1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
|
/**
* litmus/sched_mc_ce.c
*
* The Cyclic Executive (CE) scheduler used by the mixed criticality scheduling
* algorithm.
*/
#include <asm/atomic.h>
#include <asm/uaccess.h>
#include <linux/module.h>
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/pid.h>
#include <linux/sched.h>
#include <linux/proc_fs.h>
#include <litmus/litmus.h>
#include <litmus/sched_plugin.h>
#include <litmus/rt_domain.h>
#include <litmus/rt_param.h>
#include <litmus/litmus_proc.h>
#include <litmus/sched_trace.h>
#include <litmus/jobs.h>
#include <litmus/sched_mc.h>
#include <litmus/ce_domain.h>
static struct sched_plugin mc_ce_plugin __cacheline_aligned_in_smp;
#define is_active_plugin() (litmus == &mc_ce_plugin)
#define get_ce_data(dom_data_ref) (dom_data_ref->domain.data)
static atomic_t start_time_set = ATOMIC_INIT(-1);
static atomic64_t start_time = ATOMIC64_INIT(0);
static struct proc_dir_entry *mc_ce_dir = NULL, *ce_file = NULL;
DEFINE_PER_CPU(domain_data_t, mc_ce_doms);
DEFINE_PER_CPU(struct ce_dom_data, _mc_ce_dom_data);
DEFINE_PER_CPU(raw_spinlock_t, _dom_locks);
/* Return the address of the domain_t for this CPU, used by the
* mixed-criticality plugin. */
domain_data_t *ce_domain_for(int cpu)
{
return &per_cpu(mc_ce_doms, cpu);
}
/*
* Get the offset into the cycle taking the start time into account.
*/
static inline lt_t get_cycle_offset(const lt_t when, const lt_t cycle_time)
{
long long st = atomic64_read(&start_time);
lt_t offset = (when - st) % cycle_time;
TRACE("when: %llu cycle_time: %llu start_time: %lld offset %llu\n",
when, cycle_time, st, offset);
return offset;
}
/*
* The user land job completion call will set the RT_F_SLEEP flag and then
* call schedule. This function is used when schedule sleeps a task.
*
* Do not call prepare_for_next_period on Level-A tasks!
*/
static void mc_ce_job_completion(struct task_struct *ts)
{
const domain_data_t *dom_data = &per_cpu(mc_ce_doms, smp_processor_id());
const struct ce_dom_data *ce_data = get_ce_data(dom_data);
const int idx = tsk_mc_data(ts)->mc_task.lvl_a_id;
const struct ce_dom_pid_entry *pid_entry =
&ce_data->pid_entries[idx];
int just_finished;
TRACE_TASK(ts, "completed\n");
sched_trace_task_completion(ts, 0);
/* post-increment is important here */
just_finished = (tsk_rt(ts)->job_params.job_no)++;
/* Job completes in expected window: everything is normal.
* Job completes in an earlier window: BUG(), that's wrong.
* Job completes in a later window: The job is behind.
*/
if (just_finished < pid_entry->expected_job) {
/* this job is already released because it's running behind */
set_rt_flags(ts, RT_F_RUNNING);
TRACE_TASK(ts, "appears behind: the expected job is %d but "
"job %d just completed\n",
pid_entry->expected_job, just_finished);
} else if (pid_entry->expected_job < just_finished) {
printk(KERN_CRIT "job %d completed in expected job %d which "
"seems too early\n", just_finished,
pid_entry->expected_job);
BUG();
}
}
/*
* Return the index into the PID entries table of what to schedule next.
* Don't call if the table is empty. Assumes the caller has the domain lock.
* The offset parameter is the offset into the cycle.
*
* TODO Currently O(n) in the number of tasks on the CPU. Binary search?
