aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/relay.c
blob: 33345e73485c6149f2db834fb749a7934f906442 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
// SPDX-License-Identifier: GPL-2.0
/*
 * PCIe host controller driver for Freescale Layerscape SoCs
 *
 * Copyright (C) 2014 Freescale Semiconductor.
 *
 * Author: Minghuan Lian <Minghuan.Lian@freescale.com>
 */

#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/of_pci.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/resource.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>

#include "pcie-designware.h"

/* PEX1/2 Misc Ports Status Register */
#define SCFG_PEXMSCPORTSR(pex_idx)	(0x94 + (pex_idx) * 4)
#define LTSSM_STATE_SHIFT	20
#define LTSSM_STATE_MASK	0x3f
#define LTSSM_PCIE_L0		0x11 /* L0 state */

/* PEX Internal Configuration Registers */
#define PCIE_STRFMR1		0x71c /* Symbol Timer & Filter Mask Register1 */
#define PCIE_ABSERR		0x8d0 /* Bridge Slave Error Response Register */
#define PCIE_ABSERR_SETTING	0x9401 /* Forward error of non-posted request */

#define PCIE_IATU_NUM		6

struct ls_pcie_drvdata {
	u32 lut_offset;
	u32 ltssm_shift;
	u32 lut_dbg;
	const struct dw_pcie_host_ops *ops;
	const struct dw_pcie_ops *dw_pcie_ops;
};

struct ls_pcie {
	struct dw_pcie *pci;
	void __iomem *lut;
	struct regmap *scfg;
	const struct ls_pcie_drvdata *drvdata;
	int index;
};

#define to_ls_pcie(x)	dev_get_drvdata((x)->dev)

static bool ls_pcie_is_bridge(struct ls_pcie *pcie)
{
	struct dw_pcie *pci = pcie->pci;
	u32 header_type;

	header_type = ioread8(pci->dbi_base + PCI_HEADER_TYPE);
	header_type &= 0x7f;

	return header_type == PCI_HEADER_TYPE_BRIDGE;
}

/* Clear multi-function bit */
static void ls_pcie_clear_multifunction(struct ls_pcie *pcie)
{
	struct dw_pcie *pci = pcie->pci;

	iowrite8(PCI_HEADER_TYPE_BRIDGE, pci->dbi_base + PCI_HEADER_TYPE);
}

/* Drop MSG TLP except for Vendor MSG */
static void ls_pcie_drop_msg_tlp(struct ls_pcie *pcie)
{
	u32 val;
	struct dw_pcie *pci = pcie->pci;

	val = ioread32(pci->dbi_base + PCIE_STRFMR1);
	val &= 0xDFFFFFFF;
	iowrite32(val, pci->dbi_base + PCIE_STRFMR1);
}

static void ls_pcie_disable_outbound_atus(struct ls_pcie *pcie)
{
	int i;

	for (i = 0; i < PCIE_IATU_NUM; i++)
		dw_pcie_disable_atu(pcie->pci, i, DW_PCIE_REGION_OUTBOUND);
}

static int ls1021_pcie_link_up(struct dw_pcie *pci)
{
	u32 state;
	struct ls_pcie *pcie = to_ls_pcie(pci);

	if (!pcie->scfg)
		return 0;

	regmap_read(pcie->scfg, SCFG_PEXMSCPORTSR(pcie->index), &state);
	state = (state >> LTSSM_STATE_SHIFT) & LTSSM_STATE_MASK;

	if (state < LTSSM_PCIE_L0)
		return 0;

	return 1;
}

static int ls_pcie_link_up(struct dw_pcie *pci)
{
	struct ls_pcie *pcie = to_ls_pcie(pci);
	u32 state;

	state = (ioread32(pcie->lut + pcie->drvdata->lut_dbg) >>
		 pcie->drvdata->ltssm_shift) &
		 LTSSM_STATE_MASK;

	if (state < LTSSM_PCIE_L0)
		return 0;

	return 1;
}

/* Forward error response of outbound non-posted requests */
static void ls_pcie_fix_error_response(struct ls_pcie *pcie)
{
	struct dw_pcie *pci = pcie->pci;

	iowrite32(PCIE_ABSERR_SETTING, pci->dbi_base + PCIE_ABSERR);
}

static int ls_pcie_host_init(struct pcie_port *pp)
{
	struct dw_pcie *pci = to_dw_pcie_from_pp(pp);
	struct ls_pcie *pcie = to_ls_pcie(pci);

