1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
|
/* EDF-WM: based on PSN-EDF.
*/
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <litmus/litmus.h>
#include <litmus/jobs.h>
#include <litmus/sched_plugin.h>
#include <litmus/edf_common.h>
typedef struct {
rt_domain_t domain;
int cpu;
struct task_struct* scheduled; /* only RT tasks */
/* The enforcement timer is used to accurately police
* slice budgets. */
struct hrtimer enforcement_timer;
int timer_armed;
/*
* scheduling lock slock
* protects the domain and serializes scheduling decisions
*/
#define slock domain.ready_lock
} wm_domain_t;
DEFINE_PER_CPU(wm_domain_t, wm_domains);
#define TRACE_DOM(dom, fmt, args...) \
TRACE("(wm_domains[%d]) " fmt, (dom)->cpu, ##args)
#define local_domain (&__get_cpu_var(wm_domains))
#define remote_domain(cpu) (&per_cpu(wm_domains, cpu))
#define domain_of_task(task) (remote_domain(get_partition(task)))
#define domain_from_timer(t) (container_of((t), wm_domain_t, enforcement_timer))
static int is_sliced_task(struct task_struct* t)
{
return tsk_rt(t)->task_params.semi_part.wm.count;
}
static struct edf_wm_slice* get_last_slice(struct task_struct* t)
{
int idx = tsk_rt(t)->task_params.semi_part.wm.count - 1;
return tsk_rt(t)->task_params.semi_part.wm.slices + idx;
}
static void compute_slice_params(struct task_struct* t)
{
struct rt_param* p = tsk_rt(t);
/* Here we do a little trick to make the generic EDF code
* play well with job slices. We overwrite the job-level
* release and deadline fields with the slice-specific values
* so that we can enqueue this task in an EDF rt_domain_t
* without issue. The actual values are cached in the semi_part.wm
* structure. */
p->job_params.deadline = p->semi_part.wm.job_release +
p->semi_part.wm.slice->deadline;
p->job_params.release = p->semi_part.wm.job_release +
p->semi_part.wm.slice->offset;
/* Similarly, we play a trick on the cpu field. */
p->task_params.cpu = p->semi_part.wm.slice->cpu;
/* update the per-slice budget reference */
p->semi_part.wm.exec_time = p->job_params.exec_time;
}
static void complete_sliced_job(struct task_struct* t)
{
struct rt_param* p = tsk_rt(t);
/* We need to undo our trickery to the
* job parameters (see above). */
p->job_params.release = p->semi_part.wm.job_release;
p->job_params.deadline = p->semi_part.wm.job_deadline;
/* Ok, now let generic code do the actual work. */
prepare_for_next_period(t);
/* And finally cache the updated parameters. */
p->semi_part.wm.job_release = p->job_params.release;
p->semi_part.wm.job_deadline = p->job_params.deadline;
}
static void advance_next_slice(struct task_struct* t, int completion_signaled)
{
int idx;
struct rt_param* p = tsk_rt(t);
/* make sure this is actually a sliced job */
BUG_ON(!is_sliced_task(t));
BUG_ON(is_queued(t));
/* determine index of current slice */
idx = p->semi_part.wm.slice -
p->task_params.semi_part.wm.slices;
if (completion_signaled)
idx = 0;
else
/* increment and wrap around, if necessary */
idx = (idx + 1) % p->task_params.semi_part.wm.count;
/* point to next slice */
p->semi_part.wm.slice =
p->task_params.semi_part.wm.slices + idx;
/* Check if we need to update essential job parameters. */
if (!idx) {
/* job completion */
sched_trace_task_completion(t, !completion_signaled);
TRACE_TASK(t, "completed sliced job"
"(signaled:%d)\n", completion_signaled);
complete_sliced_job(t);
}
/* Update job parameters for new slice. */
compute_slice_params(t);
}