*/
static int mc_ce_schedule_at(const domain_t *dom, lt_t offset)
{
const struct ce_dom_data *ce_data = dom->data;
const struct ce_dom_pid_entry *pid_entry = NULL;
int i;
BUG_ON(ce_data->cycle_time < 1);
BUG_ON(ce_data->num_pid_entries < 1);
for (i = 0; i < ce_data->num_pid_entries; ++i) {
pid_entry = &ce_data->pid_entries[i];
if (offset < pid_entry->acc_time) {
/* found task to schedule in this window */
break;
}
}
/* can only happen if cycle_time is not right */
BUG_ON(pid_entry->acc_time > ce_data->cycle_time);
TRACE("schedule at returned task %d for CPU %d\n", i, ce_data->cpu);
return i;
}
static struct task_struct *mc_ce_schedule(struct task_struct *prev)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, smp_processor_id());
domain_t *dom = &dom_data->domain;
struct ce_dom_data *ce_data = get_ce_data(dom_data);
struct task_struct *next = NULL;
int exists, sleep, should_sched_exists, should_sched_blocked,
should_sched_asleep;
raw_spin_lock(dom->lock);
/* sanity checking */
BUG_ON(ce_data->scheduled && ce_data->scheduled != prev);
BUG_ON(ce_data->scheduled && !is_realtime(prev));
BUG_ON(is_realtime(prev) && !ce_data->scheduled);
exists = NULL != ce_data->scheduled;
sleep = exists && RT_F_SLEEP == get_rt_flags(ce_data->scheduled);
TRACE("exists: %d, sleep: %d\n", exists, sleep);
if (sleep)
mc_ce_job_completion(ce_data->scheduled);
/* these checks must go after the call to mc_ce_job_completion in case
* a late task needs to be scheduled again right away and its the only
* task on a core
*/
should_sched_exists = NULL != ce_data->should_schedule;
should_sched_blocked = should_sched_exists &&
!is_running(ce_data->should_schedule);
should_sched_asleep = should_sched_exists &&
RT_F_SLEEP == get_rt_flags(ce_data->should_schedule);
TRACE("should_sched_exists: %d, should_sched_blocked: %d, "
"should_sched_asleep: %d\n", should_sched_exists,
should_sched_blocked, should_sched_asleep);
if (should_sched_exists && !should_sched_blocked &&
!should_sched_asleep) {
/*
* schedule the task that should be executing in the cyclic
* schedule if it is not blocked and not sleeping
*/
next = ce_data->should_schedule;
}
sched_state_task_picked();
raw_spin_unlock(dom->lock);
return next;
}
static void mc_ce_finish_switch(struct task_struct *prev)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, smp_processor_id());
struct ce_dom_data *ce_data = get_ce_data(dom_data);
TRACE("finish switch\n");
if (is_realtime(current) && CRIT_LEVEL_A == tsk_mc_crit(current))
ce_data->scheduled = current;
else
ce_data->scheduled = NULL;
}
/*
* Admit task called to see if this task is permitted to enter the system.
* Here we look up the task's PID structure and save it in the proper slot on
* the CPU this task will run on.
