1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <litmus/trace.h>
#include <litmus/sched_plugin.h>
#include <litmus/fdso.h>
#if defined(CONFIG_LITMUS_AFFINITY_LOCKING) && defined(CONFIG_LITMUS_NVIDIA)
#include <litmus/gpu_affinity.h>
#include <litmus/nvidia_info.h>
#endif
#include <litmus/kfmlp_lock.h>
static inline int kfmlp_get_idx(struct kfmlp_semaphore* sem,
struct kfmlp_queue* queue)
{
return (queue - &sem->queues[0]);
}
static inline struct kfmlp_queue* kfmlp_get_queue(struct kfmlp_semaphore* sem,
struct task_struct* holder)
{
int i;
for(i = 0; i < sem->num_resources; ++i)
if(sem->queues[i].owner == holder)
return(&sem->queues[i]);
return(NULL);
}
/* caller is responsible for locking */
static struct task_struct* kfmlp_find_hp_waiter(struct kfmlp_queue *kqueue,
struct task_struct *skip)
{
struct list_head *pos;
struct task_struct *queued, *found = NULL;
list_for_each(pos, &kqueue->wait.task_list) {
queued = (struct task_struct*) list_entry(pos, wait_queue_t,
task_list)->private;
/* Compare task prios, find high prio task. */
//if (queued != skip && edf_higher_prio(queued, found))
if (queued != skip && litmus->compare(queued, found))
found = queued;
}
return found;
}
static inline struct kfmlp_queue* kfmlp_find_shortest(struct kfmlp_semaphore* sem,
struct kfmlp_queue* search_start)
{
// we start our search at search_start instead of at the beginning of the
// queue list to load-balance across all resources.
struct kfmlp_queue* step = search_start;
struct kfmlp_queue* shortest = sem->shortest_queue;
do
{
step = (step+1 != &sem->queues[sem->num_resources]) ?
step+1 : &sem->queues[0];
if(step->count < shortest->count)
{
shortest = step;
if(step->count == 0)
break; /* can't get any shorter */
}
}while(step != search_start);
return(shortest);
}
static struct task_struct* kfmlp_select_hp_steal(struct kfmlp_semaphore* sem,
wait_queue_t** to_steal,
struct kfmlp_queue** to_steal_from)
{
/* must hold sem->lock */
int i;
*to_steal = NULL;
*to_steal_from = NULL;
for(i = 0; i < sem->num_resources; ++i)
{
if( (sem->queues[i].count > 1) &&
((*to_steal_from == NULL) ||
//(edf_higher_prio(sem->queues[i].hp_waiter, my_queue->hp_waiter))) )
(litmus->compare(sem->queues[i].hp_waiter, (*to_steal_from)->hp_waiter))) )
{
*to_steal_from = &sem->queues[i];
}
}
if(*to_steal_from)
{
struct list_head *pos;
struct task_struct *target = (*to_steal_from)->hp_waiter;
TRACE_CUR("want to steal hp_waiter (%s/%d) from queue %d\n",
target->comm,
target->pid,
kfmlp_get_idx(sem, *to_steal_from));
list_for_each(pos, &(*to_steal_from)->wait.task_list)
{
wait_queue_t *node = list_entry(pos, wait_queue_t, task_list);
struct task_struct *queued = (struct task_struct*) node->private;
/* Compare task prios, find high prio task. */
if (queued == target)
{
*to_steal = node;
TRACE_CUR("steal: selected %s/%d from queue %d\n",
queued->comm, queued->pid,
kfmlp_get_idx(sem, *to_steal_from));
return queued;
}
}
TRACE_CUR("Could not find %s/%d in queue %d!!! THIS IS A BUG!\n",
target->comm,
target->pid,
kfmlp_get_idx(sem, *to_steal_from));
}
return NULL;
}
static void kfmlp_steal_node(struct kfmlp_semaphore *sem,
struct kfmlp_queue *dst,
wait_queue_t *wait,
struct kfmlp_queue *src)
{
struct task_struct* t = (struct task_struct*) wait->private;