static lt_t slice_exec_time(struct task_struct* t)
{
struct rt_param* p = tsk_rt(t);
/* Compute how much execution time has been consumed
* since last slice advancement. */
return p->job_params.exec_time - p->semi_part.wm.exec_time;
}
static lt_t slice_budget(struct task_struct* t)
{
return tsk_rt(t)->semi_part.wm.slice->budget;
}
static int slice_budget_exhausted(struct task_struct* t)
{
return slice_exec_time(t) >= slice_budget(t);
}
/* assumes positive remainder; overflows otherwise */
static lt_t slice_budget_remaining(struct task_struct* t)
{
return slice_budget(t) - slice_exec_time(t);
}
/* assumes time_passed does not advance past the last slice */
static void fast_forward_slices(struct task_struct* t, lt_t time_passed)
{
while (time_passed &&
time_passed >= slice_budget_remaining(t)) {
/* slice completely exhausted */
time_passed -= slice_budget_remaining(t);
tsk_rt(t)->job_params.exec_time +=
slice_budget_remaining(t);
BUG_ON(!slice_budget_exhausted(t));
BUG_ON(slice_budget_remaining(t) != 0);
advance_next_slice(t, 0);
}
/* add remainder to exec cost */
tsk_rt(t)->job_params.exec_time += time_passed;
}
/* we assume the lock is being held */
static void preempt(wm_domain_t *dom)
{
TRACE_DOM(dom, "will be preempted.\n");
/* We pass NULL as the task since non-preemptive sections are not
* supported in this plugin, so per-task checks are not needed. */
preempt_if_preemptable(NULL, dom->cpu);
}
static enum hrtimer_restart on_enforcement_timeout(struct hrtimer *timer)
{
wm_domain_t *dom = domain_from_timer(timer);
unsigned long flags;
raw_spin_lock_irqsave(&dom->slock, flags);
if (likely(dom->timer_armed)) {
TRACE_DOM(dom, "enforcement timer fired.\n");
dom->timer_armed = 0;
preempt(dom);
} else
TRACE_DOM(dom, "timer fired but not armed???\n");
raw_spin_unlock_irqrestore(&dom->slock, flags);
return HRTIMER_NORESTART;
}
static void wm_domain_init(wm_domain_t* dom,
check_resched_needed_t check,
release_jobs_t release,
int cpu)
{
edf_domain_init(&dom->domain, check, release);
dom->cpu = cpu;
dom->scheduled = NULL;
dom->timer_armed = 0;
hrtimer_init(&dom->enforcement_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
dom->enforcement_timer.function = on_enforcement_timeout;
}
static void wm_requeue_remote(struct task_struct *t)
{
wm_domain_t *dom = domain_of_task(t);
set_rt_flags(t, RT_F_RUNNING);
if (is_released(t, litmus_clock()))
/* acquires necessary lock */
add_ready(&dom->domain, t);
else
/* force timer on remote CPU */
add_release_on(&dom->domain, t, get_partition(t));
}
static void wm_requeue_local(struct task_struct* t, rt_domain_t *edf)
{
if (t->state != TASK_RUNNING)
TRACE_TASK(t, "requeue: !TASK_RUNNING\n");
set_rt_flags(t, RT_F_RUNNING);
if (is_released(t, litmus_clock()))
__add_ready(edf, t);
else
add_release(edf, t); /* it has got to wait */
}
static int wm_check_resched(rt_domain_t *edf)
{
wm_domain_t *dom = container_of(edf, wm_domain_t, domain);
/* because this is a callback from rt_domain_t we already hold
* the necessary lock for the ready queue
*/
if (edf_preemption_needed(edf, dom->scheduled)) {
preempt(dom);
return 1;
} else
return 0;
}
static void regular_job_completion(struct task_struct* t, int forced)
{
sched_trace_task_completion(t, forced);
TRACE_TASK(t, "job_completion().\n");
set_rt_flags(t, RT_F_SLEEP);
prepare_for_next_period(t);
}
static void wm_job_or_slice_completion(struct task_struct* t,
int completion_signaled)
{
if (is_sliced_task(t))
