aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/rtmutex.c
blob: a9604815786afcf781b0dc5787335aee4fd54e7f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467<
			return 0;
#endif
		default:
			break;
		}
	}

	memcpy((void __force *)to, from, n);
	return 0;
}
#endif

/*
 * These are the main single-value transfer routines.  They automatically
 * use the right size if we just have the right pointer type.
 * This version just falls back to copy_{from,to}_user, which should
 * provide a fast-path for small values.
 */
#define __put_user(x, ptr) \
({								\
	__typeof__(*(ptr)) __x = (x);				\
	int __pu_err = -EFAULT;					\
        __chk_user_ptr(ptr);                                    \
	switch (sizeof (*(ptr))) {				\
	case 1:							\
	case 2:							\
	case 4:							\
	case 8:							\
		__pu_err = __put_user_fn(sizeof (*(ptr)),	\
					 ptr, &__x);		\
		break;						\
	default:						\
		__put_user_bad();				\
		break;						\
	 }							\
	__pu_err;						\
})

#define put_user(x, ptr)					\
({								\
	might_fault();						\
	access_ok(VERIFY_WRITE, ptr, sizeof(*ptr)) ?		\
		__put_user(x, ptr) :				\
		-EFAULT;					\
})

#ifndef __put_user_fn

static inline int __put_user_fn(size_t size, void __user *ptr, void *x)
{
	size = __copy_to_user(ptr, x, size);
	return size ? -EFAULT : size;
}

#define __put_user_fn(sz, u, k)	__put_user_fn(sz, u, k)

#endif

extern int __put_user_bad(void) __attribute__((noreturn));

#define __get_user(x, ptr)					\
({								\
	int __gu_err = -EFAULT;					\
	__chk_user_ptr(ptr);					\
	switch (sizeof(*(ptr))) {				\
	case 1: {						\
		unsigned char __x;				\
		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
					 ptr, &__x);		\
		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
		break;						\
	};							\
	case 2: {						\
		unsigned short __x;				\
		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
					 ptr, &__x);		\
		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
		break;						\
	};							\
	case 4: {						\
		unsigned int __x;				\
		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
					 ptr, &__x);		\
		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
		break;						\
	};							\
	case 8: {						\
		unsigned long long __x;				\
		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
					 ptr, &__x);		\
		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
		break;						\
	};							\
	default:						\
		__get_user_bad();				\
		break;						\
	}							\
	__gu_err;						\
})

#define get_user(x, ptr)					\
({								\
	might_fault();						\
	access_ok(VERIFY_READ, ptr, sizeof(*ptr)) ?		\
		__get_user(x, ptr) :				\
		-EFAULT;					\
})

#ifndef __get_user_fn
static inline int __get_user_fn(size_t size, const void __user *ptr, void *x)
{
	size = __copy_from_user(x, ptr, size);
	return size ? -EFAULT : size;
}

#define __get_user_fn(sz, u, k)	__get_user_fn(sz, u, k)

#endif

extern int __get_user_bad(void) __attribute__((noreturn));

#ifndef __copy_from_user_inatomic
#define __copy_from_user_inatomic __copy_from_user
#endif

#ifndef __copy_to_user_inatomic
#define __copy_to_user_inatomic __copy_to_user
#endif

static inline long copy_from_user(void *to,
		const void __user * from, unsigned long n)
{
	might_fault();
	if (access_ok(VERIFY_READ, from, n))
		return __copy_from_user(to, from, n);
	else
		return n;
}

static inline long copy_to_user(void __user *to,
		const void *from, unsigned long n)
{
	might_fault();
	if (access_ok(VERIFY_WRITE, to, n))
		return __copy_to_user(to, from, n);
	else
		return n;
}

/*
 * Copy a null terminated string from userspace.
 */
#ifndef __strncpy_from_user
static inline long
__strncpy_from_user(char *dst, const char __user *src, long count)
{
	char *tmp;
	strncpy(dst, (const char __force *)src, count);
	for (tmp = dst; *tmp && count > 0; tmp++, count--)
		;
	return (tmp - dst);
}
#endif

static inline long
strncpy_from_user(char *dst, const char __user *src, long count)
{
	if (!access_ok(VERIFY_READ, src, 1))
		return -EFAULT;
	return __strncpy_from_user(dst, src, count);
}

/*
 * Return the size of a string (including the ending 0)
 *
 * Return 0 on exception, a value greater than N if too long
 */
#ifndef __strnlen_user
#define __strnlen_user(s, n) (strnlen((s), (n)) + 1)
#endif

