aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/params.c
blob: a1e3025b19a9aed003967a0a9e2ff3d05456428b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
/* Helpers for initial module or kernel cmdline parsing
   Copyright (C) 2001 Rusty Russell.

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
*/
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/slab.h>

#if 0
#define DEBUGP printk
#else
#define DEBUGP(fmt, a...)
#endif

static inline char dash2underscore(char c)
{
	if (c == '-')
		return '_';
	return c;
}

static inline int parameq(const char *input, const char *paramname)
{
	unsigned int i;
	for (i = 0; dash2underscore(input[i]) == paramname[i]; i++)
		if (input[i] == '\0')
			return 1;
	return 0;
}

static int parse_one(char *param,
		     char *val,
		     struct kernel_param *params, 
		     unsigned num_params,
		     int (*handle_unknown)(char *param, char *val))
{
	unsigned int i;

	/* Find parameter */
	for (i = 0; i < num_params; i++) {
		if (parameq(param, params[i].name)) {
			DEBUGP("They are equal!  Calling %p\n",
			       params[i].set);
			return params[i].set(val, &params[i]);
		}
	}

	if (handle_unknown) {
		DEBUGP("Unknown argument: calling %p\n", handle_unknown);
		return handle_unknown(param, val);
	}

	DEBUGP("Unknown argument `%s'\n", param);
	return -ENOENT;
}

/* You can use " around spaces, but can't escape ". */
/* Hyphens and underscores equivalent in parameter names. */
static char *next_arg(char *args, char **param, char **val)
{
	unsigned int i, equals = 0;
	int in_quote = 0, quoted = 0;
	char *next;

	if (*args == '"') {
		args++;
		in_quote = 1;
		quoted = 1;
	}

	for (i = 0; args[i]; i++) {
		if (args[i] == ' ' && !in_quote)
			break;
		if (equals == 0) {
			if (args[i] == '=')
				equals = i;
		}
		if (args[i] == '"')
			in_quote = !in_quote;
	}

	*param = args;
	if (!equals)
		*val = NULL;
	else {
		args[equals] = '\0';
		*val = args + equals + 1;

		/* Don't include quotes in value. */
		if (**val == '"') {
			(*val)++;
			if (args[i-1] == '"')
				args[i-1] = '\0';
		}
		if (quoted && args[i-1] == '"')
			args[i-1] = '\0';
	}

	if (args[i]) {
		args[i] = '\0';
		next = args + i + 1;
	} else
		next = args + i;

	/* Chew up trailing spaces. */
	while (*next == ' ')
		next++;
	return next;
}

/* Args looks like "foo=bar,bar2 baz=fuz wiz". */
int parse_args(const char *name,
	       char *args,
	       struct kernel_param *params,
	       unsigned num,
	       int (*unknown)(char *param, char *val))
{
	char *param, *val;

	DEBUGP("Parsing ARGS: %s\n", args);

	/* Chew leading spaces */
	while (*args == ' ')
		args++;

	while (*args) {
		int ret;
		int irq_was_disabled;

		args = next_arg(args, &param, &val);
		irq_was_disabled = irqs_disabled();
		ret = parse_one(param, val, params, num, unknown);
		if (irq_was_disabled && !irqs_disabled()) {
			printk(KERN_WARNING "parse_args(): option '%s' enabled "
					"irq's!\n", param);
		}
		switch (ret) {
		case -ENOENT:
			printk(KERN_ERR "%s: Unknown parameter `%s'\n",
			       name, param);
			return ret;
		case -ENOSPC:
			printk(KERN_ERR
			       "%s: `%s' too large for parameter `%s'\n",
			       name, val ?: "", param);
			return ret;
		case 0:
			break;
		default:
			printk(KERN_ERR
			       "%s: `%s' invalid for parameter `%s'\n",
			       name, val ?: "", param);
			return ret;
		}
	}

	/* All parsed OK. */
	return 0;
}

/* Lazy bastard, eh? */
#define STANDARD_PARAM_DEF(name, type, format, tmptype, strtolfn)      	\
	int param_set_##name(const char *val, struct kernel_param *kp)	\
	{								\
		tmptype l;						\
		int ret;						\
									\
		if (!val) return -EINVAL;				\
		ret = strtolfn(val, 0, &l);				\
		if (ret == -EINVAL || ((type)l != l))			\
			return -EINVAL;					\
		*((type *)kp->arg) = l;					\
		return 0;						\
	}								\
	int param_get_##name(char *buffer, struct kernel_param *kp)	\
	{								\
		return sprintf(buffer, format, *((type *)kp->arg));	\
	}

STANDARD_PARAM_DEF(byte, unsigned char, "%c", unsigned long, strict_strtoul);
STANDARD_PARAM_DEF(short, short, "%hi", long, strict_strtol);
STANDARD_PARAM_DEF(ushort, unsigned short, "%hu", unsigned long, strict_strtoul);
STANDARD_PARAM_DEF(int, int, "%i", long, strict_strtol);
STANDARD_PARAM_DEF(uint, unsigned int, "%u", unsigned long, strict_strtoul);
STANDARD_PARAM_DEF(long, long, "%li", long, strict_strtol);
STANDARD_PARAM_DEF(ulong, unsigned long, "%lu", unsigned long, strict_strtoul);

int param_set_charp(const char *val, struct kernel_param *kp)
{
	if (!val) {
		printk(KERN_ERR "%s: string parameter expected\n",
		       kp->name);
		return -EINVAL;
	}

	if (strlen(val) > 1024) {
		printk(KERN_ERR "%s: string parameter too long\n",
		       kp->name);
		return -ENOSPC;
	}

	*(char **)kp->arg = (char *)val;
	return 0;
}

int param_get_charp(char *buffer, struct kernel_param *kp)
{
	return sprintf(buffer, "%s", *((char **)kp->arg));
}

int param_set_bool(const char *val, struct kernel_param *kp)
{
	/* No equals means "set"... */
	if (!val) val = "1";

	/* One of =[yYnN01] */
	switch (val[0]) {
	case 'y': case 'Y': case '1':
		*(int *)kp->arg = 1;
		return 0;
	case 'n': case 'N': case '0':
		*(int *)kp->arg = 0;
		return 0;
	}
	return -EINVAL;
}

int param_get_bool(char *buffer, struct kernel_param *kp)
{
	/* Y and N chosen as being relatively non-coder friendly */
	return sprintf(buffer, "%c", (*(int *)kp->arg) ? 'Y' : 'N');
}

int param_set_invbool(const char *val, struct kernel_param *kp)
{
	int boolval, ret;
	struct kernel_param dummy;

	dummy.arg = &boolval;
	ret = param_set_bool(val, &dummy);
	if (ret == 0)
		*(int *)kp->arg = !boolval;
	return ret;
}

int param_get_invbool(char *buffer, struct kernel_param *kp)
{
	return sprintf(buffer, "%c", (*(int *)kp->arg) ? 'N' : 'Y');
}

/* We break the rule and mangle the string. */
static int param_array(const char *name,
		       const char *val,
		       unsigned int min, unsigned int max,
		       void *elem, int elemsize,
		       int (*set)(const char *, struct kernel_param *kp),
		       unsigned int *num)
{
	int ret;
	struct kernel_param kp;
	char save;

	/* Get the name right for errors. */
	kp.name = name;
	kp.arg = elem;

	/* No equals sign? */
	if (!val) {
		printk(KERN_ERR "%s: expects arguments\n", name);
		return -EINVAL;
	}

	*num = 0;
	/* We expect a comma-separated list of values. */
	do {
		int len;

		if (*num == max) {
			printk(KERN_ERR "%s: can only take %i arguments\n",
			       name, max);
			return -EINVAL;
		}
		len = strcspn(val, ",");