advance_next_slice(t, completion_signaled);
else
regular_job_completion(t, !completion_signaled);
}
static int wm_budget_exhausted(struct task_struct* t)
{
if (is_sliced_task(t))
return slice_budget_exhausted(t);
else
return budget_exhausted(t);
}
static void wm_tick(struct task_struct *t)
{
wm_domain_t *dom = local_domain;
/* Check for inconsistency. We don't need the lock for this since
* ->scheduled is only changed in schedule, which obviously is not
* executing in parallel on this CPU
*/
BUG_ON(is_realtime(t) && t != dom->scheduled);
if (is_realtime(t) && budget_enforced(t) && wm_budget_exhausted(t)) {
set_tsk_need_resched(t);
TRACE_DOM(dom, "budget of %d exhausted in tick\n",
t->pid);
}
}
static struct task_struct* wm_schedule(struct task_struct * prev)
{
wm_domain_t *dom = local_domain;
rt_domain_t *edf = &dom->domain;
struct task_struct *next, *migrate = NULL;
int out_of_time, sleep, preempt,
exists, blocks, resched;
raw_spin_lock(&dom->slock);
/* Sanity checking:
* When a task exits (dead) dom->schedule may be null
* and prev _is_ realtime. */
BUG_ON(dom->scheduled && dom->scheduled != prev);
BUG_ON(dom->scheduled && !is_realtime(prev));
/* (0) Determine state */
exists = dom->scheduled != NULL;
blocks = exists && !is_running(dom->scheduled);
out_of_time = exists
&& budget_enforced(dom->scheduled)
&& wm_budget_exhausted(dom->scheduled);
sleep = exists && get_rt_flags(dom->scheduled) == RT_F_SLEEP;
preempt = edf_preemption_needed(edf, prev);
/* If we need to preempt do so.
* The following checks set resched to 1 in case of special
* circumstances.
*/
resched = preempt;
/* If a task blocks we have no choice but to reschedule.
*/
if (blocks)
resched = 1;
/* Any task that is preemptable and either exhausts its execution
* budget or wants to sleep completes. We may have to reschedule after
* this.
*/
if ((out_of_time || sleep) && !blocks) {
wm_job_or_slice_completion(dom->scheduled, sleep);
resched = 1;
}
/* The final scheduling decision. Do we need to switch for some reason?
* Switch if we are in RT mode and have no task or if we need to
* resched.
*/
next = NULL;
if (resched || !exists) {
if (dom->scheduled && !blocks) {
if (get_partition(dom->scheduled) == dom->cpu)
/* local task */
wm_requeue_local(dom->scheduled, edf);
else
/* not local anymore; wait until we drop the
* ready queue lock */
migrate = dom->scheduled;
}
next = __take_ready(edf);
} else
/* Only override Linux scheduler if we have a real-time task
* scheduled that needs to continue. */
if (exists)
next = prev;
if (next) {
TRACE_TASK(next, "scheduled at %llu\n", litmus_clock());
set_rt_flags(next, RT_F_RUNNING);
} else if (exists) {
TRACE("becoming idle at %llu\n", litmus_clock());
}
dom->scheduled = next;
raw_spin_unlock(&dom->slock);
/* check if we need to push the previous task onto another queue */
if (migrate) {
TRACE_TASK(migrate, "schedule-initiated migration to %d\n",
get_partition(migrate));
wm_requeue_remote(migrate);
}
return next;
}
/* Prepare a task for running in RT mode
*/
static void wm_task_new(struct task_struct * t, int on_rq, int running)
{
wm_domain_t* dom = domain_of_task(t);
rt_domain_t* edf = &dom->domain;
unsigned long flags;
TRACE_TASK(t, "edf-wm: task new, cpu = %d\n",
t->rt_param.task_params.cpu);
/* setup job parameters */
release_at(t, litmus_clock());
/* The task should be running in the queue, otherwise signal
* code will try to wake it up with fatal consequences.