*/
long __mc_ce_admit_task(struct task_struct *ts)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, get_partition(ts));
struct ce_dom_data *ce_data = get_ce_data(dom_data);
struct mc_data *mcd = tsk_mc_data(ts);
struct pid *pid = NULL;
long retval = -EINVAL;
const int lvl_a_id = mcd->mc_task.lvl_a_id;
/* check the task has migrated to the right CPU (like in sched_cedf) */
if (task_cpu(ts) != get_partition(ts)) {
printk(KERN_INFO "litmus: %d admitted on CPU %d but want %d ",
ts->pid, task_cpu(ts), get_partition(ts));
goto out;
}
/* only level A tasks can be CE */
if (!mcd || CRIT_LEVEL_A != tsk_mc_crit(ts)) {
printk(KERN_INFO "litmus: non-MC or non level A task %d\n",
ts->pid);
goto out;
}
/* try and get the task's PID structure */
pid = get_task_pid(ts, PIDTYPE_PID);
if (IS_ERR_OR_NULL(pid)) {
printk(KERN_INFO "litmus: couldn't get pid struct for %d\n",
ts->pid);
goto out;
}
if (lvl_a_id >= ce_data->num_pid_entries) {
printk(KERN_INFO "litmus: level A id greater than expected "
"number of tasks %d for %d cpu %d\n",
ce_data->num_pid_entries, ts->pid,
get_partition(ts));
goto out_put_pid;
}
if (ce_data->pid_entries[lvl_a_id].pid) {
printk(KERN_INFO "litmus: have saved pid info id: %d cpu: %d\n",
lvl_a_id, get_partition(ts));
goto out_put_pid;
}
if (get_exec_cost(ts) >= ce_data->pid_entries[lvl_a_id].budget) {
printk(KERN_INFO "litmus: execution cost %llu is larger than "
"the budget %llu\n",
get_exec_cost(ts),
ce_data->pid_entries[lvl_a_id].budget);
goto out_put_pid;
}
ce_data->pid_entries[lvl_a_id].pid = pid;
retval = 0;
/* don't call put_pid if we are successful */
goto out;
out_put_pid:
put_pid(pid);
out:
return retval;
}
static long mc_ce_admit_task(struct task_struct *ts)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, get_partition(ts));
domain_t *dom = &dom_data->domain;
unsigned long flags, retval;
raw_spin_lock_irqsave(dom->lock, flags);
retval = __mc_ce_admit_task(ts);
raw_spin_unlock_irqrestore(dom->lock, flags);
return retval;
}
/*
* Called to set up a new real-time task (after the admit_task callback).
* At this point the task's struct PID is already hooked up on the destination
* CPU. The task may already be running.
*/
static void mc_ce_task_new(struct task_struct *ts, int on_rq, int running)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, task_cpu(ts));
domain_t *dom = &dom_data->domain;
struct ce_dom_data *ce_data = get_ce_data(dom_data);
struct pid *pid_should_be_running;
struct ce_dom_pid_entry *pid_entry;
unsigned long flags;
int idx, should_be_running;
lt_t offset;
/* have to call mc_ce_schedule_at because the task only gets a PID
* entry after calling admit_task */
raw_spin_lock_irqsave(dom->lock, flags);
pid_entry = &ce_data->pid_entries[tsk_mc_data(ts)->mc_task.lvl_a_id];
/* initialize some task state */
set_rt_flags(ts, RT_F_RUNNING);
tsk_rt(ts)->job_params.job_no = 1;
offset = get_cycle_offset(litmus_clock(), ce_data->cycle_time);
idx = mc_ce_schedule_at(dom, offset);
pid_should_be_running = ce_data->pid_entries[idx].pid;
rcu_read_lock();
should_be_running = (ts == pid_task(pid_should_be_running, PIDTYPE_PID));
rcu_read_unlock();
if (running) {
/* admit task checks that the task is not on the wrong CPU */
BUG_ON(task_cpu(ts) != get_partition(ts));
BUG_ON(ce_data->scheduled);
ce_data->scheduled = ts;
if (should_be_running)
ce_data->should_schedule = ts;
else
preempt_if_preemptable(ce_data->scheduled, ce_data->cpu);
} else if (!running && should_be_running) {
ce_data->should_schedule = ts;
preempt_if_preemptable(ce_data->scheduled, ce_data->cpu);
}
raw_spin_unlock_irqrestore(dom->lock, flags);
}
/*
* Called to re-introduce a task after blocking.
* Can potentailly be called multiple times.