	/*
	 * Disable outbound windows configured by the bootloader to avoid
	 * one transaction hitting multiple outbound windows.
	 * dw_pcie_setup_rc() will reconfigure the outbound windows.
	 */
	ls_pcie_disable_outbound_atus(pcie);
	ls_pcie_fix_error_response(pcie);

	dw_pcie_dbi_ro_wr_en(pci);
	ls_pcie_clear_multifunction(pcie);
	dw_pcie_dbi_ro_wr_dis(pci);

	ls_pcie_drop_msg_tlp(pcie);

	dw_pcie_setup_rc(pp);

	return 0;
}

static int ls1021_pcie_host_init(struct pcie_port *pp)
{
	struct dw_pcie *pci = to_dw_pcie_from_pp(pp);
	struct ls_pcie *pcie = to_ls_pcie(pci);
	struct device *dev = pci->dev;
	u32 index[2];
	int ret;

	pcie->scfg = syscon_regmap_lookup_by_phandle(dev->of_node,
						     "fsl,pcie-scfg");
	if (IS_ERR(pcie->scfg)) {
		ret = PTR_ERR(pcie->scfg);
		dev_err(dev, "No syscfg phandle specified\n");
		pcie->scfg = NULL;
		return ret;
	}

	if (of_property_read_u32_array(dev->of_node,
				       "fsl,pcie-scfg", index, 2)) {
		pcie->scfg = NULL;
		return -EINVAL;
	}
	pcie->index = index[1];

	return ls_pcie_host_init(pp);
}

static int ls_pcie_msi_host_init(struct pcie_port *pp)
{
	struct dw_pcie *pci = to_dw_pcie_from_pp(pp);
	struct device *dev = pci->dev;
	struct device_node *np = dev->of_node;
	struct device_node *msi_node;

	/*
	 * The MSI domain is set by the generic of_msi_configure().  This
	 * .msi_host_init() function keeps us from doing the default MSI
	 * domain setup in dw_pcie_host_init() and also enforces the
	 * requirement that "msi-parent" exists.
	 */
	msi_node = of_parse_phandle(np, "msi-parent", 0);
	if (!msi_node) {
		dev_err(dev, "failed to find msi-parent\n");
		return -EINVAL;
	}

	return 0;
}

static const struct dw_pcie_host_ops ls1021_pcie_host_ops = {
	.host_init = ls1021_pcie_host_init,
	.msi_host_init = ls_pcie_msi_host_init,
};

static const struct dw_pcie_host_ops ls_pcie_host_ops = {
	.host_init = ls_pcie_host_init,
	.msi_host_init = ls_pcie_msi_host_init,
};

static const struct dw_pcie_ops dw_ls1021_pcie_ops = {
	.link_up = ls1021_pcie_link_up,
};

static const struct dw_pcie_ops dw_ls_pcie_ops = {
	.link_up = ls_pcie_link_up,
};

static const struct ls_pcie_drvdata ls1021_drvdata = {
	.ops = &ls1021_pcie_host_ops,
	.dw_pcie_ops = &dw_ls1021_pcie_ops,
};

static const struct ls_pcie_drvdata ls1043_drvdata = {
	.lut_offset = 0x10000,
	.ltssm_shift = 24,
	.lut_dbg = 0x7fc,
	.ops = &ls_pcie_host_ops,
	.dw_pcie_ops = &dw_ls_pcie_ops,
};

static const struct ls_pcie_drvdata ls1046_drvdata = {
	.lut_offset = 0x80000,
	.ltssm_shift = 24,
	.lut_dbg = 0x407fc,
	.ops = &ls_pcie_host_ops,
	.dw_pcie_ops = &dw_ls_pcie_ops,
};

static const struct ls_pcie_drvdata ls2080_drvdata = {
	.lut_offset = 0x80000,
	.ltssm_shift = 0,
	.lut_dbg = 0x7fc,
	.ops = &ls_pcie_host_ops,
	.dw_pcie_ops = &dw_ls_pcie_ops,
};

static const struct ls_pcie_drvdata ls2088_drvdata = {
	.lut_offset = 0x80000,
	.ltssm_shift = 0,
	.lut_dbg = 0x407fc,
	.ops = &ls_pcie_host_ops,
	.dw_pcie_ops = &dw_ls_pcie_ops,
};

static const struct of_device_id ls_pcie_of_match[] = {
	{ .compatible = "fsl,ls1012a-pcie", .data = &ls1046_drvdata },
	{ .compatible = "fsl,ls1021a-pcie", .data = &ls1021_drvdata },
	{ .compatible = "fsl,ls1043a-pcie", .data = &ls1043_drvdata },
	{ .compatible = "fsl,ls1046a-pcie", .data = &ls1046_drvdata },
	{ .compatible = "fsl,ls2080a-pcie", .data = &ls2080_drvdata },
	{ .compatible = "fsl,ls2085a-pcie", .data = &ls2080_drvdata },
	{ .compatible = "fsl,ls2088a-pcie", .data = &ls2088_drvdata },
	{ .compatible = "fsl,ls1088a-pcie", .data = &ls2088_drvdata },
	{ },
};

