* queue. We must remove it from the list in this
* case.
*/
remove(&mcrit, t);
}
}
/* preempt - force a CPU to reschedule
*/
static void preempt(cpu_entry_t *entry)
{
preempt_if_preemptable(entry->scheduled, entry->cpu);
}
/* requeue - Put an unlinked task into gsn-edf domain.
* Caller must hold mcrit_lock.
*/
static noinline void requeue(struct task_struct* task)
{
BUG_ON(!task);
/* sanity check before insertion */
BUG_ON(is_queued(task));
if (is_released(task, litmus_clock()))
__add_ready(&mcrit, task);
else {
/* it has got to wait */
add_release(&mcrit, task);
}
}
/* check for any necessary preemptions */
static void check_for_preemptions(void)
{
struct task_struct *task;
cpu_entry_t* last;
for(last = lowest_prio_cpu();
edf_preemption_needed(&mcrit, last->linked);
last = lowest_prio_cpu()) {
/* preemption necessary */
task = __take_ready(&mcrit);
TRACE("check_for_preemptions: attempting to link task %d to %d\n",
task->pid, last->cpu);
if (last->linked)
requeue(last->linked);
link_task_to_cpu(task, last);
preempt(last);
}
}
/* mcrit_job_arrival: task is either resumed or released */
static noinline void mcrit_job_arrival(struct task_struct* task)
{
BUG_ON(!task);
requeue(task);
check_for_preemptions();
}
static void mcrit_release_jobs(rt_domain_t* rt, struct bheap* tasks)
{
unsigned long flags;
raw_spin_lock_irqsave(&mcrit_lock, flags);
__merge_ready(rt, tasks);
check_for_preemptions();
raw_spin_unlock_irqrestore(&mcrit_lock, flags);
}
/* caller holds mcrit_lock */
static noinline void job_completion(struct task_struct *t, int forced)
{
BUG_ON(!t);
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
/* set flags */
set_rt_flags(t, RT_F_SLEEP);
/* prepare for next period */
prepare_for_next_period(t);
if (is_released(t, litmus_clock()))
sched_trace_task_release(t);
/* unlink */
unlink(t);
/* requeue
* But don't requeue a blocking task. */
if (is_running(t))
mcrit_job_arrival(t);
}
/* mcrit_tick - this function is called for every local timer
* interrupt.
*
* checks whether the current task has expired and checks
* whether we need to preempt it if it has not expired
*/
static void mcrit_tick(struct task_struct* t)
{
if (is_realtime(t) && budget_enforced(t) && budget_exhausted(t)) {
if (!is_np(t)) {
/* np tasks will be preempted when they become
* preemptable again
*/
set_tsk_need_resched(t);
set_will_schedule();
TRACE("mcrit_scheduler_tick: "
"%d is preemptable "
" => FORCE_RESCHED\n", t->pid);
} else if (is_user_np(t)) {
TRACE("mcrit_scheduler_tick: "
"%d is non-preemptable, "
"preemption delayed.\n", t->pid);
request_exit_np(t);
}
}
}
/* Getting schedule() right is a bit tricky. schedule() may not make any
* assumptions on the state of the current task since it may be called for a
* number of reasons. The reasons include a scheduler_tick() determined that it
* was necessary, because sys_exit_np() was called, because some Linux
* subsystem determined so, or even (in the worst case) because there is a bug
* hidden somewhere. Thus, we must take extreme care to determine what the
* current state is.
*
* The CPU could currently be scheduling a task (or not), be linked (or not).
*
* The following assertions for the scheduled task could hold:
*
* - !is_running(scheduled) // the job blocks
* - scheduled->timeslice == 0 // the job completed (forcefully)
* - get_rt_flag() == RT_F_SLEEP // the job completed (by syscall)
* - linked != scheduled // we need to reschedule (for any reason)
* - is_np(scheduled) // rescheduling must be delayed,
* sys_exit_np must be requested
*
* Any of these can occur together.
*/
static struct task_struct* mcrit_schedule(struct task_struct * prev)
{
cpu_entry_t* entry = &__get_cpu_var(mcrit_cpu_entries);
int out_of_time, sleep, preempt, np, exists, blocks;
struct task_struct* next = NULL;
#ifdef CONFIG_RELEASE_MASTER
/* Bail out early if we are the release master.
* The release master never schedules any real-time tasks.
