aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/slab.h
blob: 0289ec89300a54fd81e665622e35251632e99c6c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
 *
 * (C) SGI 2006, Christoph Lameter <clameter@sgi.com>
 * 	Cleaned up and restructured to ease the addition of alternative
 * 	implementations of SLAB allocators.
 */

#ifndef _LINUX_SLAB_H
#define	_LINUX_SLAB_H

#ifdef __KERNEL__

#include <linux/gfp.h>
#include <linux/types.h>

/*
 * Flags to pass to kmem_cache_create().
 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
 */
#define SLAB_DEBUG_FREE		0x00000100UL	/* DEBUG: Perform (expensive) checks on free */
#define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
#define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
#define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
#define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
#define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
#define SLAB_RECLAIM_ACCOUNT	0x00020000UL	/* Objects are reclaimable */
#define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
#define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
#define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
#define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */

/*
 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
 *
 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
 *
 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
 * Both make kfree a no-op.
 */
#define ZERO_SIZE_PTR ((void *)16)

#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) < \
				(unsigned long)ZERO_SIZE_PTR)

/*
 * struct kmem_cache related prototypes
 */
void __init kmem_cache_init(void);
int slab_is_available(void);

struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
			unsigned long,
			void (*)(void *, struct kmem_cache *, unsigned long),
			void (*)(void *, struct kmem_cache *, unsigned long));
void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
void *kmem_cache_zalloc(struct kmem_cache *, gfp_t);
void kmem_cache_free(struct kmem_cache *, void *);
unsigned int kmem_cache_size(struct kmem_cache *);
const char *kmem_cache_name(struct kmem_cache *);
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);

/*
 * Please use this macro to create slab caches. Simply specify the
 * name of the structure and maybe some flags that are listed above.
 *
 * The alignment of the struct determines object alignment. If you
 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
 * then the objects will be properly aligned in SMP configurations.
 */
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
		sizeof(struct __struct), __alignof__(struct __struct),\
		(__flags), NULL, NULL)

/*
 * The largest kmalloc size supported by the slab allocators is
 * 32 megabyte (2^25) or the maximum allocatable page order if that is
 * less than 32 MB.
 *
 * WARNING: Its not easy to increase this value since the allocators have
 * to do various tricks to work around compiler limitations in order to
 * ensure proper constant folding.
 */
#define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
				(MAX_ORDER + PAGE_SHIFT - 1) : 25)

#define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
#define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_HIGH - PAGE_SHIFT)

/*
 * Common kmalloc functions provided by all allocators
 */
void *__kzalloc(size_t, gfp_t);
void * __must_check krealloc(const void *, size_t, gfp_t);
void kfree(const void *);
size_t ksize(const void *);

/**
 * kcalloc - allocate memory for an array. The memory is set to zero.
 * @n: number of elements.
 * @size: element size.
 * @flags: the type of memory to allocate.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 *   For example, use this inside interrupt handlers.
 *
 * %GFP_HIGHUSER - Allocate pages from high memory.
 *
 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 *
 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 *
 * %GFP_NOWAIT - Allocation will not sleep.
 *
 * %GFP_THISNODE - Allocate node-local memory only.
 *
 * %GFP_DMA - Allocation suitable for DMA.
 *   Should only be used for kmalloc() caches. Otherwise, use a
 *   slab created with SLAB_DMA.
 *
 * Also it is possible to set different flags by OR'ing
 * in one or more of the following additional @flags:
 *
 * %__GFP_COLD - Request cache-cold pages instead of
 *   trying to return cache-warm pages.
 *
 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 *
 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 *   (think twice before using).
 *
 * %__GFP_NORETRY - If memory is not immediately available,
 *   then give up at once.
 *
 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 *
 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 *
 * There are other flags available as well, but these are not intended
 * for general use, and so are not documented here. For a full list of
 * potential flags, always refer to linux/gfp.h.
 */
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
{
	if (n != 0 && size > ULONG_MAX / n)
		return NULL;
	return __kzalloc(n * size, flags);
}

/*
 * Allocator specific definitions. These are mainly used to establish optimized
 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
 * selecting the appropriate general cache at compile time.
 *
 * Allocators must define at least:
 *
 *	kmem_cache_alloc()
 *	__kmalloc()
 *	kmalloc()
 *	kzalloc()
 *
 * Those wishing to support NUMA must also define:
 *
 *	kmem_cache_alloc_node()
 *	kmalloc_node()
 *
 * See each allocator definition file for additional comments and
 * implementation notes.
 */
#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#elif defined(CONFIG_SLOB)
#include <linux/slob_def.h>
#else
#include <linux/slab_def.h>
#endif

#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
/**
 * kmalloc_node - allocate memory from a specific node
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate (see kcalloc).
 * @node: node to allocate from.
 *
 * kmalloc() for non-local nodes, used to allocate from a specific node
 * if available. Equivalent to kmalloc() in the non-NUMA single-node
 * case.
 */
static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
	return kmalloc(size, flags);
}

static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __kmalloc(size, flags);
}

void *kmem_cache_alloc(struct kmem_cache *, gfp_t);

static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
					gfp_t flags, int node)
{
	return kmem_cache_alloc(cachep, flags);
}
#endif /* !CONFIG_NUMA && !CONFIG_SLOB */

/*
 * kmalloc_track_caller is a special version of kmalloc that records the
 * calling function of the routine calling it for slab leak tracking instead
 * of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc comes from a widely-used standard
 * allocator where we care about the real place the memory allocation
 * request comes from.
 */
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
#define kmalloc_track_caller(size, flags) \
	__kmalloc_track_caller(size, flags, __builtin_return_address(0))
#else
#define kmalloc_track_caller(size, flags) \
	__kmalloc(size, flags)
#endif /* DEBUG_SLAB */

#ifdef CONFIG_NUMA
/*
 * kmalloc_node_track_caller is a special version of kmalloc_node that
 * records the calling function of the routine calling it for slab leak
 * tracking instead of just the calling function (confusing, eh?).
 * It's useful when the call to kmalloc_node comes from a widely-used
 * standard allocator where we care about the real place the memory
 * allocation request comes from.
 */
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node_track_caller(size, flags, node, \
			__builtin_return_address(0))
#else
#define kmalloc_node_track_caller(size, flags, node) \
	__kmalloc_node(size, flags, node)
#endif

#else /* CONFIG_NUMA */

#define kmalloc_node_track_caller(size, flags, node) \
	kmalloc_track_caller(size, flags)

#endif /* DEBUG_SLAB */

#endif	/* __KERNEL__ */
#endif	/* _LINUX_SLAB_H */