*/
raw_spin_lock_irqsave(&dom->slock, flags);
if (is_sliced_task(t)) {
/* make sure parameters are initialized consistently */
tsk_rt(t)->semi_part.wm.exec_time = 0;
tsk_rt(t)->semi_part.wm.job_release = get_release(t);
tsk_rt(t)->semi_part.wm.job_deadline = get_deadline(t);
tsk_rt(t)->semi_part.wm.slice = tsk_rt(t)->task_params.semi_part.wm.slices;
tsk_rt(t)->job_params.exec_time = 0;
}
if (running) {
/* there shouldn't be anything else running at the time */
BUG_ON(dom->scheduled);
dom->scheduled = t;
} else {
wm_requeue_local(t, edf);
/* maybe we have to reschedule */
preempt(dom);
}
raw_spin_unlock_irqrestore(&dom->slock, flags);
}
static void wm_release_at(struct task_struct *t, lt_t start)
{
struct rt_param* p = tsk_rt(t);
if (is_sliced_task(t)) {
/* simulate wrapping to the first slice */
p->semi_part.wm.job_deadline = start;
p->semi_part.wm.slice = get_last_slice(t);
/* FIXME: creates bogus completion event... */
advance_next_slice(t, 0);
set_rt_flags(t, RT_F_RUNNING);
} else
/* generic code handles it */
release_at(t, start);
}
static lt_t wm_earliest_release(struct task_struct *t, lt_t now)
{
lt_t deadline;
if (is_sliced_task(t))
deadline = tsk_rt(t)->semi_part.wm.job_deadline;
else
deadline = get_deadline(t);
if (lt_before(deadline, now))
return now;
else
return deadline;
}
static void wm_task_wake_up(struct task_struct *t)
{
unsigned long flags;
wm_domain_t* dom = domain_of_task(t);
rt_domain_t* edf = &dom->domain;
struct rt_param* p = tsk_rt(t);
lt_t now, sleep_time;
int migrate = 0;
raw_spin_lock_irqsave(&dom->slock, flags);
BUG_ON(is_queued(t));
now = litmus_clock();
sleep_time = now - p->semi_part.wm.suspend_time;
TRACE_TASK(t, "wake_up at %llu after %llu\n", now, sleep_time);
/* account sleep time as execution time */
if (get_exec_time(t) + sleep_time >= get_exec_cost(t)) {
/* new sporadic release */
wm_release_at(t, wm_earliest_release(t, now));
sched_trace_task_release(t);
} else if (is_sliced_task(t)) {
/* figure out which slice we should be executing on */
fast_forward_slices(t, sleep_time);
} else {
/* simply add to the execution time */
tsk_rt(t)->job_params.exec_time += sleep_time;
}
/* Only add to ready queue if it is not the currently-scheduled
* task. This could be the case if a task was woken up concurrently
* on a remote CPU before the executing CPU got around to actually
* de-scheduling the task, i.e., wake_up() raced with schedule()
* and won.
*/
if (dom->scheduled != t) {
if (get_partition(t) == dom->cpu)
wm_requeue_local(t, edf);
else
/* post-pone migration until after unlocking */
migrate = 1;
}
raw_spin_unlock_irqrestore(&dom->slock, flags);
if (migrate) {
TRACE_TASK(t, "wake_up-initiated migration to %d\n",
get_partition(t));
wm_requeue_remote(t);
}
TRACE_TASK(t, "wake up done\n");
}
static void wm_task_block(struct task_struct *t)
{
lt_t now = litmus_clock();
/* only running tasks can block, thus t is in no queue */
TRACE_TASK(t, "block at %llu, state=%d\n", now, t->state);
tsk_rt(t)->semi_part.wm.suspend_time = now;
BUG_ON(!is_realtime(t));
BUG_ON(is_queued(t));
}
static void wm_task_exit(struct task_struct * t)
{
unsigned long flags;
wm_domain_t* dom = domain_of_task(t);
rt_domain_t* edf = &dom->domain;