__remove_wait_queue(&src->wait, wait);
--(src->count);
if(t == src->hp_waiter) {
src->hp_waiter = kfmlp_find_hp_waiter(src, NULL);
TRACE_CUR("queue %d: %s/%d is new hp_waiter\n",
kfmlp_get_idx(sem, src),
(src->hp_waiter) ? src->hp_waiter->comm : "nil",
(src->hp_waiter) ? src->hp_waiter->pid : -1);
if(src->owner && tsk_rt(src->owner)->inh_task == t) {
litmus->decrease_prio(src->owner, src->hp_waiter);
}
}
if(sem->shortest_queue->count > src->count) {
sem->shortest_queue = src;
TRACE_CUR("queue %d is the shortest\n", kfmlp_get_idx(sem, sem->shortest_queue));
}
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
sem->aff_obs->ops->notify_dequeue(sem->aff_obs, src, t);
}
#endif
init_waitqueue_entry(wait, t);
__add_wait_queue_tail_exclusive(&dst->wait, wait);
++(dst->count);
if(litmus->compare(t, dst->hp_waiter)) {
dst->hp_waiter = t;
TRACE_CUR("queue %d: %s/%d is new hp_waiter\n",
kfmlp_get_idx(sem, dst),
t->comm, t->pid);
if(dst->owner && litmus->compare(t, dst->owner))
{
litmus->increase_prio(dst->owner, t);
}
}
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
sem->aff_obs->ops->notify_enqueue(sem->aff_obs, dst, t);
}
#endif
}
int kfmlp_lock(struct litmus_lock* l)
{
struct task_struct* t = current;
struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
struct kfmlp_queue* my_queue = NULL;
wait_queue_t wait;
unsigned long flags;
if (!is_realtime(t))
return -EPERM;
spin_lock_irqsave(&sem->lock, flags);
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
my_queue = sem->aff_obs->ops->advise_enqueue(sem->aff_obs, t);
}
if(!my_queue) {
my_queue = sem->shortest_queue;
}
#else
my_queue = sem->shortest_queue;
#endif
if (my_queue->owner) {
/* resource is not free => must suspend and wait */
TRACE_CUR("queue %d: Resource is not free => must suspend and wait. (queue size = %d)\n",
kfmlp_get_idx(sem, my_queue),
my_queue->count);
init_waitqueue_entry(&wait, t);
/* FIXME: interruptible would be nice some day */
set_task_state(t, TASK_UNINTERRUPTIBLE);
__add_wait_queue_tail_exclusive(&my_queue->wait, &wait);
TRACE_CUR("queue %d: hp_waiter is currently %s/%d\n",
kfmlp_get_idx(sem, my_queue),
(my_queue->hp_waiter) ? my_queue->hp_waiter->comm : "nil",
(my_queue->hp_waiter) ? my_queue->hp_waiter->pid : -1);
/* check if we need to activate priority inheritance */
//if (edf_higher_prio(t, my_queue->hp_waiter))
if (litmus->compare(t, my_queue->hp_waiter)) {
my_queue->hp_waiter = t;
TRACE_CUR("queue %d: %s/%d is new hp_waiter\n",
kfmlp_get_idx(sem, my_queue),
t->comm, t->pid);
//if (edf_higher_prio(t, my_queue->owner))
if (litmus->compare(t, my_queue->owner)) {
litmus->increase_prio(my_queue->owner, my_queue->hp_waiter);
}
}
++(my_queue->count);
if(my_queue == sem->shortest_queue) {
sem->shortest_queue = kfmlp_find_shortest(sem, my_queue);
TRACE_CUR("queue %d is the shortest\n",
kfmlp_get_idx(sem, sem->shortest_queue));
}
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
sem->aff_obs->ops->notify_enqueue(sem->aff_obs, my_queue, t);
}
#endif
/* release lock before sleeping */
spin_unlock_irqrestore(&sem->lock, flags);
/* We depend on the FIFO order. Thus, we don't need to recheck
* when we wake up; we are guaranteed to have the lock since
* there is only one wake up per release (or steal).