*/
static void mc_ce_task_wake_up(struct task_struct *ts)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, smp_processor_id());
domain_t *dom = &dom_data->domain;
struct ce_dom_data *ce_data = get_ce_data(dom_data);
unsigned long flags;
TRACE_TASK(ts, "wake up\n");
raw_spin_lock_irqsave(dom->lock, flags);
if (ts == ce_data->should_schedule && ts != ce_data->scheduled)
preempt_if_preemptable(ts, ce_data->cpu);
raw_spin_unlock_irqrestore(dom->lock, flags);
}
/*
* Called to notify the plugin of a blocking real-time tasks. Only called for
* real-time tasks and before schedule is called.
*/
static void mc_ce_task_block(struct task_struct *ts)
{
/* nothing to do because it will be taken care of in schedule */
TRACE_TASK(ts, "blocked\n");
}
/*
* Called when a task switches from RT mode back to normal mode.
*/
void mc_ce_task_exit(struct task_struct *ts)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, get_partition(ts));
domain_t *dom = &dom_data->domain;
struct ce_dom_data *ce_data = get_ce_data(dom_data);
unsigned long flags;
struct pid *pid;
const int lvl_a_id = tsk_mc_data(ts)->mc_task.lvl_a_id;
TRACE_TASK(ts, "exited\n");
BUG_ON(task_cpu(ts) != get_partition(ts));
BUG_ON(CRIT_LEVEL_A != tsk_mc_crit(ts));
BUG_ON(lvl_a_id >= ce_data->num_pid_entries);
raw_spin_lock_irqsave(dom->lock, flags);
pid = ce_data->pid_entries[lvl_a_id].pid;
BUG_ON(!pid);
put_pid(pid);
ce_data->pid_entries[lvl_a_id].pid = NULL;
if (ce_data->scheduled == ts)
ce_data->scheduled = NULL;
if (ce_data->should_schedule == ts)
ce_data->should_schedule = NULL;
raw_spin_unlock_irqrestore(dom->lock, flags);
}
/***********************************************************
* Timer stuff
**********************************************************/
void __mc_ce_timer_callback(struct hrtimer *timer)
{
/* relative and absolute times for cycles */
lt_t now, offset_rel, cycle_start_abs, next_timer_abs;
struct task_struct *should_schedule;
struct ce_dom_pid_entry *pid_entry;
struct ce_dom_data *ce_data;
domain_data_t *dom_data;
domain_t *dom;
int idx, budget_overrun;
ce_data = container_of(timer, struct ce_dom_data, timer);
dom_data = &per_cpu(mc_ce_doms, ce_data->cpu);
dom = &dom_data->domain;
/* Based off of the current time, figure out the offset into the cycle
* and the cycle's start time, and determine what should be scheduled.
*/
now = litmus_clock();
offset_rel = get_cycle_offset(now, ce_data->cycle_time);
cycle_start_abs = now - offset_rel;
idx = mc_ce_schedule_at(dom, offset_rel);
pid_entry = &ce_data->pid_entries[idx];
/* set the timer to fire at the next cycle start */
next_timer_abs = cycle_start_abs + pid_entry->acc_time;
hrtimer_set_expires(timer, ns_to_ktime(next_timer_abs));
TRACE("timer: now: %llu offset_rel: %llu cycle_start_abs: %llu "
"next_timer_abs: %llu\n", now, offset_rel,
cycle_start_abs, next_timer_abs);
/* get the task_struct (pid_task can accept a NULL) */
rcu_read_lock();
should_schedule = pid_task(pid_entry->pid, PIDTYPE_PID);
rcu_read_unlock();
ce_data->should_schedule = should_schedule;
if (should_schedule && 0 == atomic_read(&start_time_set)) {
/*
* If jobs are not overrunning their budgets, then this
* should not happen.
