aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/kernel.h
blob: b49affa0ac5a4d4b779d2e0b9a8967fec7640bec (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#ifndef _LINUX_KERNEL_H
#define _LINUX_KERNEL_H

/*
 * 'kernel.h' contains some often-used function prototypes etc
 */

#ifdef __KERNEL__

#include <stdarg.h>
#include <linux/linkage.h>
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/bitops.h>
#include <asm/byteorder.h>
#include <asm/bug.h>

extern const char linux_banner[];

#define INT_MAX		((int)(~0U>>1))
#define INT_MIN		(-INT_MAX - 1)
#define UINT_MAX	(~0U)
#define LONG_MAX	((long)(~0UL>>1))
#define LONG_MIN	(-LONG_MAX - 1)
#define ULONG_MAX	(~0UL)

#define STACK_MAGIC	0xdeadbeef

#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
#define ALIGN(x,a) (((x)+(a)-1)&~((a)-1))

#define	KERN_EMERG	"<0>"	/* system is unusable			*/
#define	KERN_ALERT	"<1>"	/* action must be taken immediately	*/
#define	KERN_CRIT	"<2>"	/* critical conditions			*/
#define	KERN_ERR	"<3>"	/* error conditions			*/
#define	KERN_WARNING	"<4>"	/* warning conditions			*/
#define	KERN_NOTICE	"<5>"	/* normal but significant condition	*/
#define	KERN_INFO	"<6>"	/* informational			*/
#define	KERN_DEBUG	"<7>"	/* debug-level messages			*/

extern int console_printk[];

#define console_loglevel (console_printk[0])
#define default_message_loglevel (console_printk[1])
#define minimum_console_loglevel (console_printk[2])
#define default_console_loglevel (console_printk[3])

struct completion;
struct pt_regs;
struct user;

/**
 * might_sleep - annotation for functions that can sleep
 *
 * this macro will print a stack trace if it is executed in an atomic
 * context (spinlock, irq-handler, ...).
 *
 * This is a useful debugging help to be able to catch problems early and not
 * be biten later when the calling function happens to sleep when it is not
 * supposed to.
 */
#ifdef CONFIG_PREEMPT_VOLUNTARY
extern int cond_resched(void);
# define might_resched() cond_resched()
#else
# define might_resched() do { } while (0)
#endif

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  void __might_sleep(char *file, int line);
# define might_sleep() \
	do { __might_sleep(__FILE__, __LINE__); might_resched(); } while (0)
#else
# define might_sleep() do { might_resched(); } while (0)
#endif

#define might_sleep_if(cond) do { if (unlikely(cond)) might_sleep(); } while (0)

#define abs(x) ({				\
		int __x = (x);			\
		(__x < 0) ? -__x : __x;		\
	})

#define labs(x) ({				\
		long __x = (x);			\
		(__x < 0) ? -__x : __x;		\
	})

extern struct notifier_block *panic_notifier_list;
extern long (*panic_blink)(long time);
NORET_TYPE void panic(const char * fmt, ...)
	__attribute__ ((NORET_AND format (printf, 1, 2)));
fastcall NORET_TYPE void do_exit(long error_code)
	ATTRIB_NORET;
NORET_TYPE void complete_and_exit(struct completion *, long)
	ATTRIB_NORET;
extern unsigned long simple_strtoul(const char *,char **,unsigned int);
extern long simple_strtol(const char *,char **,unsigned int);
extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
extern long long simple_strtoll(const char *,char **,unsigned int);
extern int sprintf(char * buf, const char * fmt, ...)
	__attribute__ ((format (printf, 2, 3)));
extern int vsprintf(char *buf, const char *, va_list)
	__attribute__ ((format (printf, 2, 0)));
extern int snprintf(char * buf, size_t size, const char * fmt, ...)
	__attribute__ ((format (printf, 3, 4)));
extern int vsnprintf(char *buf, size_t size, const char *fmt, va_list args)
	__attribute__ ((format (printf, 3, 0)));
extern int scnprintf(char * buf, size_t size, const char * fmt, ...)
	__attribute__ ((format (printf, 3, 4)));
extern int vscnprintf(char *buf, size_t size, const char *fmt, va_list args)
	__attribute__ ((format (printf, 3, 0)));

extern int sscanf(const char *, const char *, ...)
	__attribute__ ((format (scanf, 2, 3)));
extern int vsscanf(const char *, const char *, va_list)
	__attribute__ ((format (scanf, 2, 0)));

extern int get_option(char **str, int *pint);
extern char *get_options(const char *str, int nints, int *ints);
extern unsigned long long memparse(char *ptr, char **retptr);

extern int __kernel_text_address(unsigned long addr);
extern int kernel_text_address(unsigned long addr);
extern int session_of_pgrp(int pgrp);

extern void dump_thread(struct pt_regs *regs, struct user *dump);