static int __init ls_add_pcie_port(struct ls_pcie *pcie)
{
	struct dw_pcie *pci = pcie->pci;
	struct pcie_port *pp = &pci->pp;
	struct device *dev = pci->dev;
	int ret;

	pp->ops = pcie->drvdata->ops;

	ret = dw_pcie_host_init(pp);
	if (ret) {
		dev_err(dev, "failed to initialize host\n");
		return ret;
	}

	return 0;
}

static int __init ls_pcie_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct dw_pcie *pci;
	struct ls_pcie *pcie;
	struct resource *dbi_base;
	int ret;

	pcie = devm_kzalloc(dev, sizeof(*pcie/*
 * Public API and common code for kernel->userspace relay file support.
 *
 * See Documentation/filesystems/relayfs.txt for an overview of relayfs.
 *
 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
 *
 * Moved to kernel/relay.c by Paul Mundt, 2006.
 *
 * This file is released under the GPL.
 */
#include <linux/errno.h>
#include <linux/stddef.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/relay.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>

/*
 * close() vm_op implementation for relay file mapping.
 */
static void relay_file_mmap_close(struct vm_area_struct *vma)
{
	struct rchan_buf *buf = vma->vm_private_data;
	buf->chan->cb->buf_unmapped(buf, vma->vm_file);
}

/*
 * nopage() vm_op implementation for relay file mapping.
 */
static struct page *relay_buf_nopage(struct vm_area_struct *vma,
				     unsigned long address,
				     int *type)
{
	struct page *page;
	struct rchan_buf *buf = vma->vm_private_data;
	unsigned long offset = address - vma->vm_start;

	if (address > vma->vm_end)
		return NOPAGE_SIGBUS; /* Disallow mremap */
	if (!buf)
		return NOPAGE_OOM;

	page = vmalloc_to_page(buf->start + offset);
	if (!page)
		return NOPAGE_OOM;
	get_page(page);

	if (type)
		*type = VM_FAULT_MINOR;

	return page;
}

/*
 * vm_ops for relay file mappings.
 */
static struct vm_operations_struct relay_file_mmap_ops = {
	.nopage = relay_buf_nopage,
	.close = relay_file_mmap_close,
};

/**
 *	relay_mmap_buf: - mmap channel buffer to process address space
 *	@buf: relay channel buffer
 *	@vma: vm_area_struct describing memory to be mapped
 *
 *	Returns 0 if ok, negative on error
 *
 *	Caller should already have grabbed mmap_sem.
 */
int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
{
	unsigned long length = vma->vm_end - vma->vm_start;
	struct file *filp = vma->vm_file;

	if (!buf)
		return -EBADF;

	if (length != (unsigned long)buf->chan->alloc_size)
		return -EINVAL;

	vma->vm_ops = &relay_file_mmap_ops;
	vma->vm_private_data = buf;
	buf->chan->cb->buf_mapped(buf, filp);

	return 0;
}

/**
 *	relay_alloc_buf - allocate a channel buffer
 *	@buf: the buffer struct
 *	@size: total size of the buffer
 *
 *	Returns a pointer to the resulting buffer, NULL if unsuccessful. The
 *	passed in size will get page aligned, if it isn't already.
 */
static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
{
	void *mem;
	unsigned int i, j, n_pages;

	*size = PAGE_ALIGN(*size);
	n_pages = *size >> PAGE_SHIFT;

	buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
	if (!buf->page_array)
		return NULL;

	for (i = 0; i < n_pages; i++) {
		buf->page_array[i] = alloc_page(GFP_KERNEL);
		if (unlikely(!buf->page_array[i]))
			goto depopulate;
	}
	mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
	if (!mem)
		goto depopulate;

	memset(mem, 0, *size);
	buf->page_count = n_pages;
	return mem;

depopulate:
	for (j = 0; j < i; j++)
		__free_page(buf->page_array[j]);
	kfree(buf->page_array);
	return NULL;
}

/**
 *	relay_create_buf - allocate and initialize a channel buffer
 *	@alloc_size: size of the buffer to allocate
 *	@n_subbufs: number of sub-buffers in the channel
 *
 *	Returns channel buffer if successful, NULL otherwise
 */
struct rchan_buf *relay_create_buf(struct rchan *chan)
{
	struct rchan_buf *buf = kcalloc(1, sizeof(struct rchan_buf), GFP_KERNEL);
	if (!buf)
		return NULL;

	buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
	if (!buf->padding)
		goto free_buf;

	buf->start = relay_alloc_buf(buf, &chan->alloc_size);
	if (!buf->start)
		goto free_buf;

	buf->chan = chan;
	kref_get(&buf->chan->kref);
	return buf;

free_buf:
	kfree(buf->padding);
	kfree(buf);
	return NULL;
}

/**
 *	relay_destroy_channel - free the channel struct
 *
 *	Should only be called from kref_put().
 */
void relay_destroy_channel(struct kref *kref)
{
	struct rchan *chan = container_of(kref, struct rchan, kref);
	kfree(chan);
}