*/
pid_entry->expected_job++;
budget_overrun = pid_entry->expected_job !=
tsk_rt(should_schedule)->job_params.job_no;
if (budget_overrun)
TRACE_TASK(should_schedule, "timer expected job number: %d "
"but current job: %d\n",
pid_entry->expected_job,
tsk_rt(should_schedule)->job_params.job_no);
}
if (ce_data->should_schedule) {
tsk_rt(should_schedule)->job_params.deadline =
cycle_start_abs + pid_entry->acc_time;
tsk_rt(should_schedule)->job_params.release =
tsk_rt(should_schedule)->job_params.deadline -
pid_entry->budget;
tsk_rt(should_schedule)->job_params.exec_time = 0;
sched_trace_task_release(should_schedule);
set_rt_flags(ce_data->should_schedule, RT_F_RUNNING);
}
}
/*
* What to do when a timer fires. The timer should only be armed if the number
* of PID entries is positive.
*/
static enum hrtimer_restart mc_ce_timer_callback(struct hrtimer *timer)
{
struct ce_dom_data *ce_data;
unsigned long flags;
domain_data_t *dom_data;
domain_t *dom;
ce_data = container_of(timer, struct ce_dom_data, timer);
dom_data = &per_cpu(mc_ce_doms, ce_data->cpu);
dom = &dom_data->domain;
TRACE("timer callback on CPU %d (before lock)\n", ce_data->cpu);
raw_spin_lock_irqsave(dom->lock, flags);
__mc_ce_timer_callback(timer);
if (ce_data->scheduled != ce_data->should_schedule)
preempt_if_preemptable(ce_data->scheduled, ce_data->cpu);
raw_spin_unlock_irqrestore(dom->lock, flags);
return HRTIMER_RESTART;
}
/*
* Cancel timers on all CPUs. Returns 1 if any were active.
*/
static int cancel_all_timers(void)
{
struct ce_dom_data *ce_data;
domain_data_t *dom_data;
int cpu, ret = 0, cancel_res;
TRACE("cancel all timers\n");
for_each_online_cpu(cpu) {
dom_data = &per_cpu(mc_ce_doms, cpu);
ce_data = get_ce_data(dom_data);
ce_data->should_schedule = NULL;
cancel_res = hrtimer_cancel(&ce_data->timer);
atomic_set(&ce_data->timer_info.state,
HRTIMER_START_ON_INACTIVE);
ret = ret || cancel_res;
}
return ret;
}
/*
* Arm all timers so that they start at the new value of start time.
* Any CPU without CE PID entries won't have a timer armed.
* All timers should be canceled before calling this.
*/
static void arm_all_timers(void)
{
struct ce_dom_data *ce_data;
domain_data_t *dom_data;
int cpu, idx;
const lt_t start = atomic64_read(&start_time);
TRACE("arm all timers\n");
for_each_online_cpu(cpu) {
dom_data = &per_cpu(mc_ce_doms, cpu);
ce_data = get_ce_data(dom_data);
if (0 == ce_data->num_pid_entries)
continue;
for (idx = 0; idx < ce_data->num_pid_entries; idx++) {
ce_data->pid_entries[idx].expected_job = 0;
}
TRACE("arming timer for CPU %d\n", cpu);
hrtimer_start_on(cpu, &ce_data->timer_info, &ce_data->timer,
ns_to_ktime(start), HRTIMER_MODE_ABS_PINNED);
}
}
/*
* There are no real releases in the CE, but the task release syscall will
* call this. We can re-set our notion of the CE period start to make
* the schedule look pretty.
