aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/mmzone.h
blob: 6c90461ed99fd5707c178d3b4fbf922b367b55b0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
#ifndef _LINUX_MMZONE_H
#define _LINUX_MMZONE_H

#ifdef __KERNEL__
#ifndef __ASSEMBLY__

#include <linux/config.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/cache.h>
#include <linux/threads.h>
#include <linux/numa.h>
#include <linux/init.h>
#include <asm/atomic.h>

/* Free memory management - zoned buddy allocator.  */
#ifndef CONFIG_FORCE_MAX_ZONEORDER
#define MAX_ORDER 11
#else
#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
#endif

struct free_area {
	struct list_head	free_list;
	unsigned long		nr_free;
};

struct pglist_data;

/*
 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
 * So add a wild amount of padding here to ensure that they fall into separate
 * cachelines.  There are very few zone structures in the machine, so space
 * consumption is not a concern here.
 */
#if defined(CONFIG_SMP)
struct zone_padding {
	char x[0];
} ____cacheline_maxaligned_in_smp;
#define ZONE_PADDING(name)	struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif

struct per_cpu_pages {
	int count;		/* number of pages in the list */
	int low;		/* low watermark, refill needed */
	int high;		/* high watermark, emptying needed */
	int batch;		/* chunk size for buddy add/remove */
	struct list_head list;	/* the list of pages */
};

struct per_cpu_pageset {
	struct per_cpu_pages pcp[2];	/* 0: hot.  1: cold */
#ifdef CONFIG_NUMA
	unsigned long numa_hit;		/* allocated in intended node */
	unsigned long numa_miss;	/* allocated in non intended node */
	unsigned long numa_foreign;	/* was intended here, hit elsewhere */
	unsigned long interleave_hit; 	/* interleaver prefered this zone */
	unsigned long local_node;	/* allocation from local node */
	unsigned long other_node;	/* allocation from other node */
#endif
} ____cacheline_aligned_in_smp;

#ifdef CONFIG_NUMA
#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
#else
#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
#endif

#define ZONE_DMA		0
#define ZONE_NORMAL		1
#define ZONE_HIGHMEM		2

#define MAX_NR_ZONES		3	/* Sync this with ZONES_SHIFT */
#define ZONES_SHIFT		2	/* ceil(log2(MAX_NR_ZONES)) */


/*
 * When a memory allocation must conform to specific limitations (such
 * as being suitable for DMA) the caller will pass in hints to the
 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 * are used to select a priority ordered list of memory zones which
 * match the requested limits.  GFP_ZONEMASK defines which bits within
 * the gfp_mask should be considered as zone modifiers.  Each valid
 * combination of the zone modifier bits has a corresponding list
 * of zones (in node_zonelists).  Thus for two zone modifiers there
 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
 * be 8 (2 ** 3) zonelists.  GFP_ZONETYPES defines the number of possible
 * combinations of zone modifiers in "zone modifier space".
 */
#define GFP_ZONEMASK	0x03
/*
 * As an optimisation any zone modifier bits which are only valid when
 * no other zone modifier bits are set (loners) should be placed in
 * the highest order bits of this field.  This allows us to reduce the
 * extent of the zonelists thus saving space.  For example in the case
 * of three zone modifier bits, we could require up to eight zonelists.
 * If the left most zone modifier is a "loner" then the highest valid
 * zonelist would be four allowing us to allocate only five zonelists.
 * Use the first form when the left most bit is not a "loner", otherwise
 * use the second.
 */
/* #define GFP_ZONETYPES	(GFP_ZONEMASK + 1) */		/* Non-loner */
#define GFP_ZONETYPES	((GFP_ZONEMASK + 1) / 2 + 1)		/* Loner */

/*
 * On machines where it is needed (eg PCs) we divide physical memory
 * into multiple physical zones. On a PC we have 3 zones:
 *
 * ZONE_DMA	  < 16 MB	ISA DMA capable memory
 * ZONE_NORMAL	16-896 MB	direct mapped by the kernel
 * ZONE_HIGHMEM	 > 896 MB	only page cache and user processes
 */

struct zone {
	/* Fields commonly accessed by the page allocator */
	unsigned long		free_pages;
	unsigned long		pages_min, pages_low, pages_high;
	/*
	 * We don't know if the memory that we're going to allocate will be freeable
	 * or/and it will be released eventually, so to avoid totally wasting several
	 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
	 * to run OOM on the lower zones despite there's tons of freeable ram
	 * on the higher zones). This array is recalculated at runtime if the
	 * sysctl_lowmem_reserve_ratio sysctl changes.
	 */
	unsigned long		lowmem_reserve[MAX_NR_ZONES];