*/
schedule();
if(my_queue->owner == t) {
TRACE_CUR("queue %d: acquired through waiting\n",
kfmlp_get_idx(sem, my_queue));
}
else {
/* this case may happen if our wait entry was stolen
between queues. record where we went. */
my_queue = kfmlp_get_queue(sem, t);
BUG_ON(!my_queue);
TRACE_CUR("queue %d: acquired through stealing\n",
kfmlp_get_idx(sem, my_queue));
}
}
else {
TRACE_CUR("queue %d: acquired immediately\n",
kfmlp_get_idx(sem, my_queue));
my_queue->owner = t;
++(my_queue->count);
if(my_queue == sem->shortest_queue) {
sem->shortest_queue = kfmlp_find_shortest(sem, my_queue);
TRACE_CUR("queue %d is the shortest\n",
kfmlp_get_idx(sem, sem->shortest_queue));
}
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
sem->aff_obs->ops->notify_enqueue(sem->aff_obs, my_queue, t);
sem->aff_obs->ops->notify_acquired(sem->aff_obs, my_queue, t);
}
#endif
spin_unlock_irqrestore(&sem->lock, flags);
}
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
return sem->aff_obs->ops->replica_to_resource(sem->aff_obs, my_queue);
}
#endif
return kfmlp_get_idx(sem, my_queue);
}
int kfmlp_unlock(struct litmus_lock* l)
{
struct task_struct *t = current, *next;
struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
struct kfmlp_queue *my_queue, *to_steal_from;
unsigned long flags;
int err = 0;
my_queue = kfmlp_get_queue(sem, t);
if (!my_queue) {
err = -EINVAL;
goto out;
}
spin_lock_irqsave(&sem->lock, flags);
TRACE_CUR("queue %d: unlocking\n", kfmlp_get_idx(sem, my_queue));
my_queue->owner = NULL; // clear ownership
--(my_queue->count);
if(my_queue->count < sem->shortest_queue->count)
{
sem->shortest_queue = my_queue;
TRACE_CUR("queue %d is the shortest\n",
kfmlp_get_idx(sem, sem->shortest_queue));
}
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
sem->aff_obs->ops->notify_dequeue(sem->aff_obs, my_queue, t);
sem->aff_obs->ops->notify_freed(sem->aff_obs, my_queue, t);
}
#endif
/* we lose the benefit of priority inheritance (if any) */
if (tsk_rt(t)->inh_task)
litmus->decrease_prio(t, NULL);
/* check if there are jobs waiting for this resource */
RETRY:
next = __waitqueue_remove_first(&my_queue->wait);
if (next) {
/* next becomes the resouce holder */
my_queue->owner = next;
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
if(sem->aff_obs) {
sem->aff_obs->ops->notify_acquired(sem->aff_obs, my_queue, next);
}
#endif
TRACE_CUR("queue %d: lock ownership passed to %s/%d\n",
kfmlp_get_idx(sem, my_queue), next->comm, next->pid);
/* determine new hp_waiter if necessary */
if (next == my_queue->hp_waiter) {
TRACE_TASK(next, "was highest-prio waiter\n");
my_queue->hp_waiter = kfmlp_find_hp_waiter(my_queue, next);
if (my_queue->hp_waiter)
TRACE_TASK(my_queue->hp_waiter, "queue %d: is new highest-prio waiter\n", kfmlp_get_idx(sem, my_queue));
else
TRACE("queue %d: no further waiters\n", kfmlp_get_idx(sem, my_queue));
} else {
/* Well, if next is not the highest-priority waiter,
* then it ought to inherit the highest-priority
* waiter's priority. */
litmus->increase_prio(next, my_queue->hp_waiter);
}
/* wake up next */
wake_up_process(next);
}
else {
// TODO: put this stealing logic before we attempt to release
// our resource. (simplifies code and gets rid of ugly goto RETRY.
wait_queue_t *wait;
TRACE_CUR("queue %d: looking to steal someone...\n",
kfmlp_get_idx(sem, my_queue));
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
next = (sem->aff_obs) ?