*/
if (mcrit.release_master == entry->cpu)
return NULL;
#endif
raw_spin_lock(&mcrit_lock);
clear_will_schedule();
/* sanity checking */
BUG_ON(entry->scheduled && entry->scheduled != prev);
BUG_ON(entry->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !entry->scheduled);
/* (0) Determine state */
exists = entry->scheduled != NULL;
blocks = exists && !is_running(entry->scheduled);
out_of_time = exists &&
budget_enforced(entry->scheduled) &&
budget_exhausted(entry->scheduled);
np = exists && is_np(entry->scheduled);
sleep = exists && get_rt_flags(entry->scheduled) == RT_F_SLEEP;
preempt = entry->scheduled != entry->linked;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "invoked mcrit_schedule.\n");
#endif
if (exists)
TRACE_TASK(prev,
"blocks:%d out_of_time:%d np:%d sleep:%d preempt:%d "
"state:%d sig:%d\n",
blocks, out_of_time, np, sleep, preempt,
prev->state, signal_pending(prev));
if (entry->linked && preempt)
TRACE_TASK(prev, "will be preempted by %s/%d\n",
entry->linked->comm, entry->linked->pid);
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
unlink(entry->scheduled);
/* Request a sys_exit_np() call if we would like to preempt but cannot.
* We need to make sure to update the link structure anyway in case
* that we are still linked. Multiple calls to request_exit_np() don't
* hurt.
*/
if (np && (out_of_time || preempt || sleep)) {
unlink(entry->scheduled);
request_exit_np(entry->scheduled);
}
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this. Don't do a job completion if we block (can't have timers running
* for blocked jobs). Preemption go first for the same reason.
*/
if (!np && (out_of_time || sleep) && !blocks && !preempt)
job_completion(entry->scheduled, !sleep);
/* Link pending task if we became unlinked.
*/
if (!entry->linked)
link_task_to_cpu(__take_ready(&mcrit), entry);
/* The final scheduling decision. Do we need to switch for some reason?
* If linked is different from scheduled, then select linked as next.
*/
if ((!np || blocks) &&
entry->linked != entry->scheduled) {
/* Schedule a linked job? */
if (entry->linked) {
entry->linked->rt_param.scheduled_on = entry->cpu;
next = entry->linked;
}
if (entry->scheduled) {
/* not gonna be scheduled soon */
entry->scheduled->rt_param.scheduled_on = NO_CPU;
TRACE_TASK(entry->scheduled, "scheduled_on = NO_CPU\n");
}
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue.
*/
if (exists)
next = prev;
raw_spin_unlock(&mcrit_lock);
#ifdef WANT_ALL_SCHED_EVENTS
TRACE("mcrit_lock released, next=0x%p\n", next);
if (next)
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
else if (exists && !next)
TRACE("becomes idle at %llu.\n", litmus_clock());
#endif
return next;
}
/* _finish_switch - we just finished the switch away from prev
*/
static void mcrit_finish_switch(struct task_struct *prev)
{
cpu_entry_t* entry = &__get_cpu_var(mcrit_cpu_entries);
entry->scheduled = is_realtime(current) ? current : NULL;
#ifdef WANT_ALL_SCHED_EVENTS
TRACE_TASK(prev, "switched away from\n");
#endif
}
/* Prepare a task for running in RT mode
*/
static void mcrit_task_new(struct task_struct * t, int on_rq, int running)
{
unsigned long flags;
cpu_entry_t* entry;
TRACE("mcrit: task new %d\n", t->pid);
TRACE("mcrit: task criticality %d\n", t->rt_param.task_params.crit);
raw_spin_lock_irqsave(&mcrit_lock, flags);
/* setup job params */
release_at(t, litmus_clock());
if (running) {
entry = &per_cpu(mcrit_cpu_entries, task_cpu(t));
BUG_ON(entry->scheduled);
#ifdef CONFIG_RELEASE_MASTER
if (entry->cpu != mcrit.release_master) {
#endif
entry->scheduled = t;
tsk_rt(t)->scheduled_on = task_cpu(t);
#ifdef CONFIG_RELEASE_MASTER
} else {
/* do not schedule on release master */
preempt(entry); /* force resched */
tsk_rt(t)->scheduled_on = NO_CPU;
}
#endif
} else {
t->rt_param.scheduled_on = NO_CPU;
}
t->rt_param.linked_on = NO_CPU;
mcrit_job_arrival(t);
raw_spin_unlock_irqrestore(&mcrit_lock, flags);
}
static void mcrit_task_wake_up(struct task_struct *task)
{
unsigned long flags;
lt_t now;
TRACE_TASK(task, "wake_up at %llu\n", litmus_clock());
raw_spin_lock_irqsave(&mcrit_lock, flags);
/* We need to take suspensions because of semaphores into
* account! If a job resumes after being suspended due to acquiring
* a semaphore, it should never be treated as a new job release.