/**
 *	relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 *	@buf: the buffer struct
 */
void relay_destroy_buf(struct rchan_buf *buf)
{
	struct rchan *chan = buf->chan;
	unsigned int i;

	if (likely(buf->start)) {
		vunmap(buf->start);
		for (i = 0; i < buf->page_count; i++)
			__free_page(buf->page_array[i]);
		kfree(buf->page_array);
	}
	kfree(buf->padding);
	kfree(buf);
	kref_put(&chan->kref, relay_destroy_channel);
}

/**
 *	relay_remove_buf - remove a channel buffer
 *
 *	Removes the file from the fileystem, which also frees the
 *	rchan_buf_struct and the channel buffer.  Should only be called from
 *	kref_put().
 */
void relay_remove_buf(struct kref *kref)
{
	struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
	buf->chan->cb->remove_buf_file(buf->dentry);
	relay_destroy_buf(buf);
}

/**
 *	relay_buf_empty - boolean, is the channel buffer empty?
 *	@buf: channel buffer
 *
 *	Returns 1 if the buffer is empty, 0 otherwise.
 */
int relay_buf_empty(struct rchan_buf *buf)
{
	return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
}
EXPORT_SYMBOL_GPL(relay_buf_empty);

/**
 *	relay_buf_full - boolean, is the channel buffer full?
 *	@buf: channel buffer
 *
 *	Returns 1 if the buffer is full, 0 otherwise.
 */
int relay_buf_full(struct rchan_buf *buf)
{
	size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
	return (ready >= buf->chan->n_subbufs) ? 1 : 0;
}
EXPORT_SYMBOL_GPL(relay_buf_full);

/*
 * High-level relay kernel API and associated functions.
 */

/*
 * rchan_callback implementations defining default channel behavior.  Used
 * in place of corresponding NULL values in client callback struct.
 */

/*
 * subbuf_start() default callback.  Does nothing.
 */
static int subbuf_start_default_callback (struct rchan_buf *buf,
					  void *subbuf,
					  void *prev_subbuf,
					  size_t prev_padding)
{
	if (relay_buf_full(buf))
		return 0;

	return 1;
}

/*
 * buf_mapped() default callback.  Does nothing.
 */
static void buf_mapped_default_callback(struct rchan_buf *buf,
					struct file *filp)
{
}

/*
 * buf_unmapped() default callback.  Does nothing.
 */
static void buf_unmapped_default_callback(struct rchan_buf *buf,
					  struct file *filp)
{
}

/*
 * create_buf_file_create() default callback.  Does nothing.
 */
static struct dentry *create_buf_file_default_callback(const char *filename,
						       struct dentry *parent,
						       int mode,
						       struct rchan_buf *buf,
						       int *is_global)
{
	return NULL;
}

/*
 * remove_buf_file() default callback.  Does nothing.
 */
static int remove_buf_file_default_callback(struct dentry *dentry)
{
	return -EINVAL;
}

/* relay channel default callbacks */
static struct rchan_callbacks default_channel_callbacks = {
	.subbuf_start = subbuf_start_default_callback,
	.buf_mapped = buf_mapped_default_callback,
	.buf_unmapped = buf_unmapped_default_callback,
	.create_buf_file = create_buf_file_default_callback,
	.remove_buf_file = remove_buf_file_default_callback,
};

/**
 *	wakeup_readers - wake up readers waiting on a channel
 *	@private: the channel buffer
 *
 *	This is the work function used to defer reader waking.  The
 *	reason waking is deferred is that calling directly from write
 *	causes problems if you're writing from say the scheduler.
 */
static void wakeup_readers(void *private)
{
	struct rchan_buf *buf = private;
	wake_up_interruptible(&buf->read_wait);
}

