1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/*
* Constant definitions related to
* scheduling policy.
*/
#ifndef _LINUX_LITMUS_H_
#define _LINUX_LITMUS_H_
#include <litmus/debug_trace.h>
#ifdef CONFIG_PLUGIN_AEDZL
#include <litmus/fpmath.h>
#endif
#ifdef CONFIG_RELEASE_MASTER
extern atomic_t release_master_cpu;
#endif
/* in_list - is a given list_head queued on some list?
*/
static inline int in_list(struct list_head* list)
{
return !( /* case 1: deleted */
(list->next == LIST_POISON1 &&
list->prev == LIST_POISON2)
||
/* case 2: initialized */
(list->next == list &&
list->prev == list)
);
}
#define NO_CPU 0xffffffff
void litmus_fork(struct task_struct *tsk);
void litmus_exec(void);
/* clean up real-time state of a task */
void exit_litmus(struct task_struct *dead_tsk);
long litmus_admit_task(struct task_struct *tsk);
void litmus_exit_task(struct task_struct *tsk);
#define is_realtime(t) ((t)->policy == SCHED_LITMUS)
#define rt_transition_pending(t) \
((t)->rt_param.transition_pending)
#define tsk_rt(t) (&(t)->rt_param)
/* Realtime utility macros */
#define get_rt_flags(t) (tsk_rt(t)->flags)
#define set_rt_flags(t,f) (tsk_rt(t)->flags=(f))
#define get_exec_cost(t) (tsk_rt(t)->task_params.exec_cost)
#define get_exec_time(t) (tsk_rt(t)->job_params.exec_time)
#define get_rt_period(t) (tsk_rt(t)->task_params.period)
#define get_rt_phase(t) (tsk_rt(t)->task_params.phase)
#define get_partition(t) (tsk_rt(t)->task_params.cpu)
#define get_deadline(t) (tsk_rt(t)->job_params.deadline)
#define get_release(t) (tsk_rt(t)->job_params.release)
#define get_class(t) (tsk_rt(t)->task_params.cls)
#ifdef CONFIG_PLUGIN_EDZL
#define get_zerolaxity(t) (tsk_rt(t)->job_params.zero_laxity)
#define set_zerolaxity(t) (tsk_rt(t)->job_params.zero_laxity=1)
#define clear_zerolaxity(t) (tsk_rt(t)->job_params.zero_laxity=0)
#endif
inline static int budget_exhausted(struct task_struct* t)
{
return get_exec_time(t) >= get_exec_cost(t);
}
inline static lt_t budget_remaining(struct task_struct* t)
{
if (!budget_exhausted(t))
return get_exec_cost(t) - get_exec_time(t);
else
/* avoid overflow */
return 0;
}
#define budget_enforced(t) (tsk_rt(t)->task_params.budget_policy != NO_ENFORCEMENT)
#define budget_precisely_enforced(t) (tsk_rt(t)->task_params.budget_policy \
== PRECISE_ENFORCEMENT)
#define is_hrt(t) \
(tsk_rt(t)->task_params.class == RT_CLASS_HARD)
#define is_srt(t) \
(tsk_rt(t)->task_params.class == RT_CLASS_SOFT)
#define is_be(t) \
(tsk_rt(t)->task_params.class == RT_CLASS_BEST_EFFORT)
/* Our notion of time within LITMUS: kernel monotonic time. */
static inline lt_t litmus_clock(void)
{
return ktime_to_ns(ktime_get());
}
#ifdef CONFIG_PLUGIN_EDZL
inline static lt_t laxity_remaining(struct task_struct* t)
{
lt_t now = litmus_clock();
lt_t remaining = budget_remaining(t);
lt_t deadline = get_deadline(t);
if(lt_before(now + remaining, deadline))
return (deadline - (now + remaining));
else
return 0;
}
#endif
#ifdef CONFIG_PLUGIN_AEDZL
#define get_feedback_a(t) (tsk_rt(t)->task_params.a)
#define get_feedback_b(t) (tsk_rt(t)->task_params.b)
inline static lt_t get_exec_cost_est(struct task_struct* t)
{
return (lt_t)( /* express cost in terms of lt_t */
abs( /* fp_t sometimes has both num and denom < 0,
assume fraction is not negative and take abs()*/
_fp_to_integer( /* truncate off fractional part */
_mul( /* exe = util * period */
tsk_rt(t)->zl_util_est, _frac(get_rt_period(t), 1)
)
)
)
);
}
inline static int budget_exhausted_est(struct task_struct* t)
{
return get_exec_time(t) >= get_exec_cost_est(t);
}
inline static lt_t budget_remaining_est(struct task_struct* t)
{
if (!budget_exhausted_est(t))
return get_exec_cost_est(t) - get_exec_time(t);
else
return 0; /* avoid overflow */
}
inline static lt_t laxity_remaining_est(struct task_struct* t)
{
lt_t now = litmus_clock();
lt_t remaining = budget_remaining_est(t);
lt_t deadline = get_deadline(t);
if(lt_before(now + remaining, deadline))
return (deadline - (now + remaining));
else
return 0;
}
#endif
/* A macro to convert from nanoseconds to ktime_t. */
#define ns_to_ktime(t) ktime_add_ns(ktime_set(0, 0), t)
#define get_domain(t) (tsk_rt(t)->domain)
/* Honor the flag in the preempt_count variable that is set
* when scheduling is in progress.