*/
if (get_rt_flags(task) == RT_F_EXIT_SEM) {
set_rt_flags(task, RT_F_RUNNING);
} else {
now = litmus_clock();
if (is_tardy(task, now)) {
/* new sporadic release */
release_at(task, now);
sched_trace_task_release(task);
}
else {
if (task->rt.time_slice) {
/* came back in time before deadline
*/
set_rt_flags(task, RT_F_RUNNING);
}
}
}
mcrit_job_arrival(task);
raw_spin_unlock_irqrestore(&mcrit_lock, flags);
}
static void mcrit_task_block(struct task_struct *t)
{
unsigned long flags;
TRACE_TASK(t, "block at %llu\n", litmus_clock());
/* unlink if necessary */
raw_spin_lock_irqsave(&mcrit_lock, flags);
unlink(t);
raw_spin_unlock_irqrestore(&mcrit_lock, flags);
BUG_ON(!is_realtime(t));
}
static void mcrit_task_exit(struct task_struct * t)
{
unsigned long flags;
/* unlink if necessary */
raw_spin_lock_irqsave(&mcrit_lock, flags);
unlink(t);
if (tsk_rt(t)->scheduled_on != NO_CPU) {
mcrit_cpus[tsk_rt(t)->scheduled_on]->scheduled = NULL;
tsk_rt(t)->scheduled_on = NO_CPU;
}
raw_spin_unlock_irqrestore(&mcrit_lock, flags);
BUG_ON(!is_realtime(t));
TRACE_TASK(t, "RIP\n");
}
#ifdef CONFIG_FMLP
/* Update the queue position of a task that got it's priority boosted via
* priority inheritance. */
static void update_queue_position(struct task_struct *holder)
{
/* We don't know whether holder is in the ready queue. It should, but
* on a budget overrun it may already be in a release queue. Hence,
* calling unlink() is not possible since it assumes that the task is
* not in a release queue. However, we can safely check whether
* sem->holder is currently in a queue or scheduled after locking both
* the release and the ready queue lock. */
/* Assumption: caller holds mcrit_lock */
int check_preempt = 0;
if (tsk_rt(holder)->linked_on != NO_CPU) {
TRACE_TASK(holder, "%s: linked on %d\n",
__FUNCTION__, tsk_rt(holder)->linked_on);
/* Holder is scheduled; need to re-order CPUs.
* We can't use heap_decrease() here since
* the cpu_heap is ordered in reverse direction, so
* it is actually an increase. */
bheap_delete(cpu_lower_prio, &mcrit_cpu_heap,
mcrit_cpus[tsk_rt(holder)->linked_on]->hn);
bheap_insert(cpu_lower_prio, &mcrit_cpu_heap,
mcrit_cpus[tsk_rt(holder)->linked_on]->hn);
} else {
/* holder may be queued: first stop queue changes */
raw_spin_lock(&mcrit.release_lock);
if (is_queued(holder)) {
TRACE_TASK(holder, "%s: is queued\n",
__FUNCTION__);
/* We need to update the position
* of holder in some heap. Note that this
* may be a release heap. */
check_preempt =
!bheap_decrease(edf_ready_order,
tsk_rt(holder)->heap_node);
} else {
/* Nothing to do: if it is not queued and not linked
* then it is currently being moved by other code
* (e.g., a timer interrupt handler) that will use the
* correct priority when enqueuing the task. */
TRACE_TASK(holder, "%s: is NOT queued => Done.\n",
__FUNCTION__);
}
raw_spin_unlock(&mcrit.release_lock);
/* If holder was enqueued in a release heap, then the following
* preemption check is pointless, but we can't easily detect
* that case. If you want to fix this, then consider that
* simply adding a state flag requires O(n) time to update when
* releasing n tasks, which conflicts with the goal to have
* O(log n) merges. */
if (check_preempt) {
/* heap_decrease() hit the top level of the heap: make
* sure preemption checks get the right task, not the
* potentially stale cache. */
bheap_uncache_min(edf_ready_order,
&mcrit.ready_queue);
check_for_preemptions();
}
}
}
static long mcrit_pi_block(struct pi_semaphore *sem,
struct task_struct *new_waiter)
{
/* This callback has to handle the situation where a new waiter is
* added to the wait queue of the semaphore.
*
* We must check if has a higher priority than the currently
* highest-priority task, and then potentially reschedule.