		/* nul-terminate and parse */
		save = val[len];
		((char *)val)[len] = '\0';
		ret = set(val, &kp);

		if (ret != 0)
			return ret;
		kp.arg += elemsize;
		val += len+1;
		(*num)++;
	} while (save == ',');

	if (*num < min) {
		printk(KERN_ERR "%s: needs at least %i arguments\n",
		       name, min);
		return -EINVAL;
	}
	return 0;
}

int param_array_set(const char *val, struct kernel_param *kp)
{
	const struct kparam_array *arr = kp->arr;
	unsigned int temp_num;

	return param_array(kp->name, val, 1, arr->max, arr->elem,
			   arr->elemsize, arr->set, arr->num ?: &temp_num);
}

int param_array_get(char *buffer, struct kernel_param *kp)
{
	int i, off, ret;
	const struct kparam_array *arr = kp->arr;
	struct kernel_param p;

	p = *kp;
	for (i = off = 0; i < (arr->num ? *arr->num : arr->max); i++) {
		if (i)
			buffer[off++] = ',';
		p.arg = arr->elem + arr->elemsize * i;
		ret = arr->get(buffer + off, &p);
		if (ret < 0)
			return ret;
		off += ret;
	}
	buffer[off] = '\0';
	return off;
}

int param_set_copystring(const char *val, struct kernel_param *kp)
{
	const struct kparam_string *kps = kp->str;

	if (!val) {
		printk(KERN_ERR "%s: missing param set value\n", kp->name);
		return -EINVAL;
	}
	if (strlen(val)+1 > kps->maxlen) {
		printk(KERN_ERR "%s: string doesn't fit in %u chars.\n",
		       kp->name, kps->maxlen-1);
		return -ENOSPC;
	}
	strcpy(kps->string, val);
	return 0;
}

int param_get_string(char *buffer, struct kernel_param *kp)
{
	const struct kparam_string *kps = kp->str;
	return strlcpy(buffer, kps->string, kps->maxlen);
}

/* sysfs output in /sys/modules/XYZ/parameters/ */
#define to_module_attr(n) container_of(n, struct module_attribute, attr);
#define to_module_kobject(n) container_of(n, struct module_kobject, kobj);

extern struct kernel_param __start___param[], __stop___param[];

struct param_attribute
{
	struct module_attribute mattr;
	struct kernel_param *param;
};

struct module_param_attrs
{
	unsigned int num;
	struct attribute_group grp;
	struct param_attribute attrs[0];
};

#ifdef CONFIG_SYSFS
#define to_param_attr(n) container_of(n, struct param_attribute, mattr);

static ssize_t param_attr_show(struct module_attribute *mattr,
			       struct module *mod, char *buf)
{
	int count;
	struct param_attribute *attribute = to_param_attr(mattr);

	if (!attribute->param->get)
		return -EPERM;

	count = attribute->param->get(buf, attribute->param);
	if (count > 0) {
		strcat(buf, "\n");
		++count;
	}
	return count;
}

/* sysfs always hands a nul-terminated string in buf.  We rely on that. */
static ssize_t param_attr_store(struct module_attribute *mattr,
				struct module *owner,
				const char *buf, size_t len)
{
 	int err;
	struct param_attribute *attribute = to_param_attr(mattr);

	if (!attribute->param->set)
		return -EPERM;

	err = attribute->param->set(buf, attribute->param);
	if (!err)
		return len;
	return err;
}
#endif

#ifdef CONFIG_MODULES
#define __modinit
#else
#define __modinit __init
#endif

#ifdef CONFIG_SYSFS
/*
 * add_sysfs_param - add a parameter to sysfs
 * @mk: struct module_kobject
 * @kparam: the actual parameter definition to add to sysfs
 * @name: name of parameter
 *
 * Create a kobject if for a (per-module) parameter if mp NULL, and
 * create file in sysfs.  Returns an error on out of memory.  Always cleans up
 * if there's an error.
 */
static __modinit int add_sysfs_param(struct module_kobject *mk,
				     struct kernel_param *kp,
				     const char *name)
{
	struct module_param_attrs *new;
	struct attribute **attrs;
	int err, num;

	/* We don't bother calling this with invisible parameters. */
	BUG_ON(!kp->perm);

	if (!mk->mp) {
		num = 0;
		attrs = NULL;
	} else {
		num = mk->mp->num;
		attrs = mk->mp->grp.attrs;
	}

	/* Enlarge. */
	new = krealloc(mk->mp,
		       sizeof(*mk->mp) + sizeof(mk->mp->attrs[0]) * (num+1),
		       GFP_KERNEL);
	if (!new) {
		kfree(mk->mp);
		err = -ENOMEM;
		goto fail;
	}
	attrs = krealloc(attrs, sizeof(new->grp.attrs[0])*(num+2), GFP_KERNEL);
	if (!attrs) {
		err = -ENOMEM;
		goto fail_free_new;
	}

	/* Sysfs wants everything zeroed. */
	memset(new, 0, sizeof(*new));
	memset(&new->attrs[num], 0, sizeof(new->attrs[num]));
	memset(&attrs[num], 0, sizeof(attrs[num]));
	new->grp.name = "parameters";
	new->grp.attrs = attrs;

	/* Tack new one on the end. */
	new->attrs[num].param = kp;
	new->attrs[num].mattr.show = param_attr_show;
	new->attrs[num].mattr.store = param_attr_store;
	new->attrs[num].mattr.attr.name = (char *)name;
	new->attrs[num].mattr.attr.mode = kp->perm;
	new->num = num+1;

	/* Fix up all the pointers, since krealloc can move us */
	for (num = 0; num < new->num; num++)
		new->grp.attrs[num] = &new->attrs[num].mattr.attr;
	new->grp.attrs[num] = NULL;

	mk->mp = new;
	return 0;

fail_free_new:
	kfree(new);
fail:
	mk->mp = NULL;
	return err;
}

#ifdef CONFIG_MODULES
static void free_module_param_attrs(struct module_kobject *mk)
{
	kfree(mk->mp->grp.attrs);
	kfree(mk->mp);
	mk->mp = NULL;
}

/*
 * module_param_sysfs_setup - setup sysfs support for one module
 * @mod: module
 * @kparam: module parameters (array)
 * @num_params: number of module parameters
 *
 * Adds sysfs entries for module parameters under
 * /sys/module/[mod->name]/parameters/
 */
int module_param_sysfs_setup(struct module *mod,
			     struct kernel_param *kparam,
			     unsigned int num_params)
{
	int i, err;
	bool params = false;

	for (i = 0; i < num_params; i++) {
		if (kparam[i].perm == 0)
			continue;
		err = add_sysfs_param(&mod->mkobj, &kparam[i], kparam[i].name);
		if (err)
			return err;
		params = true;
	}

	if (!params)
		return 0;

	/* Create the param group. */
	err = sysfs_create_group(&mod->mkobj.kobj, &mod->mkobj.mp->grp);
	if (err)
		free_module_param_attrs(&mod->mkobj);
	return err;
}

/*
 * module_param_sysfs_remove - remove sysfs support for one module
 * @mod: module
 *
 * Remove sysfs entries for module parameters and the corresponding
 * kobject.
 */
void module_param_sysfs_remove(struct module *mod)
{
	if (mod->mkobj.mp) {
		sysfs_remove_group(&mod->mkobj.kobj, &mod->mkobj.mp->grp);
		/* We are positive that no one is using any param
		 * attrs at this point.  Deallocate immediately. */
		free_module_param_attrs(&mod->mkobj);
	}
}
#endif

static void __init kernel_add_sysfs_param(const char *name,
					  struct kernel_param *kparam,
					  unsigned int name_skip)
{
	struct module_kobject *mk;
	struct kobject *kobj;
	int err;

	kobj = kset_find_obj(module_kset, name);
	if (kobj) {
		/* We already have one.  Remove params so we can add more. */
		mk = to_module_kobject(kobj);
		/* We need to remove it before adding parameters. */
		sysfs_remove_group(&mk->kobj, &mk->mp->grp);
	} else {
		mk = kzalloc(sizeof(struct module_kobject), GFP_KERNEL);
		BUG_ON(!mk);

		mk->mod = THIS_MODULE;
		mk->kobj.kset = module_kset;
		err = kobject_init_and_add(&mk->kobj, &module_ktype, NULL,
					   "%s", name);
		if (err) {
			kobject_put(&mk->kobj);
			printk(KERN_ERR "Module '%s' failed add to sysfs, "
			       "error number %d\n", name, err);
			printk(KERN_ERR	"The system will be unstable now.\n");
			return;
		}
		/* So that exit path is even. */
		kobject_get(&mk->kobj);
	}

	/* These should not fail at boot. */
	err = add_sysfs_param(mk, kparam, kparam->name + name_skip);
	BUG_ON(err);
	err = sysfs_create_group(&mk->kobj, &mk->mp->grp);
	BUG_ON(err);
	kobject_uevent(&mk->kobj, KOBJ_ADD);
	kobject_put(&mk->kobj);
}