sem->aff_obs->ops->advise_steal(sem->aff_obs, &wait, &to_steal_from) :
kfmlp_select_hp_steal(sem, &wait, &to_steal_from);
#else
next = kfmlp_select_hp_steal(sem, &wait, &to_steal_from);
#endif
if(next) {
TRACE_CUR("queue %d: stealing %s/%d from queue %d\n",
kfmlp_get_idx(sem, my_queue),
next->comm, next->pid,
kfmlp_get_idx(sem, to_steal_from));
kfmlp_steal_node(sem, my_queue, wait, to_steal_from);
goto RETRY; // will succeed this time.
}
else {
TRACE_CUR("queue %d: no one to steal.\n",
kfmlp_get_idx(sem, my_queue));
}
}
spin_unlock_irqrestore(&sem->lock, flags);
out:
return err;
}
int kfmlp_close(struct litmus_lock* l)
{
struct task_struct *t = current;
struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
struct kfmlp_queue *my_queue;
unsigned long flags;
int owner;
spin_lock_irqsave(&sem->lock, flags);
my_queue = kfmlp_get_queue(sem, t);
owner = (my_queue) ? (my_queue->owner == t) : 0;
spin_unlock_irqrestore(&sem->lock, flags);
if (owner)
kfmlp_unlock(l);
return 0;
}
void kfmlp_free(struct litmus_lock* l)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(l);
kfree(sem->queues);
kfree(sem);
}
struct litmus_lock* kfmlp_new(struct litmus_lock_ops* ops, void* __user args)
{
struct kfmlp_semaphore* sem;
int num_resources = 0;
int i;
if(!access_ok(VERIFY_READ, args, sizeof(num_resources)))
{
return(NULL);
}
if(__copy_from_user(&num_resources, args, sizeof(num_resources)))
{
return(NULL);
}
if(num_resources < 1)
{
return(NULL);
}
sem = kmalloc(sizeof(*sem), GFP_KERNEL);
if(!sem)
{
return(NULL);
}
sem->queues = kmalloc(sizeof(struct kfmlp_queue)*num_resources, GFP_KERNEL);
if(!sem->queues)
{
kfree(sem);
return(NULL);
}
sem->litmus_lock.ops = ops;
spin_lock_init(&sem->lock);
sem->num_resources = num_resources;
for(i = 0; i < num_resources; ++i)
{
sem->queues[i].owner = NULL;
sem->queues[i].hp_waiter = NULL;
init_waitqueue_head(&sem->queues[i].wait);
sem->queues[i].count = 0;
}
sem->shortest_queue = &sem->queues[0];
#ifdef CONFIG_LITMUS_AFFINITY_LOCKING
sem->aff_obs = NULL;
#endif
return &sem->litmus_lock;
}
#if defined(CONFIG_LITMUS_AFFINITY_LOCKING) && defined(CONFIG_LITMUS_NVIDIA)
static inline int __replica_to_gpu(struct kfmlp_affinity* aff, int replica)
{
int gpu = replica % aff->nr_rsrc;
return gpu;
}
static inline int replica_to_gpu(struct kfmlp_affinity* aff, int replica)
{
int gpu = __replica_to_gpu(aff, replica) + aff->offset;
return gpu;
}
static inline int gpu_to_base_replica(struct kfmlp_affinity* aff, int gpu)
{
int replica = gpu - aff->offset;
return replica;
}
int kfmlp_aff_obs_close(struct affinity_observer* obs)
{
return 0;
}
void kfmlp_aff_obs_free(struct affinity_observer* obs)
{
struct kfmlp_affinity *kfmlp_aff = kfmlp_aff_obs_from_aff_obs(obs);
kfree(kfmlp_aff->nr_cur_users_on_rsrc);