*/
#define is_running(t) \
((t)->state == TASK_RUNNING || \
task_thread_info(t)->preempt_count & PREEMPT_ACTIVE)
#define is_blocked(t) \
(!is_running(t))
#define is_released(t, now) \
(lt_before_eq(get_release(t), now))
#define is_tardy(t, now) \
(lt_before_eq(tsk_rt(t)->job_params.deadline, now))
/* real-time comparison macros */
#define earlier_deadline(a, b) (lt_before(\
(a)->rt_param.job_params.deadline,\
(b)->rt_param.job_params.deadline))
#define earlier_release(a, b) (lt_before(\
(a)->rt_param.job_params.release,\
(b)->rt_param.job_params.release))
void preempt_if_preemptable(struct task_struct* t, int on_cpu);
#ifdef CONFIG_SRP
void srp_ceiling_block(void);
#else
#define srp_ceiling_block() /* nothing */
#endif
#define bheap2task(hn) ((struct task_struct*) hn->value)
#ifdef CONFIG_NP_SECTION
static inline int is_kernel_np(struct task_struct *t)
{
return tsk_rt(t)->kernel_np;
}
static inline int is_user_np(struct task_struct *t)
{
return tsk_rt(t)->ctrl_page ? tsk_rt(t)->ctrl_page->np_flag : 0;
}
static inline void request_exit_np(struct task_struct *t)
{
if (is_user_np(t)) {
/* Set the flag that tells user space to call
* into the kernel at the end of a critical section. */
if (likely(tsk_rt(t)->ctrl_page)) {
TRACE_TASK(t, "setting delayed_preemption flag\n");
tsk_rt(t)->ctrl_page->delayed_preemption = 1;
}
}
}
static inline void clear_exit_np(struct task_struct *t)
{
if (likely(tsk_rt(t)->ctrl_page))
tsk_rt(t)->ctrl_page->delayed_preemption = 0;
}
static inline void make_np(struct task_struct *t)
{
tsk_rt(t)->kernel_np++;
}
/* Caller should check if preemption is necessary when
* the function return 0.
*/
static inline int take_np(struct task_struct *t)
{
return --tsk_rt(t)->kernel_np;
}
#else
static inline int is_kernel_np(struct task_struct* t)
{
return 0;
}
static inline int is_user_np(struct task_struct* t)
{
return 0;
}
static inline void request_exit_np(struct task_struct *t)
{
/* request_exit_np() shouldn't be called if !CONFIG_NP_SECTION */
BUG();
}
static inline void clear_exit_np(struct task_struct* t)
{
}
#endif
static inline int is_np(struct task_struct *t)
{
#ifdef CONFIG_SCHED_DEBUG_TRACE
int kernel, user;
kernel = is_kernel_np(t);
user = is_user_np(t);
if (kernel || user)
TRACE_TASK(t, " is non-preemptive: kernel=%d user=%d\n",
kernel, user);
return kernel || user;
#else
return unlikely(is_kernel_np(t) || is_user_np(t));
#endif
}
static inline int is_present(struct task_struct* t)
{
return t && tsk_rt(t)->present;
}
/* make the unit explicit */
typedef unsigned long quanta_t;
enum round {
FLOOR,
CEIL
};
/* Tick period is used to convert ns-specified execution
* costs and periods into tick-based equivalents.
*/
extern ktime_t tick_period;
static inline quanta_t time2quanta(lt_t time, enum round round)
{
s64 quantum_length = ktime_to_ns(tick_period);
if (do_div(time, quantum_length) && round == CEIL)
time++;
return (quanta_t) time;
}
/* By how much is cpu staggered behind CPU 0? */
u64 cpu_stagger_offset(int cpu);
#endif
|