/*
 * param_sysfs_builtin - add contents in /sys/parameters for built-in modules
 *
 * Add module_parameters to sysfs for "modules" built into the kernel.
 *
 * The "module" name (KBUILD_MODNAME) is stored before a dot, the
 * "parameter" name is stored behind a dot in kernel_param->name. So,
 * extract the "module" name for all built-in kernel_param-eters,
 * and for all who have the same, call kernel_add_sysfs_param.
 */
static void __init param_sysfs_builtin(void)
{
	struct kernel_param *kp;
	unsigned int name_len;
	char modname[MODULE_NAME_LEN];

	for (kp = __start___param; kp < __stop___param; kp++) {
		char *dot;

		if (kp->perm == 0)
			continue;

		dot = strchr(kp->name, '.');
		if (!dot) {
			/* This happens for core_param() */
			strcpy(modname, "kernel");
			name_len = 0;
		} else {
			name_len = dot - kp->name + 1;
			strlcpy(modname, kp->name, name_len);
		}
		kernel_add_sysfs_param(modname, kp, name_len);
	}
}


/* module-related sysfs stuff */

static ssize_t module_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct module_attribute *attribute;
	struct module_kobject *mk;
	int ret;

	attribute = to_module_attr(attr);
	mk = to_module_kobject(kobj);

	if (!attribute->show)
		return -EIO;

	ret = attribute->show(attribute, mk->mod, buf);

	return ret;
}

static ssize_t module_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct module_attribute *attribute;
	struct module_kobject *mk;
	int ret;

	attribute = to_module_attr(attr);
	mk = to_module_kobject(kobj);

	if (!attribute->store)
		return -EIO;

	ret = attribute->store(attribute, mk->mod, buf, len);

	return ret;
}

static struct sysfs_ops module_sysfs_ops = {
	.show = module_attr_show,
	.store = module_attr_store,
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &module_ktype)
		return 1;
	return 0;
}

static struct kset_uevent_ops module_uevent_ops = {
	.filter = uevent_filter,
};

struct kset *module_kset;
int module_sysfs_initialized;

struct kobj_type module_ktype = {
	.sysfs_ops =	&module_sysfs_ops,
};

/*
 * param_sysfs_init - wrapper for built-in params support
 */
static int __init param_sysfs_init(void)
{
	module_kset = kset_create_and_add("module", &module_uevent_ops, NULL);
	if (!module_kset) {
		printk(KERN_WARNING "%s (%d): error creating kset\n",
			__FILE__, __LINE__);
		return -ENOMEM;
	}
	module_sysfs_initialized = 1;

	param_sysfs_builtin();

	return 0;
}
subsys_initcall(param_sysfs_init);