kfree(kfmlp_aff->q_info);
kfree(kfmlp_aff);
}
static struct affinity_observer* kfmlp_aff_obs_new(struct affinity_observer_ops* ops,
struct kfmlp_affinity_ops* kfmlp_ops,
void* __user args)
{
struct kfmlp_affinity* kfmlp_aff;
struct gpu_affinity_observer_args aff_args;
struct kfmlp_semaphore* sem;
int i;
unsigned long flags;
if(!access_ok(VERIFY_READ, args, sizeof(aff_args))) {
return(NULL);
}
if(__copy_from_user(&aff_args, args, sizeof(aff_args))) {
return(NULL);
}
sem = (struct kfmlp_semaphore*) get_lock_from_od(aff_args.obs.lock_od);
if(sem->litmus_lock.type != KFMLP_SEM) {
TRACE_CUR("Lock type not supported. Type = %d\n", sem->litmus_lock.type);
return(NULL);
}
if((aff_args.nr_simult_users <= 0) ||
(sem->num_resources%aff_args.nr_simult_users != 0)) {
TRACE_CUR("Lock %d does not support #replicas (%d) for #simult_users "
"(%d) per replica. #replicas should be evenly divisible "
"by #simult_users.\n",
sem->litmus_lock.ident,
sem->num_resources,
aff_args.nr_simult_users);
return(NULL);
}
if(aff_args.nr_simult_users > NV_MAX_SIMULT_USERS) {
TRACE_CUR("System does not support #simult_users > %d. %d requested.\n",
NV_MAX_SIMULT_USERS, aff_args.nr_simult_users);
// return(NULL);
}
kfmlp_aff = kmalloc(sizeof(*kfmlp_aff), GFP_KERNEL);
if(!kfmlp_aff) {
return(NULL);
}
kfmlp_aff->q_info = kmalloc(sizeof(struct kfmlp_queue_info)*sem->num_resources, GFP_KERNEL);
if(!kfmlp_aff->q_info) {
kfree(kfmlp_aff);
return(NULL);
}
kfmlp_aff->nr_cur_users_on_rsrc = kmalloc(sizeof(int)*(sem->num_resources / aff_args.nr_simult_users), GFP_KERNEL);
if(!kfmlp_aff->nr_cur_users_on_rsrc) {
kfree(kfmlp_aff->q_info);
kfree(kfmlp_aff);
return(NULL);
}
affinity_observer_new(&kfmlp_aff->obs, ops, &aff_args.obs);
kfmlp_aff->ops = kfmlp_ops;
kfmlp_aff->offset = aff_args.replica_to_gpu_offset;
kfmlp_aff->nr_simult = aff_args.nr_simult_users;
kfmlp_aff->nr_rsrc = sem->num_resources / kfmlp_aff->nr_simult;
memset(kfmlp_aff->nr_cur_users_on_rsrc, 0, sizeof(int)*(sem->num_resources / kfmlp_aff->nr_rsrc));
for(i = 0; i < sem->num_resources; ++i) {
kfmlp_aff->q_info[i].q = &sem->queues[i];
kfmlp_aff->q_info[i].estimated_len = 0;
// multiple q_info's will point to the same resource (aka GPU) if
// aff_args.nr_simult_users > 1
kfmlp_aff->q_info[i].nr_cur_users = &kfmlp_aff->nr_cur_users_on_rsrc[__replica_to_gpu(kfmlp_aff,i)];
}
// attach observer to the lock
spin_lock_irqsave(&sem->lock, flags);
sem->aff_obs = kfmlp_aff;
spin_unlock_irqrestore(&sem->lock, flags);
return &kfmlp_aff->obs;
}
static int gpu_replica_to_resource(struct kfmlp_affinity* aff,
struct kfmlp_queue* fq) {
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
return(replica_to_gpu(aff, kfmlp_get_idx(sem, fq)));
}
// Smart KFMLP Affinity
//static inline struct kfmlp_queue_info* kfmlp_aff_find_shortest(struct kfmlp_affinity* aff)