#ifdef CONFIG_NUMA
	struct per_cpu_pageset	*pageset[NR_CPUS];
#else
	struct per_cpu_pageset	pageset[NR_CPUS];
#endif
	/*
	 * free areas of different sizes
	 */
	spinlock_t		lock;
	struct free_area	free_area[MAX_ORDER];


	ZONE_PADDING(_pad1_)

	/* Fields commonly accessed by the page reclaim scanner */
	spinlock_t		lru_lock;	
	struct list_head	active_list;
	struct list_head	inactive_list;
	unsigned long		nr_scan_active;
	unsigned long		nr_scan_inactive;
	unsigned long		nr_active;
	unsigned long		nr_inactive;
	unsigned long		pages_scanned;	   /* since last reclaim */
	int			all_unreclaimable; /* All pages pinned */

	/*
	 * Does the allocator try to reclaim pages from the zone as soon
	 * as it fails a watermark_ok() in __alloc_pages?
	 */
	int			reclaim_pages;
	/* A count of how many reclaimers are scanning this zone */
	atomic_t		reclaim_in_progress;

	/*
	 * prev_priority holds the scanning priority for this zone.  It is
	 * defined as the scanning priority at which we achieved our reclaim
	 * target at the previous try_to_free_pages() or balance_pgdat()
	 * invokation.
	 *
	 * We use prev_priority as a measure of how much stress page reclaim is
	 * under - it drives the swappiness decision: whether to unmap mapped
	 * pages.
	 *
	 * temp_priority is used to remember the scanning priority at which
	 * this zone was successfully refilled to free_pages == pages_high.
	 *
	 * Access to both these fields is quite racy even on uniprocessor.  But
	 * it is expected to average out OK.
	 */
	int temp_priority;
	int prev_priority;


	ZONE_PADDING(_pad2_)
	/* Rarely used or read-mostly fields */

	/*
	 * wait_table		-- the array holding the hash table
	 * wait_table_size	-- the size of the hash table array
	 * wait_table_bits	-- wait_table_size == (1 << wait_table_bits)
	 *
	 * The purpose of all these is to keep track of the people
	 * waiting for a page to become available and make them
	 * runnable again when possible. The trouble is that this
	 * consumes a lot of space, especially when so few things
	 * wait on pages at a given time. So instead of using
	 * per-page waitqueues, we use a waitqueue hash table.
	 *
	 * The bucket discipline is to sleep on the same queue when
	 * colliding and wake all in that wait queue when removing.
	 * When something wakes, it must check to be sure its page is
	 * truly available, a la thundering herd. The cost of a
	 * collision is great, but given the expected load of the
	 * table, they should be so rare as to be outweighed by the
	 * benefits from the saved space.
	 *
	 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
	 * primary users of these fields, and in mm/page_alloc.c
	 * free_area_init_core() performs the initialization of them.
	 */
	wait_queue_head_t	* wait_table;
	unsigned long		wait_table_size;
	unsigned long		wait_table_bits;

	/*
	 * Discontig memory support fields.
	 */
	struct pglist_data	*zone_pgdat;
	struct page		*zone_mem_map;
	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
	unsigned long		zone_start_pfn;

	unsigned long		spanned_pages;	/* total size, including holes */
	unsigned long		present_pages;	/* amount of memory (excluding holes) */

	/*
	 * rarely used fields:
	 */
	char			*name;
} ____cacheline_maxaligned_in_smp;


/*
 * The "priority" of VM scanning is how much of the queues we will scan in one
 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 * queues ("queue_length >> 12") during an aging round.
 */
#define DEF_PRIORITY 12

/*
 * One allocation request operates on a zonelist. A zonelist
 * is a list of zones, the first one is the 'goal' of the
 * allocation, the other zones are fallback zones, in decreasing
 * priority.
 *
 * Right now a zonelist takes up less than a cacheline. We never
 * modify it apart from boot-up, and only a few indices are used,
 * so despite the zonelist table being relatively big, the cache
 * footprint of this construct is very small.
 */
struct zonelist {
	struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
};