/*
 * Unlike strnlen, strnlen_user includes the nul terminator in
 * its returned count. Callers should check for a returned value
 * greater than N as an indication the string is too long.
 */
static inline long strnlen_user(const char __user *src, long n)
{
	if (!access_ok(VERIFY_READ, src, 1))
		return 0;
	return __strnlen_user(src, n);
}

static inline long strlen_user(const char __user *src)
{
	return strnlen_user(src, 32767);
}

/*
 * Zero Userspace
 */
#ifndef __clear_user
static inline __must_check unsigned long
__clear_user(void __user *to, unsigned long n)
{
	memset((void __force *)to, 0, n);
	return 0;
}
#endif

static inline __must_check unsigned long
clear_user(void __user *to, unsigned long n)
{
	might_fault();
	if (!access_ok(VERIFY_WRITE, to, n))
		return n;

	return __clear_user(to, n);
}

#endif /* __ASM_GENERIC_UACCESS_H */
982'>982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
/*
 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
 *
 * started by Ingo Molnar and Thomas Gleixner.
 *
 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
 *  Copyright (C) 2006 Esben Nielsen
 *
 *  See Documentation/rt-mutex-design.txt for details.
 */
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/timer.h>

#include "rtmutex_common.h"

/*
 * lock->owner state tracking:
 *
 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
 * are used to keep track of the "owner is pending" and "lock has
 * waiters" state.
 *
 * owner	bit1	bit0
 * NULL		0	0	lock is free (fast acquire possible)
 * NULL		0	1	invalid state
 * NULL		1	0	Transitional State*
 * NULL		1	1	invalid state
 * taskpointer	0	0	lock is held (fast release possible)
 * taskpointer	0	1	task is pending owner
 * taskpointer	1	0	lock is held and has waiters
 * taskpointer	1	1	task is pending owner and lock has more waiters
 *
 * Pending ownership is assigned to the top (highest priority)
 * waiter of the lock, when the lock is released. The thread is woken
 * up and can now take the lock. Until the lock is taken (bit 0
 * cleared) a competing higher priority thread can steal the lock
 * which puts the woken up thread back on the waiters list.
 *
 * The fast atomic compare exchange based acquire and release is only
 * possible when bit 0 and 1 of lock->owner are 0.
 *
 * (*) There's a small time where the owner can be NULL and the
 * "lock has waiters" bit is set.  This can happen when grabbing the lock.
 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
 * bit before looking at the lock, hence the reason this is a transitional
 * state.
 */

static void
rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
		   unsigned long mask)
{
	unsigned long val = (unsigned long)owner | mask;

	if (rt_mutex_has_waiters(lock))
		val |= RT_MUTEX_HAS_WAITERS;

	lock->owner = (struct task_struct *)val;
}

static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
{
	lock->owner = (struct task_struct *)
			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
}

static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
{
	if (!rt_mutex_has_waiters(lock))
		clear_rt_mutex_waiters(lock);
}

/*
 * We can speed up the acquire/release, if the architecture
 * supports cmpxchg and if there's no debugging state to be set up
 */
#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
	unsigned long owner, *p = (unsigned long *) &lock->owner;

	do {
		owner = *p;
	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
}
#else
# define rt_mutex_cmpxchg(l,c,n)	(0)
static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
{
	lock->owner = (struct task_struct *)
			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
}
#endif

/*
 * Calculate task priority from the waiter list priority
 *
 * Return task->normal_prio when the waiter list is empty or when
 * the waiter is not allowed to do priority boosting
 */
int rt_mutex_getprio(struct task_struct *task)
{
	if (likely(!task_has_pi_waiters(task)))
		return task->normal_prio;

	return min(task_top_pi_waiter(task)->pi_list_entry.prio,
		   task->normal_prio);
}

/*
 * Adjust the priority of a task, after its pi_waiters got modified.
 *
 * This can be both boosting and unboosting. task->pi_lock must be held.
 */
static void __rt_mutex_adjust_prio(struct task_struct *task)
{
	int prio = rt_mutex_getprio(task);

	if (task->prio != prio)
		rt_mutex_setprio(task, prio);
}

/*
 * Adjust task priority (undo boosting). Called from the exit path of
 * rt_mutex_slowunlock() and rt_mutex_slowlock().
 *
 * (Note: We do this outside of the protection of lock->wait_lock to
 * allow the lock to be taken while or before we readjust the priority
 * of task. We do not use the spin_xx_mutex() variants here as we are
 * outside of the debug path.)
 */
static void rt_mutex_adjust_prio(struct task_struct *task)
{
	unsigned long flags;

	raw_spin_lock_irqsave(&task->pi_lock, flags);
	__rt_mutex_adjust_prio(task);
	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
}

/*
 * Max number of times we'll walk the boosting chain:
 */
int max_lock_depth = 1024;