raw_spin_lock_irqsave(&dom->slock, flags);
if (is_queued(t)) {
/* dequeue */
remove(edf, t);
}
if (dom->scheduled == t)
dom->scheduled = NULL;
TRACE_TASK(t, "RIP, now reschedule\n");
preempt(dom);
raw_spin_unlock_irqrestore(&dom->slock, flags);
}
static long wm_check_params(struct task_struct *t)
{
struct rt_param* p = tsk_rt(t);
struct edf_wm_params* wm = &p->task_params.semi_part.wm;
int i;
lt_t tmp;
if (!is_sliced_task(t)) {
/* regular task; nothing to check */
TRACE_TASK(t, "accepted regular (non-sliced) task with "
"%d slices\n",
wm->count);
return 0;
}
/* (1) Either not sliced, or more than 1 slice. */
if (wm->count == 1 || wm->count > MAX_EDF_WM_SLICES) {
TRACE_TASK(t, "bad number of slices (%u) \n",
wm->count);
return -EINVAL;
}
/* (2) The partition has to agree with the first slice. */
if (get_partition(t) != wm->slices[0].cpu) {
TRACE_TASK(t, "partition and first slice CPU differ "
"(%d != %d)\n", get_partition(t), wm->slices[0].cpu);
return -EINVAL;
}
/* (3) The total budget must agree. */
for (i = 0, tmp = 0; i < wm->count; i++)
tmp += wm->slices[i].budget;
if (get_exec_cost(t) != tmp) {
TRACE_TASK(t, "total budget and sum of slice budgets differ\n");
return -EINVAL;
}
/* (4) The release of each slice must not precede the previous
* deadline. */
for (i = 0; i < wm->count - 1; i++)
if (wm->slices[i].deadline > wm->slices[i + 1].offset) {
TRACE_TASK(t, "slice %d overlaps with slice %d\n",
i, i + 1);
return -EINVAL;
}
/* (5) The budget of each slice must fit within [offset, deadline] */
for (i = 0; i < wm->count; i++)
if (lt_before(wm->slices[i].deadline, wm->slices[i].offset) ||
wm->slices[i].deadline - wm->slices[i].offset <
wm->slices[i].budget) {
TRACE_TASK(t, "slice %d is overloaded\n", i);
return -EINVAL;
}
/* (6) The budget of each slice must exceed the minimum budget size. */
for (i = 0; i < wm->count; i++)
if (wm->slices[i].budget < MIN_EDF_WM_SLICE_SIZE) {
TRACE_TASK(t, "slice %d is too short\n", i);
return -EINVAL;
}
/* (7) The CPU of each slice must be different from the previous CPU. */
for (i = 0; i < wm->count - 1; i++)
if (wm->slices[i].cpu == wm->slices[i + 1].cpu) {
TRACE_TASK(t, "slice %d does not migrate\n", i);
return -EINVAL;
}
/* (8) The CPU of each slice must be online. */
for (i = 0; i < wm->count; i++)
if (!cpu_online(wm->slices[i].cpu)) {
TRACE_TASK(t, "slice %d is allocated on offline CPU\n",
i);
return -EINVAL;
}
TRACE_TASK(t, "accepted sliced task with %d slices\n",
wm->count);
return 0;
}
static long wm_admit_task(struct task_struct* t)
{
return task_cpu(t) == get_partition(t) ? wm_check_params(t) : -EINVAL;
}
/* Plugin object */
static struct sched_plugin edf_wm_plugin __cacheline_aligned_in_smp = {
.plugin_name = "EDF-WM",
.tick = wm_tick,
.task_new = wm_task_new,
.complete_job = complete_job,
.task_exit = wm_task_exit,
.schedule = wm_schedule,
.release_at = wm_release_at,
.task_wake_up = wm_task_wake_up,
.task_block = wm_task_block,
.admit_task = wm_admit_task
};
static int __init init_edf_wm(void)
{
int i;
/* FIXME: breaks with CPU hotplug
*/
for (i = 0; i < num_online_cpus(); i++) {
wm_domain_init(remote_domain(i),
wm_check_resched,
NULL, i);
}
return register_sched_plugin(&edf_wm_plugin);
}
module_init(init_edf_wm);
|