//{
// struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
// struct kfmlp_queue_info *shortest = &aff->q_info[0];
// int i;
//
// for(i = 1; i < sem->num_resources; ++i) {
// if(aff->q_info[i].estimated_len < shortest->estimated_len) {
// shortest = &aff->q_info[i];
// }
// }
//
// return(shortest);
//}
struct kfmlp_queue* gpu_kfmlp_advise_enqueue(struct kfmlp_affinity* aff, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
lt_t min_len;
int min_nr_users;
struct kfmlp_queue_info *shortest;
struct kfmlp_queue *to_enqueue;
int i;
int affinity_gpu;
// simply pick the shortest queue if, we have no affinity, or we have
// affinity with the shortest
if(unlikely(tsk_rt(t)->last_gpu < 0)) {
affinity_gpu = aff->offset; // first gpu
TRACE_CUR("no affinity\n");
}
else {
affinity_gpu = tsk_rt(t)->last_gpu;
}
// all things being equal, let's start with the queue with which we have
// affinity. this helps us maintain affinity even when we don't have
// an estiamte for local-affinity execution time (i.e., 2nd time on GPU)
shortest = &aff->q_info[gpu_to_base_replica(aff, affinity_gpu)];
// if(shortest == aff->shortest_queue) {
// TRACE_CUR("special case: have affinity with shortest queue\n");
// goto out;
// }
min_len = shortest->estimated_len + get_gpu_estimate(t, MIG_LOCAL);
min_nr_users = *(shortest->nr_cur_users);
TRACE_CUR("cs is %llu on queue %d: est len = %llu\n",
get_gpu_estimate(t, MIG_LOCAL),
kfmlp_get_idx(sem, shortest->q),
min_len);
for(i = 0; i < sem->num_resources; ++i) {
if(&aff->q_info[i] != shortest) {
lt_t est_len =
aff->q_info[i].estimated_len +
get_gpu_estimate(t, gpu_migration_distance(tsk_rt(t)->last_gpu, replica_to_gpu(aff, i)));
// queue is smaller, or they're equal and the other has a smaller number
// of total users.
//
// tie-break on the shortest number of simult users. this only kicks in
// when there are more than 1 empty queues.
if((est_len < min_len) ||
((est_len == min_len) && (*(aff->q_info[i].nr_cur_users) < min_nr_users))) {
shortest = &aff->q_info[i];
min_len = est_len;
min_nr_users = *(aff->q_info[i].nr_cur_users);
}
TRACE_CUR("cs is %llu on queue %d: est len = %llu\n",
get_gpu_estimate(t, gpu_migration_distance(tsk_rt(t)->last_gpu, replica_to_gpu(aff, i))),
kfmlp_get_idx(sem, aff->q_info[i].q),
est_len);
}
}
to_enqueue = shortest->q;
TRACE_CUR("enqueue on fq %d (non-aff wanted fq %d)\n",
kfmlp_get_idx(sem, to_enqueue),
kfmlp_get_idx(sem, sem->shortest_queue));
return to_enqueue;
}
struct task_struct* gpu_kfmlp_advise_steal(struct kfmlp_affinity* aff, wait_queue_t** to_steal, struct kfmlp_queue** to_steal_from)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
// For now, just steal highest priority waiter
// TODO: Implement affinity-aware stealing.
