1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
|
/*
* kernel/edf_common.c
*
* Common functions for EDF based scheduler.
*/
#include <linux/percpu.h>
#include <linux/sched.h>
#include <linux/list.h>
#include <litmus/litmus.h>
#include <litmus/sched_plugin.h>
#include <litmus/sched_trace.h>
#ifdef CONFIG_LITMUS_NESTED_LOCKING
#include <litmus/locking.h>
#endif
#include <litmus/edf_common.h>
/* edf_higher_prio - returns true if first has a higher EDF priority
* than second. Deadline ties are broken by PID.
*
* both first and second may be NULL
*/
#ifdef CONFIG_LITMUS_NESTED_LOCKING
int __edf_higher_prio(
struct task_struct* first, comparison_mode_t first_mode,
struct task_struct* second, comparison_mode_t second_mode)
#else
int edf_higher_prio(struct task_struct* first, struct task_struct* second)
#endif
{
struct task_struct *first_task = first;
struct task_struct *second_task = second;
/* There is no point in comparing a task to itself. */
if (first && first == second) {
TRACE_CUR("WARNING: pointless edf priority comparison: %s/%d\n", first->comm, first->pid);
WARN_ON(1);
return 0;
}
/* check for NULL tasks */
if (!first || !second) {
return first && !second;
}
#ifdef CONFIG_LITMUS_LOCKING
/* Check for EFFECTIVE priorities. Change task
* used for comparison in such a case.
*/
if (unlikely(first->rt_param.inh_task)
#ifdef CONFIG_LITMUS_NESTED_LOCKING
&& (first_mode == EFFECTIVE)
#endif
) {
first_task = first->rt_param.inh_task;
}
if (unlikely(second->rt_param.inh_task)
#ifdef CONFIG_LITMUS_NESTED_LOCKING
&& (second_mode == EFFECTIVE)
#endif
) {
second_task = second->rt_param.inh_task;
}
/* Check for priority boosting. Tie-break by start of boosting.
*/
if (unlikely(is_priority_boosted(first_task))) {
/* first_task is boosted, how about second_task? */
if (!is_priority_boosted(second_task) ||
lt_before(get_boost_start(first_task),
get_boost_start(second_task))) {
return 1;
}
else {
return 0;
}
}
else if (unlikely(is_priority_boosted(second_task))) {
/* second_task is boosted, first is not*/
return 0;
}
#endif
// // rate-monotonic for testing
// if (!is_realtime(second_task)) {
// return true;
// }
//
// if (shorter_period(first_task, second_task)) {
// return true;
// }
//
// if (get_period(first_task) == get_period(second_task)) {
// if (first_task->pid < second_task->pid) {
// return true;
// }
// else if (first_task->pid == second_task->pid) {
// return !second->rt_param.inh_task;
// }
// }
if (!is_realtime(second_task)) {
return true;
}
if (earlier_deadline(first_task, second_task)) {
return true;
}
if (get_deadline(first_task) == get_deadline(second_task)) {
if (shorter_period(first_task, second_task)) {
return true;
}
if (get_rt_period(first_task) == get_rt_period(second_task)) {
if (first_task->pid < second_task->pid) {
return true;
}
if (first_task->pid == second_task->pid) {
#ifdef CONFIG_LITMUS_SOFTIRQD
if (first_task->rt_param.is_proxy_thread <
second_task->rt_param.is_proxy_thread) {
return true;
}
if(first_task->rt_param.is_proxy_thread == second_task->rt_param.is_proxy_thread) {
return !second->rt_param.inh_task;
}
#else
return !second->rt_param.inh_task;
#endif
}
}
}
return false;
}
#ifdef CONFIG_LITMUS_NESTED_LOCKING
int edf_higher_prio(struct task_struct* first, struct task_struct* second)
{
return __edf_higher_prio(first, EFFECTIVE, second, EFFECTIVE);
}
int edf_max_heap_order(struct binheap_node *a, struct binheap_node *b)
{
struct nested_info *l_a = (struct nested_info *)binheap_entry(a, struct nested_info, hp_binheap_node);
struct nested_info *l_b = (struct nested_info *)binheap_entry(b, struct nested_info, hp_binheap_node);
return __edf_higher_prio(l_a->hp_waiter_eff_prio, EFFECTIVE, l_b->hp_waiter_eff_prio, EFFECTIVE);
}
int edf_min_heap_order(struct binheap_node *a, struct binheap_node *b)
{
return edf_max_heap_order(b, a); // swap comparison
}
int edf_max_heap_base_priority_order(struct binheap_node *a, struct binheap_node *b)
{
struct nested_info *l_a = (struct nested_info *)binheap_entry(a, struct nested_info, hp_binheap_node);
struct nested_info *l_b = (struct nested_info *)binheap_entry(b, struct nested_info, hp_binheap_node);
return __edf_higher_prio(l_a->hp_waiter_eff_prio, BASE, l_b->hp_waiter_eff_prio, BASE);
}
int edf_min_heap_base_priority_order(struct binheap_node *a, struct binheap_node *b)
{
return edf_max_heap_base_priority_order(b, a); // swap comparison
}
#endif
int edf_ready_order(struct bheap_node* a, struct bheap_node* b)
{
return edf_higher_prio(bheap2task(a), bheap2task(b));
}
void edf_domain_init(rt_domain_t* rt, check_resched_needed_t resched,
release_jobs_t release)
{
rt_domain_init(rt, edf_ready_order, resched, release);
}
/* need_to_preempt - check whether the task t needs to be preempted
* call only with irqs disabled and with ready_lock acquired
* THIS DOES NOT TAKE NON-PREEMPTIVE SECTIONS INTO ACCOUNT!
*/
int edf_preemption_needed(rt_domain_t* rt, struct task_struct *t)
{
/* we need the read lock for edf_ready_queue */
/* no need to preempt if there is nothing pending */
if (!__jobs_pending(rt))
return 0;
/* we need to reschedule if t doesn't exist */
if (!t)
return 1;
/* NOTE: We cannot check for non-preemptibility since we
* don't know what address space we're currently in.
*/
/* make sure to get non-rt stuff out of the way */
return !is_realtime(t) || edf_higher_prio(__next_ready(rt), t);
}
|