aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/lapb.h
blob: ce709e1885cc006693237f1cfa3870d81c0e0a79 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
/*
 * These are the public elements of the Linux LAPB module.
 */

#ifndef	LAPB_KERNEL_H
#define	LAPB_KERNEL_H

#define	LAPB_OK			0
#define	LAPB_BADTOKEN		1
#define	LAPB_INVALUE		2
#define	LAPB_CONNECTED		3
#define	LAPB_NOTCONNECTED	4
#define	LAPB_REFUSED		5
#define	LAPB_TIMEDOUT		6
#define	LAPB_NOMEM		7

#define	LAPB_STANDARD		0x00
#define	LAPB_EXTENDED		0x01

#define	LAPB_SLP		0x00
#define	LAPB_MLP		0x02

#define	LAPB_DTE		0x00
#define	LAPB_DCE		0x04

struct lapb_register_struct {
	void (*connect_confirmation)(struct net_device *dev, int reason);
	void (*connect_indication)(struct net_device *dev, int reason);
	void (*disconnect_confirmation)(struct net_device *dev, int reason);
	void (*disconnect_indication)(struct net_device *dev, int reason);
	int  (*data_indication)(struct net_device *dev, struct sk_buff *skb);
	void (*data_transmit)(struct net_device *dev, struct sk_buff *skb);
};

struct lapb_parms_struct {
	unsigned int t1;
	unsigned int t1timer;
	unsigned int t2;
	unsigned int t2timer;
	unsigned int n2;
	unsigned int n2count;
	unsigned int window;
	unsigned int state;
	unsigned int mode;
};

extern int lapb_register(struct net_device *dev, struct lapb_register_struct *callbacks);
extern int lapb_unregister(struct net_device *dev);
extern int lapb_getparms(struct net_device *dev, struct lapb_parms_struct *parms);
extern int lapb_setparms(struct net_device *dev, struct lapb_parms_struct *parms);
extern int lapb_connect_request(struct net_device *dev);
extern int lapb_disconnect_request(struct net_device *dev);
extern int lapb_data_request(struct net_device *dev, struct sk_buff *skb);
extern int lapb_data_received(struct net_device *dev, struct sk_buff *skb);

#endif
59e77699f18f06948cea171a349a3f0f'>84599f8a59e7
688340ea34c6


53d517cdbaac
688340ea34c6
84599f8a59e7

9993bc635d01

84599f8a59e7
688340ea34c6

53d517cdbaac










688340ea34c6
1965aae3c983
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

                        
                       
                     
                         
                            
 
                                    
 
                                            
                                     
 
                          
 
                                 













                                                                         
                                                                           



                                                                              















                                                                             
   

                                       
                                                   


                                                           
                                                                      
 

                                                            

                                                      
                  

 










                                                                    
 
                             
#ifndef _ASM_X86_TIMER_H
#define _ASM_X86_TIMER_H
#include <linux/init.h>
#include <linux/pm.h>
#include <linux/percpu.h>
#include <linux/interrupt.h>

#define TICK_SIZE (tick_nsec / 1000)

unsigned long long native_sched_clock(void);
extern int recalibrate_cpu_khz(void);

extern int no_timer_check;

/* Accelerators for sched_clock()
 * convert from cycles(64bits) => nanoseconds (64bits)
 *  basic equation:
 *		ns = cycles / (freq / ns_per_sec)
 *		ns = cycles * (ns_per_sec / freq)
 *		ns = cycles * (10^9 / (cpu_khz * 10^3))
 *		ns = cycles * (10^6 / cpu_khz)
 *
 *	Then we use scaling math (suggested by george@mvista.com) to get:
 *		ns = cycles * (10^6 * SC / cpu_khz) / SC
 *		ns = cycles * cyc2ns_scale / SC
 *
 *	And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better precision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *			-johnstul@us.ibm.com "math is hard, lets go shopping!"
 *
 * In:
 *
 * ns = cycles * cyc2ns_scale / SC
 *
 * Although we may still have enough bits to store the value of ns,
 * in some cases, we may not have enough bits to store cycles * cyc2ns_scale,
 * leading to an incorrect result.
 *
 * To avoid this, we can decompose 'cycles' into quotient and remainder
 * of division by SC.  Then,
 *
 * ns = (quot * SC + rem) * cyc2ns_scale / SC
 *    = quot * cyc2ns_scale + (rem * cyc2ns_scale) / SC
 *
 *			- sqazi@google.com
 */

DECLARE_PER_CPU(unsigned long, cyc2ns);
DECLARE_PER_CPU(unsigned long long, cyc2ns_offset);

#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */

static inline unsigned long long __cycles_2_ns(unsigned long long cyc)
{
	int cpu = smp_processor_id();
	unsigned long long ns = per_cpu(cyc2ns_offset, cpu);
	ns += mult_frac(cyc, per_cpu(cyc2ns, cpu),
			(1UL << CYC2NS_SCALE_FACTOR));
	return ns;
}

static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
	unsigned long long ns;
	unsigned long flags;

	local_irq_save(flags);
	ns = __cycles_2_ns(cyc);
	local_irq_restore(flags);

	return ns;
}

#endif /* _ASM_X86_TIMER_H */