/*
 * Adjust the priority chain. Also used for deadlock detection.
 * Decreases task's usage by one - may thus free the task.
 * Returns 0 or -EDEADLK.
 */
static int rt_mutex_adjust_prio_chain(struct task_struct *task,
				      int deadlock_detect,
				      struct rt_mutex *orig_lock,
				      struct rt_mutex_waiter *orig_waiter,
				      struct task_struct *top_task)
{
	struct rt_mutex *lock;
	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
	int detect_deadlock, ret = 0, depth = 0;
	unsigned long flags;

	detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
							 deadlock_detect);

	/*
	 * The (de)boosting is a step by step approach with a lot of
	 * pitfalls. We want this to be preemptible and we want hold a
	 * maximum of two locks per step. So we have to check
	 * carefully whether things change under us.
	 */
 again:
	if (++depth > max_lock_depth) {
		static int prev_max;

		/*
		 * Print this only once. If the admin changes the limit,
		 * print a new message when reaching the limit again.
		 */
		if (prev_max != max_lock_depth) {
			prev_max = max_lock_depth;
			printk(KERN_WARNING "Maximum lock depth %d reached "
			       "task: %s (%d)\n", max_lock_depth,
			       top_task->comm, task_pid_nr(top_task));
		}
		put_task_struct(task);

		return deadlock_detect ? -EDEADLK : 0;
	}
 retry:
	/*
	 * Task can not go away as we did a get_task() before !
	 */
	raw_spin_lock_irqsave(&task->pi_lock, flags);

	waiter = task->pi_blocked_on;
	/*
	 * Check whether the end of the boosting chain has been
	 * reached or the state of the chain has changed while we
	 * dropped the locks.
	 */
	if (!waiter || !waiter->task)
		goto out_unlock_pi;

	/*
	 * Check the orig_waiter state. After we dropped the locks,
	 * the previous owner of the lock might have released the lock
	 * and made us the pending owner:
	 */
	if (orig_waiter && !orig_waiter->task)
		goto out_unlock_pi;

	/*
	 * Drop out, when the task has no waiters. Note,
	 * top_waiter can be NULL, when we are in the deboosting
	 * mode!
	 */
	if (top_waiter && (!task_has_pi_waiters(task) ||
			   top_waiter != task_top_pi_waiter(task)))
		goto out_unlock_pi;

	/*
	 * When deadlock detection is off then we check, if further
	 * priority adjustment is necessary.
	 */
	if (!detect_deadlock && waiter->list_entry.prio == task->prio)
		goto out_unlock_pi;

	lock = waiter->lock;
	if (!raw_spin_trylock(&lock->wait_lock)) {
		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
		cpu_relax();
		goto retry;
	}

	/* Deadlock detection */
	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
		debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
		raw_spin_unlock(&lock->wait_lock);
		ret = deadlock_detect ? -EDEADLK : 0;
		goto out_unlock_pi;
	}

	top_waiter = rt_mutex_top_waiter(lock);

	/* Requeue the waiter */
	plist_del(&waiter->list_entry, &lock->wait_list);
	waiter->list_entry.prio = task->prio;
	plist_add(&waiter->list_entry, &lock->wait_list);

	/* Release the task */
	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
	put_task_struct(task);

	/* Grab the next task */
	task = rt_mutex_owner(lock);
	get_task_struct(task);
	raw_spin_lock_irqsave(&task->pi_lock, flags);

	if (waiter == rt_mutex_top_waiter(lock)) {
		/* Boost the owner */
		plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
		waiter->pi_list_entry.prio = waiter->list_entry.prio;
		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
		__rt_mutex_adjust_prio(task);

	} else if (top_waiter == waiter) {
		/* Deboost the owner */
		plist_del(&waiter->pi_list_entry, &task->pi_waiters);
		waiter = rt_mutex_top_waiter(lock);
		waiter->pi_list_entry.prio = waiter->list_entry.prio;
		plist_add(&waiter->pi_list_entry, &task->pi_waiters);
		__rt_mutex_adjust_prio(task);
	}

	raw_spin_unlock_irqrestore(&task->pi_lock, flags);

	top_waiter = rt_mutex_top_waiter(lock);
	raw_spin_unlock(&lock->wait_lock);

	if (!detect_deadlock && waiter != top_waiter)
		goto out_put_task;

	goto again;

 out_unlock_pi:
	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
 out_put_task:
	put_task_struct(task);

	return ret;
}

/*
 * Optimization: check if we can steal the lock from the
 * assigned pending owner [which might not have taken the
 * lock yet]:
 */
static inline int try_to_steal_lock(struct rt_mutex *lock,
				    struct task_struct *task)
{
	struct task_struct *pendowner = rt_mutex_owner(lock);
	struct rt_mutex_waiter *next;
	unsigned long flags;

	if (!rt_mutex_owner_pending(lock))
		return 0;

	if (pendowner == task)
		return 1;

	raw_spin_lock_irqsave(&pendowner->pi_lock, flags);
	if (task->prio >= pendowner->prio) {
		raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
		return 0;
	}