*/
void mc_ce_release_at(struct task_struct *ts, lt_t start)
{
TRACE_TASK(ts, "release at\n");
if (atomic_inc_and_test(&start_time_set)) {
/* in this case, we won the race */
cancel_all_timers();
atomic64_set(&start_time, start);
arm_all_timers();
} else
atomic_dec(&start_time_set);
}
long mc_ce_activate_plugin(void)
{
struct ce_dom_data *ce_data;
domain_data_t *dom_data;
int cpu;
for_each_online_cpu(cpu) {
dom_data = &per_cpu(mc_ce_doms, cpu);
ce_data = get_ce_data(dom_data);
ce_data->scheduled = NULL;
ce_data->should_schedule = NULL;
}
atomic_set(&start_time_set, -1);
atomic64_set(&start_time, litmus_clock());
/* may not want to arm timers on activation, just after release */
arm_all_timers();
return 0;
}
static void clear_pid_entries(void)
{
int cpu, entry;
domain_data_t *dom_data;
struct ce_dom_data *ce_data;
for_each_online_cpu(cpu) {
dom_data = &per_cpu(mc_ce_doms, cpu);
ce_data = get_ce_data(dom_data);
ce_data->num_pid_entries = 0;
ce_data->cycle_time = 0;
for (entry = 0; entry < CONFIG_PLUGIN_MC_LEVEL_A_MAX_TASKS;
++entry) {
if (NULL != ce_data->pid_entries[entry].pid) {
put_pid(ce_data->pid_entries[entry].pid);
ce_data->pid_entries[entry].pid = NULL;
}
ce_data->pid_entries[entry].budget = 0;
ce_data->pid_entries[entry].acc_time = 0;
ce_data->pid_entries[entry].expected_job = 0;
}
}
}
long mc_ce_deactivate_plugin(void)
{
cancel_all_timers();
return 0;
}
/* Plugin object */
static struct sched_plugin mc_ce_plugin __cacheline_aligned_in_smp = {
.plugin_name = "MC-CE",
.admit_task = mc_ce_admit_task,
.task_new = mc_ce_task_new,
.complete_job = complete_job,
.release_at = mc_ce_release_at,
.task_exit = mc_ce_task_exit,
.schedule = mc_ce_schedule,
.finish_switch = mc_ce_finish_switch,
.task_wake_up = mc_ce_task_wake_up,
.task_block = mc_ce_task_block,
.activate_plugin = mc_ce_activate_plugin,
.deactivate_plugin = mc_ce_deactivate_plugin,
};
int mc_preempt_needed(domain_t*, struct task_struct*);
static int setup_proc(void);
static int __init init_sched_mc_ce(void)
{
struct ce_dom_data *ce_data;
raw_spinlock_t *ce_lock;
domain_data_t *dom_data;
domain_t *dom;
int cpu, err;
for_each_online_cpu(cpu) {
ce_lock = &per_cpu(_dom_locks, cpu);
raw_spin_lock_init(ce_lock);
dom_data = &per_cpu(mc_ce_doms, cpu);
dom = &dom_data->domain;
/* initialize the domain. the ce_ functions are for the MC
* plugin */
/* move into ce_domain_init */
domain_init(dom, ce_lock, ce_requeue, ce_peek_and_take_ready,
ce_peek_and_take_ready, mc_preempt_needed,
ce_higher_prio);
dom->data = &per_cpu(_mc_ce_dom_data, cpu);
ce_data = get_ce_data(dom_data);
hrtimer_init(&ce_data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
hrtimer_start_on_info_init(&ce_data->timer_info);
ce_data->cpu = cpu;
ce_data->timer.function = mc_ce_timer_callback;
}
clear_pid_entries();
err = setup_proc();
if (!err)
err = register_sched_plugin(&mc_ce_plugin);
return err;
}
#define BUF_SIZE PAGE_SIZE
static int write_into_proc(char *proc_buf, const int proc_size, char *fmt, ...)
{
static char buf[BUF_SIZE];
int n;
va_list args;
/* When writing to procfs, we don't care about the trailing null that
* is not included in the count returned by vscnprintf.
*/
va_start(args, fmt);
n = vsnprintf(buf, BUF_SIZE, fmt, args);
va_end(args);
if (BUF_SIZE <= n || proc_size <= n) {
/* too big for formatting buffer or proc (less null byte) */
n = -EINVAL;
goto out;
}
memcpy(proc_buf, buf, n);
out:
return n;
}
#undef BUF_SIZE
/*
* Writes a PID entry to the procfs.