/**
 *	__relay_reset - reset a channel buffer
 *	@buf: the channel buffer
 *	@init: 1 if this is a first-time initialization
 *
 *	See relay_reset for description of effect.
 */
static inline void __relay_reset(struct rchan_buf *buf, unsigned int init)
{
	size_t i;

	if (init) {
		init_waitqueue_head(&buf->read_wait);
		kref_init(&buf->kref);
		INIT_WORK(&buf->wake_readers, NULL, NULL);
	} else {
		cancel_delayed_work(&buf->wake_readers);
		flush_scheduled_work();
	}

	buf->subbufs_produced = 0;
	buf->subbufs_consumed = 0;
	buf->bytes_consumed = 0;
	buf->finalized = 0;
	buf->data = buf->start;
	buf->offset = 0;

	for (i = 0; i < buf->chan->n_subbufs; i++)
		buf->padding[i] = 0;

	buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
}

/**
 *	relay_reset - reset the channel
 *	@chan: the channel
 *
 *	This has the effect of erasing all data from all channel buffers
 *	and restarting the channel in its initial state.  The buffers
 *	are not freed, so any mappings are still in effect.
 *
 *	NOTE: Care should be taken that the channel isn't actually
 *	being used by anything when this call is made.
 */
void relay_reset(struct rchan *chan)
{
	unsigned int i;
	struct rchan_buf *prev = NULL;

	if (!chan)
		return;

	for (i = 0; i < NR_CPUS; i++) {
		if (!chan->buf[i] || chan->buf[i] == prev)
			break;
		__relay_reset(chan->buf[i], 0);
		prev = chan->buf[i];
	}
}
EXPORT_SYMBOL_GPL(relay_reset);

/**
 *	relay_open_buf - create a new relay channel buffer
 *
 *	Internal - used by relay_open().
 */
static struct rchan_buf *relay_open_buf(struct rchan *chan,
					const char *filename,
					struct dentry *parent,
					int *is_global)
{
	struct rchan_buf *buf;
	struct dentry *dentry;

	if (*is_global)
		return chan->buf[0];

	buf = relay_create_buf(chan);
	if (!buf)
		return NULL;

	/* Create file in fs */
	dentry = chan->cb->create_buf_file(filename, parent, S_IRUSR,
					   buf, is_global);
	if (!dentry) {
		relay_destroy_buf(buf);
		return NULL;
	}

	buf->dentry = dentry;
	__relay_reset(buf, 1);

	return buf;
}

/**
 *	relay_close_buf - close a channel buffer
 *	@buf: channel buffer
 *
 *	Marks the buffer finalized and restores the default callbacks.
 *	The channel buffer and channel buffer data structure are then freed
 *	automatically when the last reference is given up.
 */
static inline void relay_close_buf(struct rchan_buf *buf)
{
	buf->finalized = 1;
	cancel_delayed_work(&buf->wake_readers);
	flush_scheduled_work();
	kref_put(&buf->kref, relay_remove_buf);
}

static inline void setup_callbacks(struct rchan *chan,
				   struct rchan_callbacks *cb)
{
	if (!cb) {
		chan->cb = &default_channel_callbacks;
		return;
	}

	if (!cb->subbuf_start)
		cb->subbuf_start = subbuf_start_default_callback;
	if (!cb->buf_mapped)
		cb->buf_mapped = buf_mapped_default_callback;
	if (!cb->buf_unmapped)
		cb->buf_unmapped = buf_unmapped_default_callback;
	if (!cb->create_buf_file)
		cb->create_buf_file = create_buf_file_default_callback;
	if (!cb->remove_buf_file)
		cb->remove_buf_file = remove_buf_file_default_callback;
	chan->cb = cb;
}

/**
 *	relay_open - create a new relay channel
 *	@base_filename: base name of files to create
 *	@parent: dentry of parent directory, NULL for root directory
 *	@subbuf_size: size of sub-buffers
 *	@n_subbufs: number of sub-buffers
 *	@cb: client callback functions
 *
 *	Returns channel pointer if successful, NULL otherwise.
 *
 *	Creates a channel buffer for each cpu using the sizes and
 *	attributes specified.  The created channel buffer files
 *	will be named base_filename0...base_filenameN-1.  File
 *	permissions will be S_IRUSR.
 */
struct rchan *relay_open(const char *base_filename,
			 struct dentry *parent,
			 size_t subbuf_size,
			 size_t n_subbufs,
			 struct rchan_callbacks *cb)
{
	unsigned int i;
	struct rchan *chan;
	char *tmpname;
	int is_global = 0;

	if (!base_filename)
		return NULL;

	if (!(subbuf_size && n_subbufs))
		return NULL;

	chan = kcalloc(1, sizeof(struct rchan), GFP_KERNEL);
	if (!chan)
		return NULL;

	chan->version = RELAYFS_CHANNEL_VERSION;
	chan->n_subbufs = n_subbufs;
	chan->subbuf_size = subbuf_size;
	chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
	setup_callbacks(chan, cb);
	kref_init(&chan->kref);

	tmpname = kmalloc(NAME_MAX + 1, GFP_KERNEL);
	if (!tmpname)
		goto free_chan;

	for_each_online_cpu(i) {
		sprintf(tmpname, "%s%d", base_filename, i);
		chan->buf[i] = relay_open_buf(chan, tmpname, parent,
					      &is_global);
		if (!chan->buf[i])
			goto free_bufs;

		chan->buf[i]->cpu = i;
	}

	kfree(tmpname);
	return chan;

free_bufs:
	for (i = 0; i < NR_CPUS; i++) {
		if (!chan->buf[i])
			break;
		relay_close_buf(chan->buf[i]);
		if (is_global)
			break;
	}
	kfree(tmpname);

free_chan:
	kref_put(&chan->kref, relay_destroy_channel);
	return NULL;
}
EXPORT_SYMBOL_GPL(relay_open);