#endif /* CONFIG_SYSFS */

EXPORT_SYMBOL(param_set_byte);
EXPORT_SYMBOL(param_get_byte);
EXPORT_SYMBOL(param_set_short);
EXPORT_SYMBOL(param_get_short);
EXPORT_SYMBOL(param_set_ushort);
EXPORT_SYMBOL(param_get_ushort);
EXPORT_SYMBOL(param_set_int);
EXPORT_SYMBOL(param_get_int);
EXPORT_SYMBOL(param_set_uint);
EXPORT_SYMBOL(param_get_uint);
EXPORT_SYMBOL(param_set_long);
EXPORT_SYMBOL(param_get_long);
EXPORT_SYMBOL(param_set_ulong);
EXPORT_SYMBOL(param_get_ulong);
EXPORT_SYMBOL(param_set_charp);
EXPORT_SYMBOL(param_get_charp);
EXPORT_SYMBOL(param_set_bool);
EXPORT_SYMBOL(param_get_bool);
EXPORT_SYMBOL(param_set_invbool);
EXPORT_SYMBOL(param_get_invbool);
EXPORT_SYMBOL(param_array_set);
EXPORT_SYMBOL(param_array_get);
EXPORT_SYMBOL(param_set_copystring);
EXPORT_SYMBOL(param_get_string);
>| AcceptAllMulticast, /* ROMCmd bits */ EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */ EE_CS = 0x01, /* EEPROM chip select. */ EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */ EE_WRITE_0 = 0x01, EE_WRITE_1 = 0x05, EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */ EE_ENB = (0x4800 | EE_CS), /* The EEPROM commands include the alway-set leading bit. */ EE_READ_CMD = 6, /* RxMissed bits */ RxMissedOver = (1 << 16), RxMissedMask = 0xffff, /* SROM-related bits */ SROMC0InfoLeaf = 27, MediaBlockMask = 0x3f, MediaCustomCSRs = (1 << 6), /* PCIPM bits */ PM_Sleep = (1 << 31), PM_Snooze = (1 << 30), PM_Mask = PM_Sleep | PM_Snooze, /* SIAStatus bits */ NWayState = (1 << 14) | (1 << 13) | (1 << 12), NWayRestart = (1 << 12), NonselPortActive = (1 << 9), LinkFailStatus = (1 << 2), NetCxnErr = (1 << 1), }; static const u32 de_intr_mask = IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty | LinkPass | LinkFail | PciErr; /* * Set the programmable burst length to 4 longwords for all: * DMA errors result without these values. Cache align 16 long. */ static const u32 de_bus_mode = CacheAlign16 | BurstLen4; struct de_srom_media_block { u8 opts; u16 csr13; u16 csr14; u16 csr15; } __attribute__((packed)); struct de_srom_info_leaf { u16 default_media; u8 n_blocks; u8 unused; } __attribute__((packed)); struct de_desc { u32 opts1; u32 opts2; u32 addr1; u32 addr2; }; struct media_info { u16 type; /* DE_MEDIA_xxx */ u16 csr13; u16 csr14; u16 csr15; }; struct ring_info { struct sk_buff *skb; dma_addr_t mapping; }; struct de_private { unsigned tx_head; unsigned tx_tail; unsigned rx_tail; void __iomem *regs; struct net_device *dev; spinlock_t lock; struct de_desc *rx_ring; struct de_desc *tx_ring; struct ring_info tx_skb[DE_TX_RING_SIZE]; struct ring_info rx_skb[DE_RX_RING_SIZE]; unsigned rx_buf_sz; dma_addr_t ring_dma; u32 msg_enable; struct net_device_stats net_stats; struct pci_dev *pdev; u16 setup_frame[DE_SETUP_FRAME_WORDS]; u32 media_type; u32 media_supported; u32 media_advertise; struct media_info media[DE_MAX_MEDIA]; struct timer_list media_timer; u8 *ee_data; unsigned board_idx; unsigned de21040 : 1; unsigned media_lock : 1; }; static void de_set_rx_mode (struct net_device *dev); static void de_tx (struct de_private *de); static void de_clean_rings (struct de_private *de); static void de_media_interrupt (struct de_private *de, u32 status); static void de21040_media_timer (unsigned long data); static void de21041_media_timer (unsigned long data); static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media); static struct pci_device_id de_pci_tbl[] = { { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, { }, }; MODULE_DEVICE_TABLE(pci, de_pci_tbl); static const char * const media_name[DE_MAX_MEDIA] = { "10baseT auto", "BNC", "AUI", "10baseT-HD", "10baseT-FD" }; /* 21040 transceiver register settings: * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/ static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, }; static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, }; static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, }; /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/ static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, }; static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x6F3F, 0x6F3D, }; static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, }; #define dr32(reg) readl(de->regs + (reg)) #define dw32(reg,val) writel((val), de->regs + (reg)) static void de_rx_err_acct (struct de_private *de, unsigned rx_tail, u32 status, u32 len) { if (netif_msg_rx_err (de)) printk (KERN_DEBUG "%s: rx err, slot %d status 0x%x len %d\n", de->dev->name, rx_tail, status, len); if ((status & 0x38000300) != 0x0300) { /* Ingore earlier buffers. */ if ((status & 0xffff) != 0x7fff) { if (netif_msg_rx_err(de)) printk(KERN_WARNING "%s: Oversized Ethernet frame " "spanned multiple buffers, status %8.8x!\n", de->dev->name, status); de->net_stats.rx_length_errors++; } } else if (status & RxError) { /* There was a fatal error. */ de->net_stats.rx_errors++; /* end of a packet.*/ if (status & 0x0890) de->net_stats.rx_length_errors++; if (status & RxErrCRC) de->net_stats.rx_crc_errors++; if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++; } } static void de_rx (struct de_private *de) { unsigned rx_tail = de->rx_tail; unsigned rx_work = DE_RX_RING_SIZE; unsigned drop = 0; int rc; while (rx_work--) { u32 status, len; dma_addr_t mapping; struct sk_buff *skb, *copy_skb; unsigned copying_skb, buflen; skb = de->rx_skb[rx_tail].skb; if (!skb) BUG(); rmb(); status = le32_to_cpu(de->rx_ring[rx_tail].opts1); if (status & DescOwn) break; len = ((status >> 16) & 0x7ff) - 4; mapping = de->rx_skb[rx_tail].mapping; if (unlikely(drop)) { de->net_stats.rx_dropped++; goto rx_next; } if (unlikely((status & 0x38008300) != 0x0300)) { de_rx_err_acct(de, rx_tail, status, len); goto rx_next; } copying_skb = (len <= rx_copybreak); if (unlikely(netif_msg_rx_status(de))) printk(KERN_DEBUG "%s: rx slot %d status 0x%x len %d copying? %d\n", de->dev->name, rx_tail, status, len, copying_skb); buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz; copy_skb = dev_alloc_skb (buflen); if (unlikely(!copy_skb)) { de->net_stats.rx_dropped++; drop = 1; rx_work = 100; goto rx_next; } copy_skb->dev = de->dev; if (!copying_skb) { pci_unmap_single(de->pdev, mapping, buflen, PCI_DMA_FROMDEVICE); skb_put(skb, len); mapping = de->rx_skb[rx_tail].mapping = pci_map_single(de->pdev, copy_skb->data, buflen, PCI_DMA_FROMDEVICE); de->rx_skb[rx_tail].skb = copy_skb; } else { pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); skb_reserve(copy_skb, RX_OFFSET); memcpy(skb_put(copy_skb, len), skb->data, len); pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); /* We'll reuse the original ring buffer. */ skb = copy_skb; } skb->protocol = eth_type_trans (skb, de->dev); de->net_stats.rx_packets++; de->net_stats.rx_bytes += skb->len; de->dev->last_rx = jiffies; rc = netif_rx (skb); if (rc == NET_RX_DROP) drop = 1; rx_next: de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn); if (rx_tail == (DE_RX_RING_SIZE - 1)) de->rx_ring[rx_tail].opts2 = cpu_to_le32(RingEnd | de->rx_buf_sz); else de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz); de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping); rx_tail = NEXT_RX(rx_tail); } if (!rx_work) printk(KERN_WARNING "%s: rx work limit reached\n", de->dev->name); de->rx_tail = rx_tail; } static irqreturn_t de_interrupt (int irq, void *dev_instance, struct pt_regs *regs) { struct net_device *dev = dev_instance; struct de_private *de = dev->priv; u32 status; status = dr32(MacStatus); if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF)) return IRQ_NONE; if (netif_msg_intr(de)) printk(KERN_DEBUG "%s: intr, status %08x mode %08x desc %u/%u/%u\n", dev->name, status, dr32(MacMode), de->rx_tail, de->tx_head, de->tx_tail); dw32(MacStatus, status); if (status & (RxIntr | RxEmpty)) { de_rx(de); if (status & RxEmpty) dw32(RxPoll, NormalRxPoll); } spin_lock(&de->lock); if (status & (TxIntr | TxEmpty)) de_tx(de); if (status & (LinkPass | LinkFail)) de_media_interrupt(de, status); spin_unlock(&de->lock); if (status & PciErr) { u16 pci_status; pci_read_config_word(de->pdev, PCI_STATUS, &pci_status); pci_write_config_word(de->pdev, PCI_STATUS, pci_status); printk(KERN_ERR "%s: PCI bus error, status=%08x, PCI status=%04x\n", dev->name, status, pci_status); } return IRQ_HANDLED; } static void de_tx (struct de_private *de) { unsigned tx_head = de->tx_head; unsigned tx_tail = de->tx_tail; while (tx_tail != tx_head) { struct sk_buff *skb; u32 status; rmb(); status = le32_to_cpu(de->tx_ring[tx_tail].opts1); if (status & DescOwn) break; skb = de->tx_skb[tx_tail].skb; if (!skb) BUG(); if (unlikely(skb == DE_DUMMY_SKB)) goto next; if (unlikely(skb == DE_SETUP_SKB)) { pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, sizeof(de->setup_frame), PCI_DMA_TODEVICE); goto next; } pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, skb->len, PCI_DMA_TODEVICE); if (status & LastFrag) { if (status & TxError) { if (netif_msg_tx_err(de)) printk(KERN_DEBUG "%s: tx err, status 0x%x\n", de->dev->name, status); de->net_stats.tx_errors++; if (status & TxOWC) de->net_stats.tx_window_errors++; if (status & TxMaxCol) de->net_stats.tx_aborted_errors++; if (status & TxLinkFail) de->net_stats.tx_carrier_errors++; if (status & TxFIFOUnder) de->net_stats.tx_fifo_errors++; } else { de->net_stats.tx_packets++; de->net_stats.tx_bytes += skb->len; if (netif_msg_tx_done(de)) printk(KERN_DEBUG "%s: tx done, slot %d\n", de->dev->name, tx_tail); } dev_kfree_skb_irq(skb); } next: de->tx_skb[tx_tail].skb = NULL; tx_tail = NEXT_TX(tx_tail); } de->tx_tail = tx_tail; if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4))) netif_wake_queue(de->dev); } static int de_start_xmit (struct sk_buff *skb, struct net_device *dev) { struct de_private *de = dev->priv; unsigned int entry, tx_free; u32 mapping, len, flags = FirstFrag | LastFrag; struct de_desc *txd; spin_lock_irq(&de->lock); tx_free = TX_BUFFS_AVAIL(de); if (tx_free == 0) { netif_stop_queue(dev); spin_unlock_irq(&de->lock); return 1; } tx_free--; entry = de->tx_head; txd = &de->tx_ring[entry]; len = skb->len; mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE); if (entry == (DE_TX_RING_SIZE - 1)) flags |= RingEnd; if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2))) flags |= TxSwInt; flags |= len; txd->opts2 = cpu_to_le32(flags); txd->addr1 = cpu_to_le32(mapping); de->tx_skb[entry].skb = skb; de->tx_skb[entry].mapping = mapping; wmb(); txd->opts1 = cpu_to_le32(DescOwn); wmb(); de->tx_head = NEXT_TX(entry); if (netif_msg_tx_queued(de)) printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", dev->name, entry, skb->len); if (tx_free == 0) netif_stop_queue(dev); spin_unlock_irq(&de->lock); /* Trigger an immediate transmit demand. */ dw32(TxPoll, NormalTxPoll); dev->trans_start = jiffies; return 0; } /* Set or clear the multicast filter for this adaptor. Note that we only use exclusion around actually queueing the new frame, not around filling de->setup_frame. This is non-deterministic when re-entered but still correct. */ #undef set_bit_le #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0) static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) { struct de_private *de = dev->priv; u16 hash_table[32]; struct dev_mc_list *mclist; int i; u16 *eaddrs; memset(hash_table, 0, sizeof(hash_table)); set_bit_le(255, hash_table); /* Broadcast entry */ /* This should work on big-endian machines as well. */ for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) { int index = ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x1ff; set_bit_le(index, hash_table); for (i = 0; i < 32; i++) { *setup_frm++ = hash_table[i]; *setup_frm++ = hash_table[i]; } setup_frm = &de->setup_frame[13*6]; } /* Fill the final entry with our physical address. */ eaddrs = (u16 *)dev->dev_addr; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; } static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) { struct de_private *de = dev->priv; struct dev_mc_list *mclist; int i; u16 *eaddrs; /* We have <= 14 addresses so we can use the wonderful 16 address perfect filtering of the Tulip. */ for (i = 0, mclist = dev->mc_list; i < dev->mc_count; i++, mclist = mclist->next) { eaddrs = (u16 *)mclist->dmi_addr; *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; } /* Fill the unused entries with the broadcast address. */ memset(setup_frm, 0xff, (15-i)*12); setup_frm = &de->setup_frame[15*6]; /* Fill the final entry with our physical address. */ eaddrs = (u16 *)dev->dev_addr; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; } static void __de_set_rx_mode (struct net_device *dev) { struct de_private *de = dev->priv; u32 macmode; unsigned int entry; u32 mapping; struct de_desc *txd; struct de_desc *dummy_txd = NULL; macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys); if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ macmode |= AcceptAllMulticast | AcceptAllPhys; goto out; } if ((dev->mc_count > 1000) || (dev->flags & IFF_ALLMULTI)) { /* Too many to filter well -- accept all multicasts. */ macmode |= AcceptAllMulticast; goto out; } /* Note that only the low-address shortword of setup_frame is valid! The values are doubled for big-endian architectures. */ if (dev->mc_count > 14) /* Must use a multicast hash table. */ build_setup_frame_hash (de->setup_frame, dev); else build_setup_frame_perfect (de->setup_frame, dev); /* * Now add this frame to the Tx list. */ entry = de->tx_head; /* Avoid a chip errata by prefixing a dummy entry. */ if (entry != 0) { de->tx_skb[entry].skb = DE_DUMMY_SKB; dummy_txd = &de->tx_ring[entry]; dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ? cpu_to_le32(RingEnd) : 0; dummy_txd->addr1 = 0; /* Must set DescOwned later to avoid race with chip */ entry = NEXT_TX(entry); } de->tx_skb[entry].skb = DE_SETUP_SKB; de->tx_skb[entry].mapping = mapping = pci_map_single (de->pdev, de->setup_frame, sizeof (de->setup_frame), PCI_DMA_TODEVICE); /* Put the setup frame on the Tx list. */ txd = &de->tx_ring[entry]; if (entry == (DE_TX_RING_SIZE - 1)) txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame)); else txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame)); txd->addr1 = cpu_to_le32(mapping); wmb(); txd->opts1 = cpu_to_le32(DescOwn); wmb(); if (dummy_txd) { dummy_txd->opts1 = cpu_to_le32(DescOwn); wmb(); } de->tx_head = NEXT_TX(entry); if (TX_BUFFS_AVAIL(de) < 0) BUG(); if (TX_BUFFS_AVAIL(de) == 0) netif_stop_queue(dev); /* Trigger an immediate transmit demand. */ dw32(TxPoll, NormalTxPoll); out: if (macmode != dr32(MacMode)) dw32(MacMode, macmode); } static void de_set_rx_mode (struct net_device *dev) { unsigned long flags; struct de_private *de = dev->priv; spin_lock_irqsave (&de->lock, flags); __de_set_rx_mode(dev); spin_unlock_irqrestore (&de->lock, flags); } static inline void de_rx_missed(struct de_private *de, u32 rx_missed) { if (unlikely(rx_missed & RxMissedOver)) de->net_stats.rx_missed_errors += RxMissedMask; else de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask); } static void __de_get_stats(struct de_private *de) { u32 tmp = dr32(RxMissed); /* self-clearing */ de_rx_missed(de, tmp); } static struct net_device_stats *de_get_stats(struct net_device *dev) { struct de_private *de = dev->priv; /* The chip only need report frame silently dropped. */ spin_lock_irq(&de->lock); if (netif_running(dev) && netif_device_present(dev)) __de_get_stats(de); spin_unlock_irq(&de->lock); return &de->net_stats; } static inline int de_is_running (struct de_private *de) { return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0; } static void de_stop_rxtx (struct de_private *de) { u32 macmode; unsigned int work = 1000; macmode = dr32(MacMode); if (macmode & RxTx) { dw32(MacMode, macmode & ~RxTx); dr32(MacMode); } while (--work > 0) { if (!de_is_running(de)) return; cpu_relax(); } printk(KERN_WARNING "%s: timeout expired stopping DMA\n", de->dev->name); } static inline void de_start_rxtx (struct de_private *de) { u32 macmode; macmode = dr32(MacMode); if ((macmode & RxTx) != RxTx) { dw32(MacMode, macmode | RxTx); dr32(MacMode); } } static void de_stop_hw (struct de_private *de) { udelay(5); dw32(IntrMask, 0); de_stop_rxtx(de); dw32(MacStatus, dr32(MacStatus)); udelay(10); de->rx_tail = 0; de->tx_head = de->tx_tail = 0; } static void de_link_up(struct de_private *de) { if (!netif_carrier_ok(de->dev)) { netif_carrier_on(de->dev); if (netif_msg_link(de)) printk(KERN_INFO "%s: link up, media %s\n", de->dev->name, media_name[de->media_type]); } } static void de_link_down(struct de_private *de) { if (netif_carrier_ok(de->dev)) { netif_carrier_off(de->dev); if (netif_msg_link(de)) printk(KERN_INFO "%s: link down\n", de->dev->name); } } static void de_set_media (struct de_private *de) { unsigned media = de->media_type; u32 macmode = dr32(MacMode); if (de_is_running(de)) BUG(); if (de->de21040) dw32(CSR11, FULL_DUPLEX_MAGIC); dw32(CSR13, 0); /* Reset phy */ dw32(CSR14, de->media[media].csr14); dw32(CSR15, de->media[media].csr15); dw32(CSR13, de->media[media].csr13); /* must delay 10ms before writing to other registers, * especially CSR6 */ mdelay(10); if (media == DE_MEDIA_TP_FD) macmode |= FullDuplex; else macmode &= ~FullDuplex; if (netif_msg_link(de)) { printk(KERN_INFO "%s: set link %s\n" KERN_INFO "%s: mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n" KERN_INFO "%s: set mode 0x%x, set sia 0x%x,0x%x,0x%x\n", de->dev->name, media_name[media], de->dev->name, dr32(MacMode), dr32(SIAStatus), dr32(CSR13), dr32(CSR14), dr32(CSR15), de->dev->name, macmode, de->media[media].csr13, de->media[media].csr14, de->media[media].csr15); } if (macmode != dr32(MacMode)) dw32(MacMode, macmode); } static void de_next_media (struct de_private *de, u32 *media, unsigned int n_media) { unsigned int i; for (i = 0; i < n_media; i++) { if (de_ok_to_advertise(de, media[i])) { de->media_type = media[i]; return; } } } static void de21040_media_timer (unsigned long data) { struct de_private *de = (struct de_private *) data; struct net_device *dev = de->dev; u32 status = dr32(SIAStatus); unsigned int carrier; unsigned long flags; carrier = (status & NetCxnErr) ? 