*
* @page buffer to write into.
* @count bytes available in the buffer
*/
#define PID_SPACE 15
#define TASK_INFO_BUF (PID_SPACE + TASK_COMM_LEN)
static int write_pid_entry(char *page, const int count, const int cpu,
const int task, struct ce_dom_pid_entry *pid_entry)
{
static char task_info[TASK_INFO_BUF];
struct task_struct *ts;
int n = 0, err, ti_n;
char *ti_b;
if (pid_entry->pid) {
rcu_read_lock();
ts = pid_task(pid_entry->pid, PIDTYPE_PID);
rcu_read_unlock();
/* get some information about the task */
if (ts) {
ti_b = task_info;
ti_n = snprintf(ti_b, PID_SPACE, "%d", ts->pid);
if (PID_SPACE <= ti_n)
ti_n = PID_SPACE - 1;
ti_b += ti_n;
*ti_b = ' '; /* nuke the null byte */
ti_b++;
get_task_comm(ti_b, ts);
} else {
strncpy(task_info, "pid_task() failed :(",
TASK_INFO_BUF);
}
} else
strncpy(task_info, "no", TASK_INFO_BUF);
task_info[TASK_INFO_BUF - 1] = '\0'; /* just to be sure */
err = write_into_proc(page + n, count - n, "# task: %s\n", task_info);
if (err < 0) {
n = -ENOSPC;
goto out;
}
n += err;
err = write_into_proc(page + n, count - n, "%d, %d, %llu\n",
cpu, task, pid_entry->budget);
if (err < 0) {
n = -ENOSPC;
goto out;
}
n += err;
out:
return n;
}
#undef PID_SPACE
#undef TASK_INFO_BUF
/*
* Called when the user-land reads from proc.
*/
static int proc_read_ce_file(char *page, char **start, off_t off, int count,
int *eof, void *data)
{
int n = 0, err, cpu, t;
struct ce_dom_data *ce_data;
domain_data_t *dom_data;
if (off > 0) {
printk(KERN_INFO "litmus: MC-CE called read with off > 0\n");
goto out;
}
for_each_online_cpu(cpu) {
dom_data = &per_cpu(mc_ce_doms, cpu);
ce_data = get_ce_data(dom_data);
for (t = 0; t < ce_data->num_pid_entries; ++t) {
err = write_pid_entry(page + n, count - n,
cpu, t, &ce_data->pid_entries[t]);
if (err < 0) {
n = -ENOSPC;
goto out;
}
n += err;
}
}
out:
*eof = 1;
return n;
}
/*
* Skip a commented line.
*/
static int skip_comment(const char *buf, const unsigned long max)
{
unsigned long i = 0;
const char *c = buf;
if (0 == max || !c || *c != '#')
return 0;
++c; ++i;
for (; i < max; ++i) {
if (*c == '\n') {
++c; ++i;
break;
}
++c;
}
return i;
}
/* a budget of 5 milliseconds is probably reasonable */
#define BUDGET_THRESHOLD 5000000ULL
static int setup_pid_entry(const int cpu, const int task, const lt_t budget)
{
domain_data_t *dom_data = &per_cpu(mc_ce_doms, cpu);
struct ce_dom_data *ce_data = get_ce_data(dom_data);
struct ce_dom_pid_entry *new_entry;
int err = 0;
/* check the inputs */
if (cpu < 0 || NR_CPUS <= cpu || task < 0 ||
CONFIG_PLUGIN_MC_LEVEL_A_MAX_TASKS <= task ||
budget < 1) {
printk(KERN_INFO "litmus: bad cpu, task ID, or budget sent to "
"MC-CE proc\n");
err = -EINVAL;
goto out;
}
/* check for small budgets */
if (BUDGET_THRESHOLD > budget) {
printk(KERN_CRIT "litmus: you gave a small budget for an "
"MC-CE task; that might be an issue.\n");
}
/* check that we have space for a new entry */
if (CONFIG_PLUGIN_MC_LEVEL_A_MAX_TASKS <= ce_data->num_pid_entries) {
printk(KERN_INFO "litmus: too many MC-CE tasks for cpu "
"%d\n", cpu);
err = -EINVAL;
goto out;
}
/* add the new entry */
new_entry = &ce_data->pid_entries[ce_data->num_pid_entries];
BUG_ON(NULL != new_entry->pid);
new_entry->budget = budget;
new_entry->acc_time = ce_data->cycle_time + budget;
/* update the domain entry */
ce_data->cycle_time += budget;
ce_data->num_pid_entries++;
out:
return err;
}
#undef BUDGET_THRESHOLD
/*
* Called when the user-land writes to proc.