/**
 *	relay_switch_subbuf - switch to a new sub-buffer
 *	@buf: channel buffer
 *	@length: size of current event
 *
 *	Returns either the length passed in or 0 if full.
 *
 *	Performs sub-buffer-switch tasks such as invoking callbacks,
 *	updating padding counts, waking up readers, etc.
 */
size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
{
	void *old, *new;
	size_t old_subbuf, new_subbuf;

	if (unlikely(length > buf->chan->subbuf_size))
		goto toobig;

	if (buf->offset != buf->chan->subbuf_size + 1) {
		buf->prev_padding = buf->chan->subbuf_size - buf->offset;
		old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
		buf->padding[old_subbuf] = buf->prev_padding;
		buf->subbufs_produced++;
		buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
			buf->padding[old_subbuf];
		smp_mb();
		if (waitqueue_active(&buf->read_wait)) {
			PREPARE_WORK(&buf->wake_readers, wakeup_readers, buf);
			schedule_delayed_work(&buf->wake_readers, 1);
		}
	}

	old = buf->data;
	new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
	new = buf->start + new_subbuf * buf->chan->subbuf_size;
	buf->offset = 0;
	if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
		buf->offset = buf->chan->subbuf_size + 1;
		return 0;
	}
	buf->data = new;
	buf->padding[new_subbuf] = 0;

	if (unlikely(length + buf->offset > buf->chan->subbuf_size))
		goto toobig;

	return length;

toobig:
	buf->chan->last_toobig = length;
	return 0;
}
EXPORT_SYMBOL_GPL(relay_switch_subbuf);

/**
 *	relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 *	@chan: the channel
 *	@cpu: the cpu associated with the channel buffer to update
 *	@subbufs_consumed: number of sub-buffers to add to current buf's count
 *
 *	Adds to the channel buffer's consumed sub-buffer count.
 *	subbufs_consumed should be the number of sub-buffers newly consumed,
 *	not the total consumed.
 *
 *	NOTE: kernel clients don't need to call this function if the channel
 *	mode is 'overwrite'.
 */
void relay_subbufs_consumed(struct rchan *chan,
			    unsigned int cpu,
			    size_t subbufs_consumed)
{
	struct rchan_buf *buf;

	if (!chan)
		return;

	if (cpu >= NR_CPUS || !chan->buf[cpu])
		return;

	buf = chan->buf[cpu];
	buf->subbufs_consumed += subbufs_consumed;
	if (buf->subbufs_consumed > buf->subbufs_produced)
		buf->subbufs_consumed = buf->subbufs_produced;
}
EXPORT_SYMBOL_GPL(relay_subbufs_consumed);

/**
 *	relay_close - close the channel
 *	@chan: the channel
 *
 *	Closes all channel buffers and frees the channel.
 */
void relay_close(struct rchan *chan)
{
	unsigned int i;
	struct rchan_buf *prev = NULL;

	if (!chan)
		return;

	for (i = 0; i < NR_CPUS; i++) {
		if (!chan->buf[i] || chan->buf[i] == prev)
			break;
		relay_close_buf(chan->buf[i]);
		prev = chan->buf[i];
	}

	if (chan->last_toobig)
		printk(KERN_WARNING "relay: one or more items not logged "
		       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
		       chan->last_toobig, chan->subbuf_size);

	kref_put(&chan->kref, relay_destroy_channel);
}
EXPORT_SYMBOL_GPL(relay_close);

/**
 *	relay_flush - close the channel
 *	@chan: the channel
 *
 *	Flushes all channel buffers i.e. forces buffer switch.
 */
void relay_flush(struct rchan *chan)
{
	unsigned int i;
	struct rchan_buf *prev = NULL;

	if (!chan)
		return;

	for (i = 0; i < NR_CPUS; i++) {
		if (!chan->buf[i] || chan->buf[i] == prev)
			break;
		relay_switch_subbuf(chan->buf[i], 0);
		prev = chan->buf[i];
	}
}
EXPORT_SYMBOL_GPL(relay_flush);