	/*
	 * Check if a waiter is enqueued on the pending owners
	 * pi_waiters list. Remove it and readjust pending owners
	 * priority.
	 */
	if (likely(!rt_mutex_has_waiters(lock))) {
		raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);
		return 1;
	}

	/* No chain handling, pending owner is not blocked on anything: */
	next = rt_mutex_top_waiter(lock);
	plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
	__rt_mutex_adjust_prio(pendowner);
	raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);

	/*
	 * We are going to steal the lock and a waiter was
	 * enqueued on the pending owners pi_waiters queue. So
	 * we have to enqueue this waiter into
	 * task->pi_waiters list. This covers the case,
	 * where task is boosted because it holds another
	 * lock and gets unboosted because the booster is
	 * interrupted, so we would delay a waiter with higher
	 * priority as task->normal_prio.
	 *
	 * Note: in the rare case of a SCHED_OTHER task changing
	 * its priority and thus stealing the lock, next->task
	 * might be task:
	 */
	if (likely(next->task != task)) {
		raw_spin_lock_irqsave(&task->pi_lock, flags);
		plist_add(&next->pi_list_entry, &task->pi_waiters);
		__rt_mutex_adjust_prio(task);
		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
	}
	return 1;
}

/*
 * Try to take an rt-mutex
 *
 * This fails
 * - when the lock has a real owner
 * - when a different pending owner exists and has higher priority than current
 *
 * Must be called with lock->wait_lock held.
 */
static int try_to_take_rt_mutex(struct rt_mutex *lock)
{
	/*
	 * We have to be careful here if the atomic speedups are
	 * enabled, such that, when
	 *  - no other waiter is on the lock
	 *  - the lock has been released since we did the cmpxchg
	 * the lock can be released or taken while we are doing the
	 * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
	 *
	 * The atomic acquire/release aware variant of
	 * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
	 * the WAITERS bit, the atomic release / acquire can not
	 * happen anymore and lock->wait_lock protects us from the
	 * non-atomic case.
	 *
	 * Note, that this might set lock->owner =
	 * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
	 * any more. This is fixed up when we take the ownership.
	 * This is the transitional state explained at the top of this file.
	 */
	mark_rt_mutex_waiters(lock);

	if (rt_mutex_owner(lock) && !try_to_steal_lock(lock, current))
		return 0;

	/* We got the lock. */
	debug_rt_mutex_lock(lock);

	rt_mutex_set_owner(lock, current, 0);

	rt_mutex_deadlock_account_lock(lock, current);

	return 1;
}

/*
 * Task blocks on lock.
 *
 * Prepare waiter and propagate pi chain
 *
 * This must be called with lock->wait_lock held.
 */
static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
				   struct rt_mutex_waiter *waiter,
				   struct task_struct *task,
				   int detect_deadlock)
{
	struct task_struct *owner = rt_mutex_owner(lock);
	struct rt_mutex_waiter *top_waiter = waiter;
	unsigned long flags;
	int chain_walk = 0, res;

	raw_spin_lock_irqsave(&task->pi_lock, flags);
	__rt_mutex_adjust_prio(task);
	waiter->task = task;
	waiter->lock = lock;
	plist_node_init(&waiter->list_entry, task->prio);
	plist_node_init(&waiter->pi_list_entry, task->prio);

	/* Get the top priority waiter on the lock */
	if (rt_mutex_has_waiters(lock))
		top_waiter = rt_mutex_top_waiter(lock);
	plist_add(&waiter->list_entry, &lock->wait_list);

	task->pi_blocked_on = waiter;

	raw_spin_unlock_irqrestore(&task->pi_lock, flags);

	if (waiter == rt_mutex_top_waiter(lock)) {
		raw_spin_lock_irqsave(&owner->pi_lock, flags);
		plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
		plist_add(&waiter->pi_list_entry, &owner->pi_waiters);

		__rt_mutex_adjust_prio(owner);
		if (owner->pi_blocked_on)
			chain_walk = 1;
		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
	}
	else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
		chain_walk = 1;

	if (!chain_walk)
		return 0;