*
* Error checking is quite minimal. Format is:
* <cpu>, <process ID>, <budget>
*/
#define PROCFS_MAX_SIZE PAGE_SIZE
static int proc_write_ce_file(struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
static char kbuf[PROCFS_MAX_SIZE];
char *c = kbuf, *c_skipped;
int cpu, task, cnt = 0, chars_read, converted, err;
lt_t budget;
if (is_active_plugin()) {
printk(KERN_INFO "litmus: can't edit MC-CE proc when plugin "
"active\n");
cnt = -EINVAL;
goto out;
}
if (count > PROCFS_MAX_SIZE) {
printk(KERN_INFO "litmus: MC-CE procfs got too many bytes "
"from user-space.\n");
cnt = -EINVAL;
goto out;
}
if (copy_from_user(kbuf, buffer, count)) {
printk(KERN_INFO "litmus: couldn't copy from user %s\n",
__FUNCTION__);
cnt = -EFAULT;
goto out;
}
clear_pid_entries();
while (cnt < count) {
c_skipped = skip_spaces(c);
if (c_skipped != c) {
chars_read = c_skipped - c;
cnt += chars_read;
c += chars_read;
continue;
}
if (*c == '#') {
chars_read = skip_comment(c, count - cnt);
cnt += chars_read;
c += chars_read;
continue;
}
converted = sscanf(c, "%d, %d, %llu%n", &cpu, &task, &budget,
&chars_read);
if (3 != converted) {
printk(KERN_INFO "litmus: MC-CE procfs expected three "
"arguments, but got %d.\n", converted);
cnt = -EINVAL;
goto out;
}
cnt += chars_read;
c += chars_read;
err = setup_pid_entry(cpu, task, budget);
if (err) {
cnt = -EINVAL;
goto out;
}
}
out:
return cnt;
}
#undef PROCFS_MAX_SIZE
#define CE_FILE_PROC_NAME "ce_file"
static void tear_down_proc(void)
{
if (ce_file)
remove_proc_entry(CE_FILE_PROC_NAME, mc_ce_dir);
if (mc_ce_dir)
remove_plugin_proc_dir(&mc_ce_plugin);
}
static int setup_proc(void)
{
int err;
err = make_plugin_proc_dir(&mc_ce_plugin, &mc_ce_dir);
if (err) {
printk(KERN_ERR "could not create MC-CE procfs dir.\n");
goto out;
}
ce_file = create_proc_entry(CE_FILE_PROC_NAME, 0644, mc_ce_dir);
if (!ce_file) {
printk(KERN_ERR "could not create MC-CE procfs file.\n");
err = -EIO;
goto out_remove_proc;
}
ce_file->read_proc = proc_read_ce_file;
ce_file->write_proc = proc_write_ce_file;
goto out;
out_remove_proc:
tear_down_proc();
out:
return err;
}
#undef CE_FILE_PROC_NAME
static void clean_sched_mc_ce(void)
{
tear_down_proc();
}
module_init(init_sched_mc_ce);
module_exit(clean_sched_mc_ce);
|