0 : 1; if (carrier) { if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus)) goto no_link_yet; de->media_timer.expires = jiffies + DE_TIMER_LINK; add_timer(&de->media_timer); if (!netif_carrier_ok(dev)) de_link_up(de); else if (netif_msg_timer(de)) printk(KERN_INFO "%s: %s link ok, status %x\n", dev->name, media_name[de->media_type], status); return; } de_link_down(de); if (de->media_lock) return; if (de->media_type == DE_MEDIA_AUI) { u32 next_state = DE_MEDIA_TP; de_next_media(de, &next_state, 1); } else { u32 next_state = DE_MEDIA_AUI; de_next_media(de, &next_state, 1); } spin_lock_irqsave(&de->lock, flags); de_stop_rxtx(de); spin_unlock_irqrestore(&de->lock, flags); de_set_media(de); de_start_rxtx(de); no_link_yet: de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; add_timer(&de->media_timer); if (netif_msg_timer(de)) printk(KERN_INFO "%s: no link, trying media %s, status %x\n", dev->name, media_name[de->media_type], status); } static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media) { switch (new_media) { case DE_MEDIA_TP_AUTO: if (!(de->media_advertise & ADVERTISED_Autoneg)) return 0; if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full))) return 0; break; case DE_MEDIA_BNC: if (!(de->media_advertise & ADVERTISED_BNC)) return 0; break; case DE_MEDIA_AUI: if (!(de->media_advertise & ADVERTISED_AUI)) return 0; break; case DE_MEDIA_TP: if (!(de->media_advertise & ADVERTISED_10baseT_Half)) return 0; break; case DE_MEDIA_TP_FD: if (!(de->media_advertise & ADVERTISED_10baseT_Full)) return 0; break; } return 1; } static void de21041_media_timer (unsigned long data) { struct de_private *de = (struct de_private *) data; struct net_device *dev = de->dev; u32 status = dr32(SIAStatus); unsigned int carrier; unsigned long flags; carrier = (status & NetCxnErr) ? 0 : 1; if (carrier) { if ((de->media_type == DE_MEDIA_TP_AUTO || de->media_type == DE_MEDIA_TP || de->media_type == DE_MEDIA_TP_FD) && (status & LinkFailStatus)) goto no_link_yet; de->media_timer.expires = jiffies + DE_TIMER_LINK; add_timer(&de->media_timer); if (!netif_carrier_ok(dev)) de_link_up(de); else if (netif_msg_timer(de)) printk(KERN_INFO "%s: %s link ok, mode %x status %x\n", dev->name, media_name[de->media_type], dr32(MacMode), status); return; } de_link_down(de); /* if media type locked, don't switch media */ if (de->media_lock) goto set_media; /* if activity detected, use that as hint for new media type */ if (status & NonselPortActive) { unsigned int have_media = 1; /* if AUI/BNC selected, then activity is on TP port */ if (de->media_type == DE_MEDIA_AUI || de->media_type == DE_MEDIA_BNC) { if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)) de->media_type = DE_MEDIA_TP_AUTO; else have_media = 0; } /* TP selected. If there is only TP and BNC, then it's BNC */ else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) && de_ok_to_advertise(de, DE_MEDIA_BNC)) de->media_type = DE_MEDIA_BNC; /* TP selected. If there is only TP and AUI, then it's AUI */ else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) && de_ok_to_advertise(de, DE_MEDIA_AUI)) de->media_type = DE_MEDIA_AUI; /* otherwise, ignore the hint */ else have_media = 0; if (have_media) goto set_media; } /* * Absent or ambiguous activity hint, move to next advertised * media state. If de->media_type is left unchanged, this * simply resets the PHY and reloads the current media settings. */ if (de->media_type == DE_MEDIA_AUI) { u32 next_states[] = { DE_MEDIA_BNC, DE_MEDIA_TP_AUTO }; de_next_media(de, next_states, ARRAY_SIZE(next_states)); } else if (de->media_type == DE_MEDIA_BNC) { u32 next_states[] = { DE_MEDIA_TP_AUTO, DE_MEDIA_AUI }; de_next_media(de, next_states, ARRAY_SIZE(next_states)); } else { u32 next_states[] = { DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO }; de_next_media(de, next_states, ARRAY_SIZE(next_states)); } set_media: spin_lock_irqsave(&de->lock, flags); de_stop_rxtx(de); spin_unlock_irqrestore(&de->lock, flags); de_set_media(de); de_start_rxtx(de); no_link_yet: de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; add_timer(&de->media_timer); if (netif_msg_timer(de)) printk(KERN_INFO "%s: no link, trying media %s, status %x\n", dev->name, media_name[de->media_type], status); } static void de_media_interrupt (struct de_private *de, u32 status) { if (status & LinkPass) { de_link_up(de); mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK); return; } if (!(status & LinkFail)) BUG(); if (netif_carrier_ok(de->dev)) { de_link_down(de); mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); } } static int de_reset_mac (struct de_private *de) { u32 status, tmp; /* * Reset MAC. de4x5.c and tulip.c examined for "advice" * in this area. */ if (dr32(BusMode) == 0xffffffff) return -EBUSY; /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ dw32 (BusMode, CmdReset); mdelay (1); dw32 (BusMode, de_bus_mode); mdelay (1); for (tmp = 0; tmp < 5; tmp++) { dr32 (BusMode); mdelay (1); } mdelay (1); status = dr32(MacStatus); if (status & (RxState | TxState)) return -EBUSY; if (status == 0xffffffff) return -ENODEV; return 0; } static void de_adapter_wake (struct de_private *de) { u32 pmctl; if (de->de21040) return; pci_read_config_dword(de->pdev, PCIPM, &pmctl); if (pmctl & PM_Mask) { pmctl &= ~PM_Mask; pci_write_config_dword(de->pdev, PCIPM, pmctl); /* de4x5.c delays, so we do too */ msleep(10); } } static void de_adapter_sleep (struct de_private *de) { u32 pmctl; if (de->de21040) return; pci_read_config_dword(de->pdev, PCIPM, &pmctl); pmctl |= PM_Sleep; pci_write_config_dword(de->pdev, PCIPM, pmctl); } static int de_init_hw (struct de_private *de) { struct net_device *dev = de->dev; u32 macmode; int rc; de_adapter_wake(de); macmode = dr32(MacMode) & ~MacModeClear; rc = de_reset_mac(de); if (rc) return rc; de_set_media(de); /* reset phy */ dw32(RxRingAddr, de->ring_dma); dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE)); dw32(MacMode, RxTx | macmode); dr32(RxMissed); /* self-clearing */ dw32(IntrMask, de_intr_mask); de_set_rx_mode(dev); return 0; } static int de_refill_rx (struct de_private *de) { unsigned i; for (i = 0; i < DE_RX_RING_SIZE; i++) { struct sk_buff *skb; skb = dev_alloc_skb(de->rx_buf_sz); if (!skb) goto err_out; skb->dev = de->dev; de->rx_skb[i].mapping = pci_map_single(de->pdev, skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE); de->rx_skb[i].skb = skb; de->rx_ring[i].opts1 = cpu_to_le32(DescOwn); if (i == (DE_RX_RING_SIZE - 1)) de->rx_ring[i].opts2 = cpu_to_le32(RingEnd | de->rx_buf_sz); else de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz); de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping); de->rx_ring[i].addr2 = 0; } return 0; err_out: de_clean_rings(de); return -ENOMEM; } static int de_init_rings (struct de_private *de) { memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); de->rx_tail = 0; de->tx_head = de->tx_tail = 0; return de_refill_rx (de); } static int de_alloc_rings (struct de_private *de) { de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma); if (!de->rx_ring) return -ENOMEM; de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE]; return de_init_rings(de); } static void de_clean_rings (struct de_private *de) { unsigned i; memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE); de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); wmb(); memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); wmb(); for (i = 0; i < DE_RX_RING_SIZE; i++) { if (de->rx_skb[i].skb) { pci_unmap_single(de->pdev, de->rx_skb[i].mapping, de->rx_buf_sz, PCI_DMA_FROMDEVICE); dev_kfree_skb(de->rx_skb[i].skb); } } for (i = 0; i < DE_TX_RING_SIZE; i++) { struct sk_buff *skb = de->tx_skb[i].skb; if ((skb) && (skb != DE_DUMMY_SKB)) { if (skb != DE_SETUP_SKB) { dev_kfree_skb(skb); de->net_stats.tx_dropped++; pci_unmap_single(de->pdev, de->tx_skb[i].mapping, skb->len, PCI_DMA_TODEVICE); } else { pci_unmap_single(de->pdev, de->tx_skb[i].mapping, sizeof(de->setup_frame), PCI_DMA_TODEVICE); } } } memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE); memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE); } static void de_free_rings (struct de_private *de) { de_clean_rings(de); pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma); de->rx_ring = NULL; de->tx_ring = NULL; } static int de_open (struct net_device *dev) { struct de_private *de = dev->priv; int rc; unsigned long flags; if (netif_msg_ifup(de)) printk(KERN_DEBUG "%s: enabling interface\n", dev->name); de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); rc = de_alloc_rings(de); if (rc) { printk(KERN_ERR "%s: ring allocation