#ifdef CONFIG_PRINTK
asmlinkage int vprintk(const char *fmt, va_list args)
	__attribute__ ((format (printf, 1, 0)));
asmlinkage int printk(const char * fmt, ...)
	__attribute__ ((format (printf, 1, 2)));
#else
static inline int vprintk(const char *s, va_list args)
	__attribute__ ((format (printf, 1, 0)));
static inline int vprintk(const char *s, va_list args) { return 0; }
static inline int printk(const char *s, ...)
	__attribute__ ((format (printf, 1, 2)));
static inline int printk(const char *s, ...) { return 0; }
#endif

unsigned long int_sqrt(unsigned long);

static inline int __attribute_pure__ long_log2(unsigned long x)
{
	int r = 0;
	for (x >>= 1; x > 0; x >>= 1)
		r++;
	return r;
}

static inline unsigned long __attribute_const__ roundup_pow_of_two(unsigned long x)
{
	return (1UL << fls(x - 1));
}

extern int printk_ratelimit(void);
extern int __printk_ratelimit(int ratelimit_jiffies, int ratelimit_burst);

static inline void console_silent(void)
{
	console_loglevel = 0;
}

static inline void console_verbose(void)
{
	if (console_loglevel)
		console_loglevel = 15;
}

extern void bust_spinlocks(int yes);
extern int oops_in_progress;		/* If set, an oops, panic(), BUG() or die() is in progress */
extern __deprecated_for_modules int panic_timeout;
extern int panic_on_oops;
extern int tainted;
extern const char *print_tainted(void);
extern void add_taint(unsigned);

/* Values used for system_state */
extern enum system_states {
	SYSTEM_BOOTING,
	SYSTEM_RUNNING,
	SYSTEM_HALT,
	SYSTEM_POWER_OFF,
	SYSTEM_RESTART,
	SYSTEM_SUSPEND_DISK,
} system_state;

#define TAINT_PROPRIETARY_MODULE	(1<<0)
#define TAINT_FORCED_MODULE		(1<<1)
#define TAINT_UNSAFE_SMP		(1<<2)
#define TAINT_FORCED_RMMOD		(1<<3)
#define TAINT_MACHINE_CHECK		(1<<4)
#define TAINT_BAD_PAGE			(1<<5)

extern void dump_stack(void);

#ifdef DEBUG
#define pr_debug(fmt,arg...) \
	printk(KERN_DEBUG fmt,##arg)
#else
#define pr_debug(fmt,arg...) \
	do { } while (0)
#endif

#define pr_info(fmt,arg...) \
	printk(KERN_INFO fmt,##arg)

/*
 *      Display an IP address in readable format.
 */

#define NIPQUAD(addr) \
	((unsigned char *)&addr)[0], \
	((unsigned char *)&addr)[1], \
	((unsigned char *)&addr)[2], \
	((unsigned char *)&addr)[3]
#define NIPQUAD_FMT "%u.%u.%u.%u"

#define NIP6(addr) \
	ntohs((addr).s6_addr16[0]), \
	ntohs((addr).s6_addr16[1]), \
	ntohs((addr).s6_addr16[2]), \
	ntohs((addr).s6_addr16[3]), \
	ntohs((addr).s6_addr16[4]), \
	ntohs((addr).s6_addr16[5]), \
	ntohs((addr).s6_addr16[6]), \
	ntohs((addr).s6_addr16[7])
#define NIP6_FMT "%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x"
#define NIP6_SEQFMT "%04x%04x%04x%04x%04x%04x%04x%04x"

#if defined(__LITTLE_ENDIAN)
#define HIPQUAD(addr) \
	((unsigned char *)&addr)[3], \
	((unsigned char *)&addr)[2], \
	((unsigned char *)&addr)[1], \
	((unsigned char *)&addr)[0]
#elif defined(__BIG_ENDIAN)
#define HIPQUAD	NIPQUAD
#else
#error "Please fix asm/byteorder.h"
#endif /* __LITTLE_ENDIAN */

/*
 * min()/max() macros that also do
 * strict type-checking.. See the
 * "unnecessary" pointer comparison.
 */
#define min(x,y) ({ \
	typeof(x) _x = (x);	\
	typeof(y) _y = (y);	\
	(void) (&_x == &_y);		\
	_x < _y ? _x : _y; })