	/*
	 * The owner can't disappear while holding a lock,
	 * so the owner struct is protected by wait_lock.
	 * Gets dropped in rt_mutex_adjust_prio_chain()!
	 */
	get_task_struct(owner);

	raw_spin_unlock(&lock->wait_lock);

	res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
					 task);

	raw_spin_lock(&lock->wait_lock);

	return res;
}

/*
 * Wake up the next waiter on the lock.
 *
 * Remove the top waiter from the current tasks waiter list and from
 * the lock waiter list. Set it as pending owner. Then wake it up.
 *
 * Called with lock->wait_lock held.
 */
static void wakeup_next_waiter(struct rt_mutex *lock)
{
	struct rt_mutex_waiter *waiter;
	struct task_struct *pendowner;
	unsigned long flags;

	raw_spin_lock_irqsave(&current->pi_lock, flags);

	waiter = rt_mutex_top_waiter(lock);
	plist_del(&waiter->list_entry, &lock->wait_list);

	/*
	 * Remove it from current->pi_waiters. We do not adjust a
	 * possible priority boost right now. We execute wakeup in the
	 * boosted mode and go back to normal after releasing
	 * lock->wait_lock.
	 */
	plist_del(&waiter->pi_list_entry, &current->pi_waiters);
	pendowner = waiter->task;
	waiter->task = NULL;

	rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);

	raw_spin_unlock_irqrestore(&current->pi_lock, flags);

	/*
	 * Clear the pi_blocked_on variable and enqueue a possible
	 * waiter into the pi_waiters list of the pending owner. This
	 * prevents that in case the pending owner gets unboosted a
	 * waiter with higher priority than pending-owner->normal_prio
	 * is blocked on the unboosted (pending) owner.
	 */
	raw_spin_lock_irqsave(&pendowner->pi_lock, flags);

	WARN_ON(!pendowner->pi_blocked_on);
	WARN_ON(pendowner->pi_blocked_on != waiter);
	WARN_ON(pendowner->pi_blocked_on->lock != lock);

	pendowner->pi_blocked_on = NULL;

	if (rt_mutex_has_waiters(lock)) {
		struct rt_mutex_waiter *next;

		next = rt_mutex_top_waiter(lock);
		plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
	}
	raw_spin_unlock_irqrestore(&pendowner->pi_lock, flags);

	wake_up_process(pendowner);
}

/*
 * Remove a waiter from a lock
 *
 * Must be called with lock->wait_lock held
 */
static void remove_waiter(struct rt_mutex *lock,
			  struct rt_mutex_waiter *waiter)
{
	int first = (waiter == rt_mutex_top_waiter(lock));
	struct task_struct *owner = rt_mutex_owner(lock);
	unsigned long flags;
	int chain_walk = 0;

	raw_spin_lock_irqsave(&current->pi_lock, flags);
	plist_del(&waiter->list_entry, &lock->wait_list);
	waiter->task = NULL;
	current->pi_blocked_on = NULL;
	raw_spin_unlock_irqrestore(&current->pi_lock, flags);

	if (first && owner != current) {

		raw_spin_lock_irqsave(&owner->pi_lock, flags);

		plist_del(&waiter->pi_list_entry, &owner->pi_waiters);

		if (rt_mutex_has_waiters(lock)) {
			struct rt_mutex_waiter *next;

			next = rt_mutex_top_waiter(lock);
			plist_add(&next->pi_list_entry, &owner->pi_waiters);
		}
		__rt_mutex_adjust_prio(owner);

		if (owner->pi_blocked_on)
			chain_walk = 1;

		raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
	}

	WARN_ON(!plist_node_empty(&waiter->pi_list_entry));

	if (!chain_walk)
		return;

	/* gets dropped in rt_mutex_adjust_prio_chain()! */
	get_task_struct(owner);

	raw_spin_unlock(&lock->wait_lock);

	rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);

	raw_spin_lock(&lock->wait_lock);
}

/*
 * Recheck the pi chain, in case we got a priority setting
 *
 * Called from sched_setscheduler
 */
void rt_mutex_adjust_pi(struct task_struct *task)
{
	struct rt_mutex_waiter *waiter;
	unsigned long flags;

	raw_spin_lock_irqsave(&task->pi_lock, flags);

	waiter = task->pi_blocked_on;
	if (!waiter || waiter->list_entry.prio == task->prio) {
		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
		return;
	}

	raw_spin_unlock_irqrestore(&task->pi_lock, flags);

	/* gets dropped in rt_mutex_adjust_prio_chain()! */
	get_task_struct(task);
	rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
}