/*
 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 * zone denotes.
 *
 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 * it's memory layout.
 *
 * Memory statistics and page replacement data structures are maintained on a
 * per-zone basis.
 */
struct bootmem_data;
typedef struct pglist_data {
	struct zone node_zones[MAX_NR_ZONES];
	struct zonelist node_zonelists[GFP_ZONETYPES];
	int nr_zones;
#ifdef CONFIG_FLAT_NODE_MEM_MAP
	struct page *node_mem_map;
#endif
	struct bootmem_data *bdata;
	unsigned long node_start_pfn;
	unsigned long node_present_pages; /* total number of physical pages */
	unsigned long node_spanned_pages; /* total size of physical page
					     range, including holes */
	int node_id;
	struct pglist_data *pgdat_next;
	wait_queue_head_t kswapd_wait;
	struct task_struct *kswapd;
	int kswapd_max_order;
} pg_data_t;

#define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
#define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
#ifdef CONFIG_FLAT_NODE_MEM_MAP
#define pgdat_page_nr(pgdat, pagenr)	((pgdat)->node_mem_map + (pagenr))
#else
#define pgdat_page_nr(pgdat, pagenr)	pfn_to_page((pgdat)->node_start_pfn + (pagenr))
#endif
#define nid_page_nr(nid, pagenr) 	pgdat_page_nr(NODE_DATA(nid),(pagenr))

extern struct pglist_data *pgdat_list;

void __get_zone_counts(unsigned long *active, unsigned long *inactive,
			unsigned long *free, struct pglist_data *pgdat);
void get_zone_counts(unsigned long *active, unsigned long *inactive,
			unsigned long *free);
void build_all_zonelists(void);
void wakeup_kswapd(struct zone *zone, int order);
int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
		int alloc_type, int can_try_harder, int gfp_high);

#ifdef CONFIG_HAVE_MEMORY_PRESENT
void memory_present(int nid, unsigned long start, unsigned long end);
#else
static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
#endif

#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
#endif

/*
 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 */
#define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)

/**
 * for_each_pgdat - helper macro to iterate over all nodes
 * @pgdat - pointer to a pg_data_t variable
 *
 * Meant to help with common loops of the form
 * pgdat = pgdat_list;
 * while(pgdat) {
 * 	...
 * 	pgdat = pgdat->pgdat_next;
 * }
 */
#define for_each_pgdat(pgdat) \
	for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)

/*
 * next_zone - helper magic for for_each_zone()
 * Thanks to William Lee Irwin III for this piece of ingenuity.
 */
static inline struct zone *next_zone(struct zone *zone)
{
	pg_data_t *pgdat = zone->zone_pgdat;

	if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
		zone++;
	else if (pgdat->pgdat_next) {
		pgdat = pgdat->pgdat_next;
		zone = pgdat->node_zones;
	} else
		zone = NULL;

	return zone;
}

/**
 * for_each_zone - helper macro to iterate over all memory zones
 * @zone - pointer to struct zone variable
 *
 * The user only needs to declare the zone variable, for_each_zone
 * fills it in. This basically means for_each_zone() is an
 * easier to read version of this piece of code:
 *
 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
 * 	for (i = 0; i < MAX_NR_ZONES; ++i) {
 * 		struct zone * z = pgdat->node_zones + i;
 * 		...
 * 	}
 * }
 */
#define for_each_zone(zone) \
	for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))

static inline int is_highmem_idx(int idx)
{
	return (idx == ZONE_HIGHMEM);
}

static inline int is_normal_idx(int idx)
{
	return (idx == ZONE_NORMAL);
}
/**
 * is_highmem - helper function to quickly check if a struct zone is a 
 *              highmem zone or not.  This is an attempt to keep references
 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 * @zone - pointer to struct zone variable
 */
static inline int is_highmem(struct zone *zone)
{
	return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
}

static inline int is_normal(struct zone *zone)
{
	return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
}

/* These two functions are used to setup the per zone pages min values */
struct ctl_table;
struct file;
int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 
					void __user *, size_t *, loff_t *);
extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
					void __user *, size_t *, loff_t *);

#include <linux/topology.h>
/* Returns the number of the current Node. */
#define numa_node_id()		(cpu_to_node(raw_smp_processor_id()))

#ifndef CONFIG_NEED_MULTIPLE_NODES

extern struct pglist_data contig_page_data;
#define NODE_DATA(nid)		(&contig_page_data)
#define NODE_MEM_MAP(nid)	mem_map
#define MAX_NODES_SHIFT		1
#define pfn_to_nid(pfn)		(0)