return kfmlp_select_hp_steal(sem, to_steal, to_steal_from);
}
void gpu_kfmlp_notify_enqueue(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
int replica = kfmlp_get_idx(sem, fq);
int gpu = replica_to_gpu(aff, replica);
struct kfmlp_queue_info *info = &aff->q_info[replica];
lt_t est_time;
lt_t est_len_before;
if(current == t) {
tsk_rt(t)->suspend_gpu_tracker_on_block = 1;
}
est_len_before = info->estimated_len;
est_time = get_gpu_estimate(t, gpu_migration_distance(tsk_rt(t)->last_gpu, gpu));
info->estimated_len += est_time;
TRACE_CUR("fq %d: q_len (%llu) + est_cs (%llu) = %llu\n",
kfmlp_get_idx(sem, info->q),
est_len_before, est_time,
info->estimated_len);
// if(aff->shortest_queue == info) {
// // we may no longer be the shortest
// aff->shortest_queue = kfmlp_aff_find_shortest(aff);
//
// TRACE_CUR("shortest queue is fq %d (with %d in queue) has est len %llu\n",
// kfmlp_get_idx(sem, aff->shortest_queue->q),
// aff->shortest_queue->q->count,
// aff->shortest_queue->estimated_len);
// }
}
void gpu_kfmlp_notify_dequeue(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
int replica = kfmlp_get_idx(sem, fq);
int gpu = replica_to_gpu(aff, replica);
struct kfmlp_queue_info *info = &aff->q_info[replica];
lt_t est_time = get_gpu_estimate(t, gpu_migration_distance(tsk_rt(t)->last_gpu, gpu));
if(est_time > info->estimated_len) {
WARN_ON(1);
info->estimated_len = 0;
}
else {
info->estimated_len -= est_time;
}
TRACE_CUR("fq %d est len is now %llu\n",
kfmlp_get_idx(sem, info->q),
info->estimated_len);
// check to see if we're the shortest queue now.
// if((aff->shortest_queue != info) &&
// (aff->shortest_queue->estimated_len > info->estimated_len)) {
//
// aff->shortest_queue = info;
//
// TRACE_CUR("shortest queue is fq %d (with %d in queue) has est len %llu\n",
// kfmlp_get_idx(sem, info->q),
// info->q->count,
// info->estimated_len);
// }
}
void gpu_kfmlp_notify_acquired(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
int replica = kfmlp_get_idx(sem, fq);
int gpu = replica_to_gpu(aff, replica);
tsk_rt(t)->gpu_migration = gpu_migration_distance(tsk_rt(t)->last_gpu, gpu); // record the type of migration
TRACE_CUR("%s/%d acquired gpu %d. migration type = %d\n",
t->comm, t->pid, gpu, tsk_rt(t)->gpu_migration);
// count the number or resource holders
++(*(aff->q_info[replica].nr_cur_users));
reg_nv_device(gpu, 1, t); // register
tsk_rt(t)->suspend_gpu_tracker_on_block = 0;
reset_gpu_tracker(t);
start_gpu_tracker(t);
}
void gpu_kfmlp_notify_freed(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
int replica = kfmlp_get_idx(sem, fq);
int gpu = replica_to_gpu(aff, replica);
lt_t est_time;
stop_gpu_tracker(t); // stop the tracker before we do anything else.
est_time = get_gpu_estimate(t, gpu_migration_distance(tsk_rt(t)->last_gpu, gpu));
tsk_rt(t)->last_gpu = gpu;
// count the number or resource holders
--(*(aff->q_info[replica].nr_cur_users));
reg_nv_device(gpu, 0, t); // unregister
// update estimates
update_gpu_estimate(t, get_gpu_time(t));
TRACE_CUR("%s/%d freed gpu %d. actual time was %llu. estimated was %llu. diff is %d\n",
t->comm, t->pid, gpu,
get_gpu_time(t),
est_time,
(long long)get_gpu_time(t) - (long long)est_time);
}
struct kfmlp_affinity_ops gpu_kfmlp_affinity =
{
.advise_enqueue = gpu_kfmlp_advise_enqueue,
.advise_steal = gpu_kfmlp_advise_steal,
.notify_enqueue = gpu_kfmlp_notify_enqueue,
.notify_dequeue = gpu_kfmlp_notify_dequeue,
.notify_acquired = gpu_kfmlp_notify_acquired,
.notify_freed = gpu_kfmlp_notify_freed,
.replica_to_resource = gpu_replica_to_resource,
};
struct affinity_observer* kfmlp_gpu_aff_obs_new(struct affinity_observer_ops* ops,
void* __user args)
{
return kfmlp_aff_obs_new(ops, &gpu_kfmlp_affinity, args);
}
// Simple KFMLP Affinity (standard KFMLP with auto-gpu registration)
struct kfmlp_queue* simple_gpu_kfmlp_advise_enqueue(struct kfmlp_affinity* aff, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
int min_count;
int min_nr_users;
struct kfmlp_queue_info *shortest;
struct kfmlp_queue *to_enqueue;
int i;
// TRACE_CUR("Simple GPU KFMLP advise_enqueue invoked\n");
shortest = &aff->q_info[0];
min_count = shortest->q->count;
min_nr_users = *(shortest->nr_cur_users);
TRACE_CUR("queue %d: waiters = %d, total holders = %d\n",
kfmlp_get_idx(sem, shortest->q),
shortest->q->count,
min_nr_users);
for(i = 1; i < sem->num_resources; ++i) {
int len = aff->q_info[i].q->count;
// queue is smaller, or they're equal and the other has a smaller number
// of total users.