/**
 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
 * @lock:		 the rt_mutex to take
 * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
 * 			 or TASK_UNINTERRUPTIBLE)
 * @timeout:		 the pre-initialized and started timer, or NULL for none
 * @waiter:		 the pre-initialized rt_mutex_waiter
 * @detect_deadlock:	 passed to task_blocks_on_rt_mutex
 *
 * lock->wait_lock must be held by the caller.
 */
static int __sched
__rt_mutex_slowlock(struct rt_mutex *lock, int state,
		    struct hrtimer_sleeper *timeout,
		    struct rt_mutex_waiter *waiter,
		    int detect_deadlock)
{
	int ret = 0;

	for (;;) {
		/* Try to acquire the lock: */
		if (try_to_take_rt_mutex(lock))
			break;

		/*
		 * TASK_INTERRUPTIBLE checks for signals and
		 * timeout. Ignored otherwise.
		 */
		if (unlikely(state == TASK_INTERRUPTIBLE)) {
			/* Signal pending? */
			if (signal_pending(current))
				ret = -EINTR;
			if (timeout && !timeout->task)
				ret = -ETIMEDOUT;
			if (ret)
				break;
		}

		/*
		 * waiter->task is NULL the first time we come here and
		 * when we have been woken up by the previous owner
		 * but the lock got stolen by a higher prio task.
		 */
		if (!waiter->task) {
			ret = task_blocks_on_rt_mutex(lock, waiter, current,
						      detect_deadlock);
			/*
			 * If we got woken up by the owner then start loop
			 * all over without going into schedule to try
			 * to get the lock now:
			 */
			if (unlikely(!waiter->task)) {
				/*
				 * Reset the return value. We might
				 * have returned with -EDEADLK and the
				 * owner released the lock while we
				 * were walking the pi chain.
				 */
				ret = 0;
				continue;
			}
			if (unlikely(ret))
				break;
		}

		raw_spin_unlock(&lock->wait_lock);

		debug_rt_mutex_print_deadlock(waiter);

		if (waiter->task)
			schedule_rt_mutex(lock);

		raw_spin_lock(&lock->wait_lock);
		set_current_state(state);
	}

	return ret;
}

/*
 * Slow path lock function:
 */
static int __sched
rt_mutex_slowlock(struct rt_mutex *lock, int state,
		  struct hrtimer_sleeper *timeout,
		  int detect_deadlock)
{
	struct rt_mutex_waiter waiter;
	int ret = 0;

	debug_rt_mutex_init_waiter(&waiter);
	waiter.task = NULL;

	raw_spin_lock(&lock->wait_lock);

	/* Try to acquire the lock again: */
	if (try_to_take_rt_mutex(lock)) {
		raw_spin_unlock(&lock->wait_lock);
		return 0;
	}

	set_current_state(state);

	/* Setup the timer, when timeout != NULL */
	if (unlikely(timeout)) {
		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
		if (!hrtimer_active(&timeout->timer))
			timeout->task = NULL;
	}

	ret = __rt_mutex_slowlock(lock, state, timeout, &waiter,
				  detect_deadlock);

	set_current_state(TASK_RUNNING);

	if (unlikely(waiter.task))
		remove_waiter(lock, &waiter);

	/*
	 * try_to_take_rt_mutex() sets the waiter bit
	 * unconditionally. We might have to fix that up.
	 */
	fixup_rt_mutex_waiters(lock);

	raw_spin_unlock(&lock->wait_lock);

	/* Remove pending timer: */
	if (unlikely(timeout))
		hrtimer_cancel(&timeout->timer);

	/*
	 * Readjust priority, when we did not get the lock. We might
	 * have been the pending owner and boosted. Since we did not
	 * take the lock, the PI boost has to go.
	 */
	if (unlikely(ret))
		rt_mutex_adjust_prio(current);

	debug_rt_mutex_free_waiter(&waiter);

	return ret;
}

/*
 * Slow path try-lock function:
 */
static inline int
rt_mutex_slowtrylock(struct rt_mutex *lock)
{
	int ret = 0;

	raw_spin_lock(&lock->wait_lock);

	if (likely(rt_mutex_owner(lock) != current)) {

		ret = try_to_take_rt_mutex(lock);
		/*
		 * try_to_take_rt_mutex() sets the lock waiters
		 * bit unconditionally. Clean this up.
		 */
		fixup_rt_mutex_waiters(lock);
	}

	raw_spin_unlock(&lock->wait_lock);

	return ret;
}

/*
 * Slow path to release a rt-mutex:
 */
static void __sched
rt_mutex_slowunlock(struct rt_mutex *lock)
{
	raw_spin_lock(&lock->wait_lock);

	debug_rt_mutex_unlock(lock);

	rt_mutex_deadlock_account_unlock(current);

	if (!rt_mutex_has_waiters(lock)) {
		lock->owner = NULL;
		raw_spin_unlock(&lock->wait_lock);
		return;
	}

	wakeup_next_waiter(lock);

	raw_spin_unlock(&lock->wait_lock);