failure, err=%d\n", dev->name, rc); return rc; } rc = de_init_hw(de); if (rc) { printk(KERN_ERR "%s: h/w init failure, err=%d\n", dev->name, rc); goto err_out_free; } rc = request_irq(dev->irq, de_interrupt, SA_SHIRQ, dev->name, dev); if (rc) { printk(KERN_ERR "%s: IRQ %d request failure, err=%d\n", dev->name, dev->irq, rc); goto err_out_hw; } netif_start_queue(dev); mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); return 0; err_out_hw: spin_lock_irqsave(&de->lock, flags); de_stop_hw(de); spin_unlock_irqrestore(&de->lock, flags); err_out_free: de_free_rings(de); return rc; } static int de_close (struct net_device *dev) { struct de_private *de = dev->priv; unsigned long flags; if (netif_msg_ifdown(de)) printk(KERN_DEBUG "%s: disabling interface\n", dev->name); del_timer_sync(&de->media_timer); spin_lock_irqsave(&de->lock, flags); de_stop_hw(de); netif_stop_queue(dev); netif_carrier_off(dev); spin_unlock_irqrestore(&de->lock, flags); free_irq(dev->irq, dev); de_free_rings(de); de_adapter_sleep(de); pci_disable_device(de->pdev); return 0; } static void de_tx_timeout (struct net_device *dev) { struct de_private *de = dev->priv; printk(KERN_DEBUG "%s: NIC status %08x mode %08x sia %08x desc %u/%u/%u\n", dev->name, dr32(MacStatus), dr32(MacMode), dr32(SIAStatus), de->rx_tail, de->tx_head, de->tx_tail); del_timer_sync(&de->media_timer); disable_irq(dev->irq); spin_lock_irq(&de->lock); de_stop_hw(de); netif_stop_queue(dev); netif_carrier_off(dev); spin_unlock_irq(&de->lock); enable_irq(dev->irq); /* Update the error counts. */ __de_get_stats(de); synchronize_irq(dev->irq); de_clean_rings(de); de_init_hw(de); netif_wake_queue(dev); } static void __de_get_regs(struct de_private *de, u8 *buf) { int i; u32 *rbuf = (u32 *)buf; /* read all CSRs */ for (i = 0; i < DE_NUM_REGS; i++) rbuf[i] = dr32(i * 8); /* handle self-clearing RxMissed counter, CSR8 */ de_rx_missed(de, rbuf[8]); } static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd) { ecmd->supported = de->media_supported; ecmd->transceiver = XCVR_INTERNAL; ecmd->phy_address = 0; ecmd->advertising = de->media_advertise; switch (de->media_type) { case DE_MEDIA_AUI: ecmd->port = PORT_AUI; ecmd->speed = 5; break; case DE_MEDIA_BNC: ecmd->port = PORT_BNC; ecmd->speed = 2; break; default: ecmd->port = PORT_TP; ecmd->speed = SPEED_10; break; } if (dr32(MacMode) & FullDuplex) ecmd->duplex = DUPLEX_FULL; else ecmd->duplex = DUPLEX_HALF; if (de->media_lock) ecmd->autoneg = AUTONEG_DISABLE; else ecmd->autoneg = AUTONEG_ENABLE; /* ignore maxtxpkt, maxrxpkt for now */ return 0; } static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd) { u32 new_media; unsigned int media_lock; if (ecmd->speed != SPEED_10 && ecmd->speed != 5 && ecmd->speed != 2) return -EINVAL; if (de->de21040 && ecmd->speed == 2) return -EINVAL; if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) return -EINVAL; if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC) return -EINVAL; if (de->de21040 && ecmd->port == PORT_BNC) return -EINVAL; if (ecmd->transceiver != XCVR_INTERNAL) return -EINVAL; if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE) return -EINVAL; if (ecmd->advertising & ~de->media_supported) return -EINVAL; if (ecmd->autoneg == AUTONEG_ENABLE && (!(ecmd->advertising & ADVERTISED_Autoneg))) return -EINVAL; switch (ecmd->port) { case PORT_AUI: new_media = DE_MEDIA_AUI; if (!(ecmd->advertising & ADVERTISED_AUI)) return -EINVAL; break; case PORT_BNC: new_media = DE_MEDIA_BNC; if (!(ecmd->advertising & ADVERTISED_BNC)) return -EINVAL; break; default: if (ecmd->autoneg == AUTONEG_ENABLE) new_media = DE_MEDIA_TP_AUTO; else if (ecmd->duplex == DUPLEX_FULL) new_media = DE_MEDIA_TP_FD; else new_media = DE_MEDIA_TP; if (!(ecmd->advertising & ADVERTISED_TP)) return -EINVAL; if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half))) return -EINVAL; break; } media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1; if ((new_media == de->media_type) && (media_lock == de->media_lock) && (ecmd->advertising == de->media_advertise)) return 0; /* nothing to change */ de_link_down(de); de_stop_rxtx(de); de->media_type = new_media; de->media_lock = media_lock; de->media_advertise = ecmd->advertising; de_set_media(de); return 0; } static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info) { struct de_private *de = dev->priv; strcpy (info->driver, DRV_NAME); strcpy (info->version, DRV_VERSION); strcpy (info->bus_info, pci_name(de->pdev)); info->eedump_len = DE_EEPROM_SIZE; } static int de_get_regs_len(struct net_device *dev) { return DE_REGS_SIZE; } static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct de_private *de = dev->priv; int rc; spin_lock_irq(&de->lock); rc = __de_get_settings(de, ecmd); spin_unlock_irq(&de->lock); return rc; } static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) { struct de_private *de = dev->priv; int rc; spin_lock_irq(&de->lock); rc = __de_set_settings(de, ecmd); spin_unlock_irq(&de->lock); return rc; } static u32 de_get_msglevel(struct net_device *dev) { struct de_private *de = dev->priv; return de->msg_enable; } static void de_set_msglevel(struct net_device *dev, u32 msglvl) { struct de_private *de = dev->priv; de->msg_enable = msglvl; } static int de_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) { struct de_private *de = dev->priv; if (!de->ee_data) return -EOPNOTSUPP; if ((eeprom->offset != 0) || (eeprom->magic != 0) || (eeprom->len != DE_EEPROM_SIZE)) return -EINVAL; memcpy(data, de->ee_data, eeprom->len); return 0; } static int de_nway_reset(struct net_device *dev) { struct de_private *de = dev->priv; u32 status; if (de->media_type != DE_MEDIA_TP_AUTO) return -EINVAL; if (netif_carrier_ok(de->dev)) de_link_down(de); status = dr32(SIAStatus); dw32(SIAStatus, (status & ~NWayState) | NWayRestart); if (netif_msg_link(de)) printk(KERN_INFO "%s: link nway restart, status %x,%x\n", de->dev->name, status, dr32(SIAStatus)); return 0; } static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *data) { struct de_private *de = dev->priv; regs->version = (DE_REGS_VER << 2) | de->de21040; spin_lock_irq(&de->lock); __de_get_regs(de, data); spin_unlock_irq(&de->lock); } static struct ethtool_ops de_ethtool_ops = { .get_link = ethtool_op_get_link, .get_tx_csum = ethtool_op_get_tx_csum, .get_sg = ethtool_op_get_sg, .get_drvinfo = de_get_drvinfo, .get_regs_len = de_get_regs_len, .get_settings = de_get_settings, .set_settings = de_set_settings, .get_msglevel = de_get_msglevel, .set_msglevel = de_set_msglevel, .get_eeprom = de_get_eeprom, .nway_reset = de_nway_reset, .get_regs = de_get_regs, }; static void __init de21040_get_mac_address (struct de_private *de) { unsigned i; dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */ for (i = 0; i < 6; i++) { int value, boguscnt = 100000; do value = dr32(ROMCmd); while (value < 0 && --boguscnt > 0); de->dev->dev_addr[i] = value; udelay(1); if (boguscnt <= 0) printk(KERN_WARNING PFX "timeout reading 21040 MAC address byte %u\n", i); } } static void __init de21040_get_media_info(struct de_private *de) { unsigned int i; de->media_type = DE_MEDIA_TP; de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full | SUPPORTED_10baseT_Half | SUPPORTED_AUI; de->media_advertise = de->media_supported; for (i = 0; i < DE_MAX_MEDIA; i++) { switch (i) { case DE_MEDIA_AUI: case DE_MEDIA_TP: case DE_MEDIA_TP_FD: de->media[i].type = i; de->media[i].csr13 = t21040_csr13[i]; de->media[i].csr14 = t21040_csr14[i]; de->media[i].csr15 = t21040_csr15[i]; break; default: de->media[i].type = DE_MEDIA_INVALID; break; } } } /* Note: this routine returns extra data bits for size detection. */ static unsigned __init tulip_read_eeprom(void __iomem *regs, int location, int addr_len) { int i; unsigned retval = 0; void __iomem *ee_addr = regs + ROMCmd; int read_cmd = location | (EE_READ_CMD << addr_len); writel(EE_ENB & ~EE_CS, ee_addr); writel(EE_ENB, ee_addr); /* Shift the read command bits out. */ for (i = 4 + addr_len; i >= 0; i--) { short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; writel(EE_ENB | dataval, ee_addr); readl(ee_addr); writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); readl(ee_addr); retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); } writel(EE_ENB, ee_addr); readl(ee_addr); for (i = 16; i > 0; i--) { writel(EE_ENB | EE_SHIFT_CLK, ee_addr); readl(ee_addr); retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); writel(EE_ENB, ee_addr); readl(ee_addr); } /* Terminate the EEPROM access. */ writel(EE_ENB & ~EE_CS, ee_addr); return retval; } static void __init de21041_get_srom_info (struct de_private *de) { unsigned i, sa_offset = 0, ofs; u8 ee_data[DE_EEPROM_SIZE + 6] = {}; unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6; struct de_srom_info_leaf *il; void *bufp; /* download entire eeprom */ for (i = 0; i < DE_EEPROM_WORDS; i++) ((u16 *)ee_data)[i] = le16_to_cpu(tulip_read_eeprom(de->regs, i, ee_addr_size)); /* DEC