/**
 *	relay_file_open - open file op for relay files
 *	@inode: the inode
 *	@filp: the file
 *
 *	Increments the channel buffer refcount.
 */
static int relay_file_open(struct inode *inode, struct file *filp)
{
	struct rchan_buf *buf = inode->u.generic_ip;
	kref_get(&buf->kref);
	filp->private_data = buf;

	return 0;
}

/**
 *	relay_file_mmap - mmap file op for relay files
 *	@filp: the file
 *	@vma: the vma describing what to map
 *
 *	Calls upon relay_mmap_buf to map the file into user space.
 */
static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct rchan_buf *buf = filp->private_data;
	return relay_mmap_buf(buf, vma);
}

/**
 *	relay_file_poll - poll file op for relay files
 *	@filp: the file
 *	@wait: poll table
 *
 *	Poll implemention.
 */
static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
{
	unsigned int mask = 0;
	struct rchan_buf *buf = filp->private_data;

	if (buf->finalized)
		return POLLERR;

	if (filp->f_mode & FMODE_READ) {
		poll_wait(filp, &buf->read_wait, wait);
		if (!relay_buf_empty(buf))
			mask |= POLLIN | POLLRDNORM;
	}

	return mask;
}

/**
 *	relay_file_release - release file op for relay files
 *	@inode: the inode
 *	@filp: the file
 *
 *	Decrements the channel refcount, as the filesystem is
 *	no longer using it.
 */
static int relay_file_release(struct inode *inode, struct file *filp)
{
	struct rchan_buf *buf = filp->private_data;
	kref_put(&buf->kref, relay_remove_buf);

	return 0;
}

/**
 *	relay_file_read_consume - update the consumed count for the buffer
 */
static void relay_file_read_consume(struct rchan_buf *buf,
				    size_t read_pos,
				    size_t bytes_consumed)
{
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;
	size_t read_subbuf;

	if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
		buf->bytes_consumed = 0;
	}

	buf->bytes_consumed += bytes_consumed;
	read_subbuf = read_pos / buf->chan->subbuf_size;
	if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
		if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
		    (buf->offset == subbuf_size))
			return;
		relay_subbufs_consumed(buf->chan, buf->cpu, 1);
		buf->bytes_consumed = 0;
	}
}

/**
 *	relay_file_read_avail - boolean, are there unconsumed bytes available?
 */
static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
{
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;
	size_t produced = buf->subbufs_produced;
	size_t consumed = buf->subbufs_consumed;

	relay_file_read_consume(buf, read_pos, 0);

	if (unlikely(buf->offset > subbuf_size)) {
		if (produced == consumed)
			return 0;
		return 1;
	}

	if (unlikely(produced - consumed >= n_subbufs)) {
		consumed = (produced / n_subbufs) * n_subbufs;
		buf->subbufs_consumed = consumed;
	}
	
	produced = (produced % n_subbufs) * subbuf_size + buf->offset;
	consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;

	if (consumed > produced)
		produced += n_subbufs * subbuf_size;
	
	if (consumed == produced)
		return 0;

	return 1;
}

/**
 *	relay_file_read_subbuf_avail - return bytes available in sub-buffer
 */
static size_t relay_file_read_subbuf_avail(size_t read_pos,
					   struct rchan_buf *buf)
{
	size_t padding, avail = 0;
	size_t read_subbuf, read_offset, write_subbuf, write_offset;
	size_t subbuf_size = buf->chan->subbuf_size;

	write_subbuf = (buf->data - buf->start) / subbuf_size;
	write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
	read_subbuf = read_pos / subbuf_size;
	read_offset = read_pos % subbuf_size;
	padding = buf->padding[read_subbuf];

	if (read_subbuf == write_subbuf) {
		if (read_offset + padding < write_offset)
			avail = write_offset - (read_offset + padding);
	} else
		avail = (subbuf_size - padding) - read_offset;

	return avail;
}

/**
 *	relay_file_read_start_pos - find the first available byte to read
 *
 *	If the read_pos is in the middle of padding, return the
 *	position of the first actually available byte, otherwise
 *	return the original value.
 */
static size_t relay_file_read_start_pos(size_t read_pos,
					struct rchan_buf *buf)
{
	size_t read_subbuf, padding, padding_start, padding_end;
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;

	read_subbuf = read_pos / subbuf_size;
	padding = buf->padding[read_subbuf];
	padding_start = (read_subbuf + 1) * subbuf_size - padding;
	padding_end = (read_subbuf + 1) * subbuf_size;
	if (read_pos >= padding_start && read_pos < padding_end) {
		read_subbuf = (read_subbuf + 1) % n_subbufs;
		read_pos = read_subbuf * subbuf_size;
	}