*/
BUG_ON(!new_waiter);
if (edf_higher_prio(new_waiter, sem->hp.task)) {
TRACE_TASK(new_waiter, " boosts priority via %p\n", sem);
/* called with IRQs disabled */
raw_spin_lock(&mcrit_lock);
/* store new highest-priority task */
sem->hp.task = new_waiter;
if (sem->holder) {
TRACE_TASK(sem->holder,
" holds %p and will inherit from %s/%d\n",
sem,
new_waiter->comm, new_waiter->pid);
/* let holder inherit */
sem->holder->rt_param.inh_task = new_waiter;
update_queue_position(sem->holder);
}
raw_spin_unlock(&mcrit_lock);
}
return 0;
}
static long mcrit_inherit_priority(struct pi_semaphore *sem,
struct task_struct *new_owner)
{
/* We don't need to acquire the mcrit_lock since at the time of this
* call new_owner isn't actually scheduled yet (it's still sleeping)
* and since the calling function already holds sem->wait.lock, which
* prevents concurrent sem->hp.task changes.
*/
if (sem->hp.task && sem->hp.task != new_owner) {
new_owner->rt_param.inh_task = sem->hp.task;
TRACE_TASK(new_owner, "inherited priority from %s/%d\n",
sem->hp.task->comm, sem->hp.task->pid);
} else
TRACE_TASK(new_owner,
"cannot inherit priority, "
"no higher priority job waits.\n");
return 0;
}
/* This function is called on a semaphore release, and assumes that
* the current task is also the semaphore holder.
*/
static long mcrit_return_priority(struct pi_semaphore *sem)
{
struct task_struct* t = current;
int ret = 0;
/* Find new highest-priority semaphore task
* if holder task is the current hp.task.
*
* Calling function holds sem->wait.lock.
*/
if (t == sem->hp.task)
edf_set_hp_task(sem);
TRACE_CUR("mcrit_return_priority for lock %p\n", sem);
if (t->rt_param.inh_task) {
/* interrupts already disabled by PI code */
raw_spin_lock(&mcrit_lock);
/* Reset inh_task to NULL. */
t->rt_param.inh_task = NULL;
/* Check if rescheduling is necessary */
unlink(t);
mcrit_job_arrival(t);
raw_spin_unlock(&mcrit_lock);
}
return ret;
}
#endif
static long mcrit_admit_task(struct task_struct* tsk)
{
return 0;
}
static long mcrit_activate_plugin(void)
{
int cpu;
cpu_entry_t *entry;
bheap_init(&mcrit_cpu_heap);
#ifdef CONFIG_RELEASE_MASTER
mcrit.release_master = atomic_read(&release_master_cpu);
#endif
for_each_online_cpu(cpu) {
entry = &per_cpu(mcrit_cpu_entries, cpu);
bheap_node_init(&entry->hn, entry);
atomic_set(&entry->will_schedule, 0);
entry->linked = NULL;
entry->scheduled = NULL;
#ifdef CONFIG_RELEASE_MASTER
if (cpu != mcrit.release_master) {
#endif
TRACE("GSN-EDF: Initializing CPU #%d.\n", cpu);
update_cpu_position(entry);
#ifdef CONFIG_RELEASE_MASTER
} else {
TRACE("GSN-EDF: CPU %d is release master.\n", cpu);
}
#endif
}
return 0;
}
/* Plugin object */
static struct sched_plugin m_crit_plugin __cacheline_aligned_in_smp = {
.plugin_name = "MCRIT",
.finish_switch = mcrit_finish_switch,
.tick = mcrit_tick,
.task_new = mcrit_task_new,
.complete_job = complete_job,
.task_exit = mcrit_task_exit,
.schedule = mcrit_schedule,
.task_wake_up = mcrit_task_wake_up,
.task_block = mcrit_task_block,
#ifdef CONFIG_FMLP
.fmlp_active = 1,
.pi_block = mcrit_pi_block,
.inherit_priority = mcrit_inherit_priority,
.return_priority = mcrit_return_priority,
#endif
.admit_task = mcrit_admit_task,
.activate_plugin = mcrit_activate_plugin,
};
static int __init init_m_crit(void)
{
int cpu;
cpu_entry_t *entry;
bheap_init(&mcrit_cpu_heap);
/* initialize CPU state */
for (cpu = 0; cpu < NR_CPUS; cpu++) {
entry = &per_cpu(mcrit_cpu_entries, cpu);
mcrit_cpus[cpu] = entry;
atomic_set(&entry->will_schedule, 0);
entry->cpu = cpu;
entry->hn = &mcrit_heap_node[cpu];
bheap_node_init(&entry->hn, entry);
}
edf_domain_init(&mcrit, NULL, mcrit_release_jobs);
return register_sched_plugin(&m_crit_plugin);
}
module_init(init_m_crit);
|