#else /* CONFIG_NEED_MULTIPLE_NODES */

#include <asm/mmzone.h>

#endif /* !CONFIG_NEED_MULTIPLE_NODES */

#ifdef CONFIG_SPARSEMEM
#include <asm/sparsemem.h>
#endif

#if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED)
/*
 * with 32 bit page->flags field, we reserve 8 bits for node/zone info.
 * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes.
 */
#define FLAGS_RESERVED		8

#elif BITS_PER_LONG == 64
/*
 * with 64 bit flags field, there's plenty of room.
 */
#define FLAGS_RESERVED		32

#else

#error BITS_PER_LONG not defined

#endif

#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
#define early_pfn_to_nid(nid)  (0UL)
#endif

#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)

#ifdef CONFIG_SPARSEMEM

/*
 * SECTION_SHIFT    		#bits space required to store a section #
 *
 * PA_SECTION_SHIFT		physical address to/from section number
 * PFN_SECTION_SHIFT		pfn to/from section number
 */
#define SECTIONS_SHIFT		(MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)

#define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
#define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)

#define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)

#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
#define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))

#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
#error Allocator MAX_ORDER exceeds SECTION_SIZE
#endif

struct page;
struct mem_section {
	/*
	 * This is, logically, a pointer to an array of struct
	 * pages.  However, it is stored with some other magic.
	 * (see sparse.c::sparse_init_one_section())
	 *
	 * Making it a UL at least makes someone do a cast
	 * before using it wrong.
	 */
	unsigned long section_mem_map;
};

extern struct mem_section mem_section[NR_MEM_SECTIONS];

static inline struct mem_section *__nr_to_section(unsigned long nr)
{
	return &mem_section[nr];
}

/*
 * We use the lower bits of the mem_map pointer to store
 * a little bit of information.  There should be at least
 * 3 bits here due to 32-bit alignment.
 */
#define	SECTION_MARKED_PRESENT	(1UL<<0)
#define SECTION_HAS_MEM_MAP	(1UL<<1)
#define SECTION_MAP_LAST_BIT	(1UL<<2)
#define SECTION_MAP_MASK	(~(SECTION_MAP_LAST_BIT-1))

static inline struct page *__section_mem_map_addr(struct mem_section *section)
{
	unsigned long map = section->section_mem_map;
	map &= SECTION_MAP_MASK;
	return (struct page *)map;
}

static inline int valid_section(struct mem_section *section)
{
	return (section->section_mem_map & SECTION_MARKED_PRESENT);
}

static inline int section_has_mem_map(struct mem_section *section)
{
	return (section->section_mem_map & SECTION_HAS_MEM_MAP);
}

static inline int valid_section_nr(unsigned long nr)
{
	return valid_section(__nr_to_section(nr));
}

/*
 * Given a kernel address, find the home node of the underlying memory.
 */
#define kvaddr_to_nid(kaddr)	pfn_to_nid(__pa(kaddr) >> PAGE_SHIFT)

static inline struct mem_section *__pfn_to_section(unsigned long pfn)
{
	return __nr_to_section(pfn_to_section_nr(pfn));
}

#define pfn_to_page(pfn) 						\
({ 									\
	unsigned long __pfn = (pfn);					\
	__section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn;	\
})
#define page_to_pfn(page)						\
({									\
	page - __section_mem_map_addr(__nr_to_section(			\
		page_to_section(page)));				\
})

static inline int pfn_valid(unsigned long pfn)
{
	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
		return 0;
	return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
}

/*
 * These are _only_ used during initialisation, therefore they
 * can use __initdata ...  They could have names to indicate
 * this restriction.
 */
#ifdef CONFIG_NUMA
#define pfn_to_nid		early_pfn_to_nid
#endif

#define pfn_to_pgdat(pfn)						\
({									\
	NODE_DATA(pfn_to_nid(pfn));					\
})

#define early_pfn_valid(pfn)	pfn_valid(pfn)
void sparse_init(void);
#else
#define sparse_init()	do {} while (0)
#endif /* CONFIG_SPARSEMEM */

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
#define early_pfn_in_nid(pfn, nid)	(early_pfn_to_nid(pfn) == (nid))
#else
#define early_pfn_in_nid(pfn, nid)	(1)
#endif

#ifndef early_pfn_valid
#define early_pfn_valid(pfn)	(1)
#endif

void memory_present(int nid, unsigned long start, unsigned long end);
unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);

#endif /* !__ASSEMBLY__ */
#endif /* __KERNEL__ */
#endif /* _LINUX_MMZONE_H */