	/* Undo pi boosting if necessary: */
	rt_mutex_adjust_prio(current);
}

/*
 * debug aware fast / slowpath lock,trylock,unlock
 *
 * The atomic acquire/release ops are compiled away, when either the
 * architecture does not support cmpxchg or when debugging is enabled.
 */
static inline int
rt_mutex_fastlock(struct rt_mutex *lock, int state,
		  int detect_deadlock,
		  int (*slowfn)(struct rt_mutex *lock, int state,
				struct hrtimer_sleeper *timeout,
				int detect_deadlock))
{
	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
		rt_mutex_deadlock_account_lock(lock, current);
		return 0;
	} else
		return slowfn(lock, state, NULL, detect_deadlock);
}

static inline int
rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
			struct hrtimer_sleeper *timeout, int detect_deadlock,
			int (*slowfn)(struct rt_mutex *lock, int state,
				      struct hrtimer_sleeper *timeout,
				      int detect_deadlock))
{
	if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
		rt_mutex_deadlock_account_lock(lock, current);
		return 0;
	} else
		return slowfn(lock, state, timeout, detect_deadlock);
}

static inline int
rt_mutex_fasttrylock(struct rt_mutex *lock,
		     int (*slowfn)(struct rt_mutex *lock))
{
	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
		rt_mutex_deadlock_account_lock(lock, current);
		return 1;
	}
	return slowfn(lock);
}

static inline void
rt_mutex_fastunlock(struct rt_mutex *lock,
		    void (*slowfn)(struct rt_mutex *lock))
{
	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
		rt_mutex_deadlock_account_unlock(current);
	else
		slowfn(lock);
}

/**
 * rt_mutex_lock - lock a rt_mutex
 *
 * @lock: the rt_mutex to be locked
 */
void __sched rt_mutex_lock(struct rt_mutex *lock)
{
	might_sleep();

	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock);

/**
 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
 *
 * @lock: 		the rt_mutex to be locked
 * @detect_deadlock:	deadlock detection on/off
 *
 * Returns:
 *  0 		on success
 * -EINTR 	when interrupted by a signal
 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
 */
int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
						 int detect_deadlock)
{
	might_sleep();

	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
				 detect_deadlock, rt_mutex_slowlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);

/**
 * rt_mutex_timed_lock - lock a rt_mutex interruptible
 *			the timeout structure is provided
 *			by the caller
 *
 * @lock: 		the rt_mutex to be locked
 * @timeout:		timeout structure or NULL (no timeout)
 * @detect_deadlock:	deadlock detection on/off
 *
 * Returns:
 *  0 		on success
 * -EINTR 	when interrupted by a signal
 * -ETIMEDOUT	when the timeout expired
 * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
 */
int
rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
		    int detect_deadlock)
{
	might_sleep();

	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
				       detect_deadlock, rt_mutex_slowlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);

/**
 * rt_mutex_trylock - try to lock a rt_mutex
 *
 * @lock:	the rt_mutex to be locked
 *
 * Returns 1 on success and 0 on contention
 */
int __sched rt_mutex_trylock(struct rt_mutex *lock)
{
	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
}
EXPORT_SYMBOL_GPL(rt_mutex_trylock);

/**
 * rt_mutex_unlock - unlock a rt_mutex
 *
 * @lock: the rt_mutex to be unlocked
 */
void __sched rt_mutex_unlock(struct rt_mutex *lock)
{
	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
}
EXPORT_SYMBOL_GPL(rt_mutex_unlock);

/**
 * rt_mutex_destroy - mark a mutex unusable
 * @lock: the mutex to be destroyed
 *
 * This function marks the mutex uninitialized, and any subsequent
 * use of the mutex is forbidden. The mutex must not be locked when
 * this function is called.
 */
void rt_mutex_destroy(struct rt_mutex *lock)
{
	WARN_ON(rt_mutex_is_locked(lock));
#ifdef CONFIG_DEBUG_RT_MUTEXES
	lock->magic = NULL;
#endif
}

EXPORT_SYMBOL_GPL(rt_mutex_destroy);

/**
 * __rt_mutex_init - initialize the rt lock
 *
 * @lock: the rt lock to be initialized
 *
 * Initialize the rt lock to unlocked state.
 *
 * Initializing of a locked rt lock is not allowed
 */
void __rt_mutex_init(struct rt_mutex *lock, const char *name)
{
	lock->owner = NULL;
	raw_spin_lock_init(&lock->wait_lock);
	plist_head_init_raw(&lock->wait_list, &lock->wait_lock);

	debug_rt_mutex_init(lock, name);
}
EXPORT_SYMBOL_GPL(__rt_mutex_init);