	return read_pos;
}

/**
 *	relay_file_read_end_pos - return the new read position
 */
static size_t relay_file_read_end_pos(struct rchan_buf *buf,
				      size_t read_pos,
				      size_t count)
{
	size_t read_subbuf, padding, end_pos;
	size_t subbuf_size = buf->chan->subbuf_size;
	size_t n_subbufs = buf->chan->n_subbufs;

	read_subbuf = read_pos / subbuf_size;
	padding = buf->padding[read_subbuf];
	if (read_pos % subbuf_size + count + padding == subbuf_size)
		end_pos = (read_subbuf + 1) * subbuf_size;
	else
		end_pos = read_pos + count;
	if (end_pos >= subbuf_size * n_subbufs)
		end_pos = 0;

	return end_pos;
}

/**
 *	subbuf_read_actor - read up to one subbuf's worth of data
 */
static int subbuf_read_actor(size_t read_start,
			     struct rchan_buf *buf,
			     size_t avail,
			     read_descriptor_t *desc,
			     read_actor_t actor)
{
	void *from;
	int ret = 0;

	from = buf->start + read_start;
	ret = avail;
	if (copy_to_user(desc->arg.data, from, avail)) {
		desc->error = -EFAULT;
		ret = 0;
	}
	desc->arg.data += ret;
	desc->written += ret;
	desc->count -= ret;

	return ret;
}

/**
 *	subbuf_send_actor - send up to one subbuf's worth of data
 */
static int subbuf_send_actor(size_t read_start,
			     struct rchan_buf *buf,
			     size_t avail,
			     read_descriptor_t *desc,
			     read_actor_t actor)
{
	unsigned long pidx, poff;
	unsigned int subbuf_pages;
	int ret = 0;

	subbuf_pages = buf->chan->alloc_size >> PAGE_SHIFT;
	pidx = (read_start / PAGE_SIZE) % subbuf_pages;
	poff = read_start & ~PAGE_MASK;
	while (avail) {
		struct page *p = buf->page_array[pidx];
		unsigned int len;

		len = PAGE_SIZE - poff;
		if (len > avail)
			len = avail;

		len = actor(desc, p, poff, len);
		if (desc->error)
			break;

		avail -= len;
		ret += len;
		poff = 0;
		pidx = (pidx + 1) % subbuf_pages;
	}

	return ret;
}

typedef int (*subbuf_actor_t) (size_t read_start,
			       struct rchan_buf *buf,
			       size_t avail,
			       read_descriptor_t *desc,
			       read_actor_t actor);

/**
 *	relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
 */
static inline ssize_t relay_file_read_subbufs(struct file *filp,
					      loff_t *ppos,
					      size_t count,
					      subbuf_actor_t subbuf_actor,
					      read_actor_t actor,
					      void *target)
{
	struct rchan_buf *buf = filp->private_data;
	size_t read_start, avail;
	read_descriptor_t desc;
	int ret;

	if (!count)
		return 0;

	desc.written = 0;
	desc.count = count;
	desc.arg.data = target;
	desc.error = 0;

	mutex_lock(&filp->f_dentry->d_inode->i_mutex);
	do {
		if (!relay_file_read_avail(buf, *ppos))
			break;

		read_start = relay_file_read_start_pos(*ppos, buf);
		avail = relay_file_read_subbuf_avail(read_start, buf);
		if (!avail)
			break;

		avail = min(desc.count, avail);
		ret = subbuf_actor(read_start, buf, avail, &desc, actor);
		if (desc.error < 0)
			break;

		if (ret) {
			relay_file_read_consume(buf, read_start, ret);
			*ppos = relay_file_read_end_pos(buf, read_start, ret);
		}
	} while (desc.count && ret);
	mutex_unlock(&filp->f_dentry->d_inode->i_mutex);

	return desc.written;
}

static ssize_t relay_file_read(struct file *filp,
			       char __user *buffer,
			       size_t count,
			       loff_t *ppos)
{
	return relay_file_read_subbufs(filp, ppos, count, subbuf_read_actor,
				       NULL, buffer);
}

static ssize_t relay_file_sendfile(struct file *filp,
				   loff_t *ppos,
				   size_t count,
				   read_actor_t actor,
				   void *target)
{
	return relay_file_read_subbufs(filp, ppos, count, subbuf_send_actor,
				       actor, target);
}

struct file_operations relay_file_operations = {
	.open		= relay_file_open,
	.poll		= relay_file_poll,
	.mmap		= relay_file_mmap,
	.read		= relay_file_read,
	.llseek		= no_llseek,
	.release	= relay_file_release,
	.sendfile       = relay_file_sendfile,
};
EXPORT_SYMBOL_GPL(relay_file_operations);