//
// tie-break on the shortest number of simult users. this only kicks in
// when there are more than 1 empty queues.
if((len < min_count) ||
((len == min_count) && (*(aff->q_info[i].nr_cur_users) < min_nr_users))) {
shortest = &aff->q_info[i];
min_count = shortest->q->count;
min_nr_users = *(aff->q_info[i].nr_cur_users);
}
TRACE_CUR("queue %d: waiters = %d, total holders = %d\n",
kfmlp_get_idx(sem, aff->q_info[i].q),
aff->q_info[i].q->count,
*(aff->q_info[i].nr_cur_users));
}
to_enqueue = shortest->q;
TRACE_CUR("enqueue on fq %d (non-aff wanted fq %d)\n",
kfmlp_get_idx(sem, to_enqueue),
kfmlp_get_idx(sem, sem->shortest_queue));
return to_enqueue;
}
struct task_struct* simple_gpu_kfmlp_advise_steal(struct kfmlp_affinity* aff, wait_queue_t** to_steal, struct kfmlp_queue** to_steal_from)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
// TRACE_CUR("Simple GPU KFMLP advise_steal invoked\n");
return kfmlp_select_hp_steal(sem, to_steal, to_steal_from);
}
void simple_gpu_kfmlp_notify_enqueue(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
// TRACE_CUR("Simple GPU KFMLP notify_enqueue invoked\n");
}
void simple_gpu_kfmlp_notify_dequeue(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
// TRACE_CUR("Simple GPU KFMLP notify_dequeue invoked\n");
}
void simple_gpu_kfmlp_notify_acquired(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
int replica = kfmlp_get_idx(sem, fq);
int gpu = replica_to_gpu(aff, replica);
// TRACE_CUR("Simple GPU KFMLP notify_acquired invoked\n");
// count the number or resource holders
++(*(aff->q_info[replica].nr_cur_users));
reg_nv_device(gpu, 1, t); // register
}
void simple_gpu_kfmlp_notify_freed(struct kfmlp_affinity* aff, struct kfmlp_queue* fq, struct task_struct* t)
{
struct kfmlp_semaphore *sem = kfmlp_from_lock(aff->obs.lock);
int replica = kfmlp_get_idx(sem, fq);
int gpu = replica_to_gpu(aff, replica);
// TRACE_CUR("Simple GPU KFMLP notify_freed invoked\n");
// count the number or resource holders
--(*(aff->q_info[replica].nr_cur_users));
reg_nv_device(gpu, 0, t); // unregister
}
struct kfmlp_affinity_ops simple_gpu_kfmlp_affinity =
{
.advise_enqueue = simple_gpu_kfmlp_advise_enqueue,
.advise_steal = simple_gpu_kfmlp_advise_steal,
.notify_enqueue = simple_gpu_kfmlp_notify_enqueue,
.notify_dequeue = simple_gpu_kfmlp_notify_dequeue,
.notify_acquired = simple_gpu_kfmlp_notify_acquired,
.notify_freed = simple_gpu_kfmlp_notify_freed,
.replica_to_resource = gpu_replica_to_resource,
};
struct affinity_observer* kfmlp_simple_gpu_aff_obs_new(struct affinity_observer_ops* ops,
void* __user args)
{
return kfmlp_aff_obs_new(ops, &simple_gpu_kfmlp_affinity, args);
}
#endif
|