/**
 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
 *				proxy owner
 *
 * @lock: 	the rt_mutex to be locked
 * @proxy_owner:the task to set as owner
 *
 * No locking. Caller has to do serializing itself
 * Special API call for PI-futex support
 */
void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
				struct task_struct *proxy_owner)
{
	__rt_mutex_init(lock, NULL);
	debug_rt_mutex_proxy_lock(lock, proxy_owner);
	rt_mutex_set_owner(lock, proxy_owner, 0);
	rt_mutex_deadlock_account_lock(lock, proxy_owner);
}

/**
 * rt_mutex_proxy_unlock - release a lock on behalf of owner
 *
 * @lock: 	the rt_mutex to be locked
 *
 * No locking. Caller has to do serializing itself
 * Special API call for PI-futex support
 */
void rt_mutex_proxy_unlock(struct rt_mutex *lock,
			   struct task_struct *proxy_owner)
{
	debug_rt_mutex_proxy_unlock(lock);
	rt_mutex_set_owner(lock, NULL, 0);
	rt_mutex_deadlock_account_unlock(proxy_owner);
}

/**
 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
 * @lock:		the rt_mutex to take
 * @waiter:		the pre-initialized rt_mutex_waiter
 * @task:		the task to prepare
 * @detect_deadlock:	perform deadlock detection (1) or not (0)
 *
 * Returns:
 *  0 - task blocked on lock
 *  1 - acquired the lock for task, caller should wake it up
 * <0 - error
 *
 * Special API call for FUTEX_REQUEUE_PI support.
 */
int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
			      struct rt_mutex_waiter *waiter,
			      struct task_struct *task, int detect_deadlock)
{
	int ret;

	raw_spin_lock(&lock->wait_lock);

	mark_rt_mutex_waiters(lock);

	if (!rt_mutex_owner(lock) || try_to_steal_lock(lock, task)) {
		/* We got the lock for task. */
		debug_rt_mutex_lock(lock);
		rt_mutex_set_owner(lock, task, 0);
		raw_spin_unlock(&lock->wait_lock);
		rt_mutex_deadlock_account_lock(lock, task);
		return 1;
	}

	ret = task_blocks_on_rt_mutex(lock, waiter, task, detect_deadlock);

	if (ret && !waiter->task) {
		/*
		 * Reset the return value. We might have
		 * returned with -EDEADLK and the owner
		 * released the lock while we were walking the
		 * pi chain.  Let the waiter sort it out.
		 */
		ret = 0;
	}
	raw_spin_unlock(&lock->wait_lock);

	debug_rt_mutex_print_deadlock(waiter);

	return ret;
}

/**
 * rt_mutex_next_owner - return the next owner of the lock
 *
 * @lock: the rt lock query
 *
 * Returns the next owner of the lock or NULL
 *
 * Caller has to serialize against other accessors to the lock
 * itself.
 *
 * Special API call for PI-futex support
 */
struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
{
	if (!rt_mutex_has_waiters(lock))
		return NULL;

	return rt_mutex_top_waiter(lock)->task;
}

/**
 * rt_mutex_finish_proxy_lock() - Complete lock acquisition
 * @lock:		the rt_mutex we were woken on
 * @to:			the timeout, null if none. hrtimer should already have
 * 			been started.
 * @waiter:		the pre-initialized rt_mutex_waiter
 * @detect_deadlock:	perform deadlock detection (1) or not (0)
 *
 * Complete the lock acquisition started our behalf by another thread.
 *
 * Returns:
 *  0 - success
 * <0 - error, one of -EINTR, -ETIMEDOUT, or -EDEADLK
 *
 * Special API call for PI-futex requeue support
 */
int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
			       struct hrtimer_sleeper *to,
			       struct rt_mutex_waiter *waiter,
			       int detect_deadlock)
{
	int ret;

	raw_spin_lock(&lock->wait_lock);

	set_current_state(TASK_INTERRUPTIBLE);

	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter,
				  detect_deadlock);

	set_current_state(TASK_RUNNING);

	if (unlikely(waiter->task))
		remove_waiter(lock, waiter);

	/*
	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
	 * have to fix that up.
	 */
	fixup_rt_mutex_waiters(lock);

	raw_spin_unlock(&lock->wait_lock);

	/*
	 * Readjust priority, when we did not get the lock. We might have been
	 * the pending owner and boosted. Since we did not take the lock, the
	 * PI boost has to go.
	 */
	if (unlikely(ret))
		rt_mutex_adjust_prio(current);

	return ret;
}