now has a specification but early board makers just put the address in the first EEPROM locations. */ /* This does memcmp(eedata, eedata+16, 8) */ #ifndef CONFIG_MIPS_COBALT for (i = 0; i < 8; i ++) if (ee_data[i] != ee_data[16+i]) sa_offset = 20; #endif /* store MAC address */ for (i = 0; i < 6; i ++) de->dev->dev_addr[i] = ee_data[i + sa_offset]; /* get offset of controller 0 info leaf. ignore 2nd byte. */ ofs = ee_data[SROMC0InfoLeaf]; if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block))) goto bad_srom; /* get pointer to info leaf */ il = (struct de_srom_info_leaf *) &ee_data[ofs]; /* paranoia checks */ if (il->n_blocks == 0) goto bad_srom; if ((sizeof(ee_data) - ofs) < (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks))) goto bad_srom; /* get default media type */ switch (DE_UNALIGNED_16(&il->default_media)) { case 0x0001: de->media_type = DE_MEDIA_BNC; break; case 0x0002: de->media_type = DE_MEDIA_AUI; break; case 0x0204: de->media_type = DE_MEDIA_TP_FD; break; default: de->media_type = DE_MEDIA_TP_AUTO; break; } if (netif_msg_probe(de)) printk(KERN_INFO "de%d: SROM leaf offset %u, default media %s\n", de->board_idx, ofs, media_name[de->media_type]); /* init SIA register values to defaults */ for (i = 0; i < DE_MAX_MEDIA; i++) { de->media[i].type = DE_MEDIA_INVALID; de->media[i].csr13 = 0xffff; de->media[i].csr14 = 0xffff; de->media[i].csr15 = 0xffff; } /* parse media blocks to see what medias are supported, * and if any custom CSR values are provided */ bufp = ((void *)il) + sizeof(*il); for (i = 0; i < il->n_blocks; i++) { struct de_srom_media_block *ib = bufp; unsigned idx; /* index based on media type in media block */ switch(ib->opts & MediaBlockMask) { case 0: /* 10baseT */ de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half | SUPPORTED_Autoneg; idx = DE_MEDIA_TP; de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; break; case 1: /* BNC */ de->media_supported |= SUPPORTED_BNC; idx = DE_MEDIA_BNC; break; case 2: /* AUI */ de->media_supported |= SUPPORTED_AUI; idx = DE_MEDIA_AUI; break; case 4: /* 10baseT-FD */ de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full | SUPPORTED_Autoneg; idx = DE_MEDIA_TP_FD; de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; break; default: goto bad_srom; } de->media[idx].type = idx; if (netif_msg_probe(de)) printk(KERN_INFO "de%d: media block #%u: %s", de->board_idx, i, media_name[de->media[idx].type]); bufp += sizeof (ib->opts); if (ib->opts & MediaCustomCSRs) { de->media[idx].csr13 = DE_UNALIGNED_16(&ib->csr13); de->media[idx].csr14 = DE_UNALIGNED_16(&ib->csr14); de->media[idx].csr15 = DE_UNALIGNED_16(&ib->csr15); bufp += sizeof(ib->csr13) + sizeof(ib->csr14) + sizeof(ib->csr15); if (netif_msg_probe(de)) printk(" (%x,%x,%x)\n", de->media[idx].csr13, de->media[idx].csr14, de->media[idx].csr15); } else if (netif_msg_probe(de)) printk("\n"); if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3])) break; } de->media_advertise = de->media_supported; fill_defaults: /* fill in defaults, for cases where custom CSRs not used */ for (i = 0; i < DE_MAX_MEDIA; i++) { if (de->media[i].csr13 == 0xffff) de->media[i].csr13 = t21041_csr13[i]; if (de->media[i].csr14 == 0xffff) de->media[i].csr14 = t21041_csr14[i]; if (de->media[i].csr15 == 0xffff) de->media[i].csr15 = t21041_csr15[i]; } de->ee_data = kmalloc(DE_EEPROM_SIZE, GFP_KERNEL); if (de->ee_data) memcpy(de->ee_data, &ee_data[0], DE_EEPROM_SIZE); return; bad_srom: /* for error cases, it's ok to assume we support all these */ for (i = 0; i < DE_MAX_MEDIA; i++) de->media[i].type = i; de->media_supported = SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_AUI | SUPPORTED_BNC; goto fill_defaults; } static int __init de_init_one (struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *dev; struct de_private *de; int rc; void __iomem *regs; unsigned long pciaddr; static int board_idx = -1; board_idx++; #ifndef MODULE if (board_idx == 0) printk("%s", version); #endif /* allocate a new ethernet device structure, and fill in defaults */ dev = alloc_etherdev(sizeof(struct de_private)); if (!dev) return -ENOMEM; SET_MODULE_OWNER(dev); SET_NETDEV_DEV(dev, &pdev->dev); dev->open = de_open; dev->stop = de_close; dev->set_multicast_list = de_set_rx_mode; dev->hard_start_xmit = de_start_xmit; dev->get_stats = de_get_stats; dev->ethtool_ops = &de_ethtool_ops; dev->tx_timeout = de_tx_timeout; dev->watchdog_timeo = TX_TIMEOUT; de = dev->priv; de->de21040 = ent->driver_data == 0 ? 1 : 0; de->pdev = pdev; de->dev = dev; de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug); de->board_idx = board_idx; spin_lock_init (&de->lock); init_timer(&de->media_timer); if (de->de21040) de->media_timer.function = de21040_media_timer; else de->media_timer.function = de21041_media_timer; de->media_timer.data = (unsigned long) de; netif_carrier_off(dev); netif_stop_queue(dev); /* wake up device, assign resources */ rc = pci_enable_device(pdev); if (rc) goto err_out_free; /* reserve PCI resources to ensure driver atomicity */ rc = pci_request_regions(pdev, DRV_NAME); if (rc) goto err_out_disable; /* check for invalid IRQ value */ if (pdev->irq < 2) { rc = -EIO; printk(KERN_ERR PFX "invalid irq (%d) for pci dev %s\n", pdev->irq, pci_name(pdev)); goto err_out_res; } dev->irq = pdev->irq; /* obtain and check validity of PCI I/O address */ pciaddr = pci_resource_start(pdev, 1); if (!pciaddr) { rc = -EIO; printk(KERN_ERR PFX "no MMIO resource for pci dev %s\n", pci_name(pdev)); goto err_out_res; } if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) { rc = -EIO; printk(KERN_ERR PFX "MMIO resource (%lx) too small on pci dev %s\n", pci_resource_len(pdev, 1), pci_name(pdev)); goto err_out_res; } /* remap CSR registers */ regs = ioremap_nocache(pciaddr, DE_REGS_SIZE); if (!regs) { rc = -EIO; printk(KERN_ERR PFX "Cannot map PCI MMIO (%lx@%lx) on pci dev %s\n", pci_resource_len(pdev, 1), pciaddr, pci_name(pdev)); goto err_out_res; } dev->base_addr = (unsigned long) regs; de->regs = regs; de_adapter_wake(de); /* make sure hardware is not running */ rc = de_reset_mac(de); if (rc) { printk(KERN_ERR PFX "Cannot reset MAC, pci dev %s\n", pci_name(pdev)); goto err_out_iomap; } /* get MAC address, initialize default media type and * get list of supported media */ if (de->de21040) { de21040_get_mac_address(de); de21040_get_media_info(de); } else { de21041_get_srom_info(de); } /* register new network interface with kernel */ rc = register_netdev(dev); if (rc) goto err_out_iomap; /* print info about board and interface just registered */ printk (KERN_INFO "%s: %s at 0x%lx, " "%02x:%02x:%02x:%02x:%02x:%02x, " "IRQ %d\n", dev->name, de->de21040 ? "21040" : "21041", dev->base_addr, dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2], dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], dev->irq); pci_set_drvdata(pdev, dev); /* enable busmastering */ pci_set_master(pdev); /* put adapter to sleep */ de_adapter_sleep(de); return 0; err_out_iomap: kfree(de->ee_data); iounmap(regs); err_out_res: pci_release_regions(pdev); err_out_disable: pci_disable_device(pdev); err_out_free: free_netdev(dev); return rc; } static void __exit de_remove_one (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); struct de_private *de = dev->priv; if (!dev) BUG(); unregister_netdev(dev); kfree(de->ee_data); iounmap(de->regs); pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); free_netdev(dev); } #ifdef CONFIG_PM static int de_suspend (struct pci_dev *pdev, pm_message_t state) { struct net_device *dev = pci_get_drvdata (pdev); struct de_private *de = dev->priv; rtnl_lock(); if (netif_running (dev)) { del_timer_sync(&de->media_timer); disable_irq(dev->irq); spin_lock_irq(&de->lock); de_stop_hw(de); netif_stop_queue(dev); netif_device_detach(dev); netif_carrier_off(dev); spin_unlock_irq(&de->lock); enable_irq(dev->irq); /* Update the error counts. */ __de_get_stats(de); synchronize_irq(dev->irq); de_clean_rings(de); de_adapter_sleep(de); pci_disable_device(pdev); } else { netif_device_detach(dev); } rtnl_unlock(); return 0; } static int de_resume (struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata (pdev); struct de_private *de = dev->priv; rtnl_lock(); if (netif_device_present(dev)) goto out; if (netif_running(dev)) { pci_enable_device(pdev); de_init_hw(de); netif_device_attach(dev); } else { netif_device_attach(dev); } out: rtnl_unlock(); return 0; } #endif /* CONFIG_PM */ static struct pci_driver de_driver = { .name = DRV_NAME, .id_table = de_pci_tbl, .probe = de_init_one, .remove = __exit_p(de_remove_one), #ifdef CONFIG_PM .suspend = de_suspend, .resume = de_resume, #endif }; static int __init de_init (void) { #ifdef MODULE printk("%s", version); #endif return pci_module_init (&de_driver); } static void __exit de_exit (void) { pci_unregister_driver (&de_driver); } module_init(de_init); module_exit(de_exit);