#define max(x,y) ({ \
	typeof(x) _x = (x);	\
	typeof(y) _y = (y);	\
	(void) (&_x == &_y);		\
	_x > _y ? _x : _y; })

/*
 * ..and if you can't take the strict
 * types, you can specify one yourself.
 *
 * Or not use min/max at all, of course.
 */
#define min_t(type,x,y) \
	({ type __x = (x); type __y = (y); __x < __y ? __x: __y; })
#define max_t(type,x,y) \
	({ type __x = (x); type __y = (y); __x > __y ? __x: __y; })


/**
 * container_of - cast a member of a structure out to the containing structure
 * @ptr:	the pointer to the member.
 * @type:	the type of the container struct this is embedded in.
 * @member:	the name of the member within the struct.
 *
 */
#define container_of(ptr, type, member) ({			\
        const typeof( ((type *)0)->member ) *__mptr = (ptr);	\
        (type *)( (char *)__mptr - offsetof(type,member) );})

/*
 * Check at compile time that something is of a particular type.
 * Always evaluates to 1 so you may use it easily in comparisons.
 */
#define typecheck(type,x) \
({	type __dummy; \
	typeof(x) __dummy2; \
	(void)(&__dummy == &__dummy2); \
	1; \
})

/*
 * Check at compile time that 'function' is a certain type, or is a pointer
 * to that type (needs to use typedef for the function type.)
 */
#define typecheck_fn(type,function) \
({	typeof(type) __tmp = function; \
	(void)__tmp; \
})

#endif /* __KERNEL__ */

#define SI_LOAD_SHIFT	16
struct sysinfo {
	long uptime;			/* Seconds since boot */
	unsigned long loads[3];		/* 1, 5, and 15 minute load averages */
	unsigned long totalram;		/* Total usable main memory size */
	unsigned long freeram;		/* Available memory size */
	unsigned long sharedram;	/* Amount of shared memory */
	unsigned long bufferram;	/* Memory used by buffers */
	unsigned long totalswap;	/* Total swap space size */
	unsigned long freeswap;		/* swap space still available */
	unsigned short procs;		/* Number of current processes */
	unsigned short pad;		/* explicit padding for m68k */
	unsigned long totalhigh;	/* Total high memory size */
	unsigned long freehigh;		/* Available high memory size */
	unsigned int mem_unit;		/* Memory unit size in bytes */
	char _f[20-2*sizeof(long)-sizeof(int)];	/* Padding: libc5 uses this.. */
};

/* Force a compilation error if condition is true */
#define BUILD_BUG_ON(condition) ((void)sizeof(char[1 - 2*!!(condition)]))

#ifdef CONFIG_SYSCTL
extern int randomize_va_space;
#else
#define randomize_va_space 1
#endif

/* Trap pasters of __FUNCTION__ at compile-time */
#define __FUNCTION__ (__func__)

#endif
ce *acpi_dev; acpi_handle handle = device->handle; int state; if (acpi_bus_get_device(handle, &acpi_dev)) return; if(acpi_power_get_inferred_state(acpi_dev, &state)) return; if (state == ACPI_STATE_D0 && pm_runtime_suspended(device->dev)) pm_request_resume(device->dev); } static int __acpi_power_on(struct acpi_power_resource *resource) { acpi_status status = AE_OK; status = acpi_evaluate_object(resource->device->handle, "_ON", NULL, NULL); if (ACPI_FAILURE(status)) return -ENODEV; /* Update the power resource's _device_ power state */ resource->device->power.state = ACPI_STATE_D0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", resource->name)); return 0; } static int acpi_power_on(acpi_handle handle) { int result = 0; bool resume_device = false; struct acpi_power_resource *resource = NULL; struct acpi_power_resource_device *device_list; result = acpi_power_get_context(handle, &resource); if (result) return result; mutex_lock(&resource->resource_lock); if (resource->ref_count++) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already on", resource->name)); } else { result = __acpi_power_on(resource); if (result) resource->ref_count--; else resume_device = true; } mutex_unlock(&resource->resource_lock); if (!resume_device) return result; mutex_lock(&resource->devices_lock); device_list = resource->devices; while (device_list) { acpi_power_on_device(device_list->device); device_list = device_list->next; } mutex_unlock(&resource->devices_lock); return result; } static int acpi_power_off(acpi_handle handle) { int result = 0; acpi_status status = AE_OK; struct acpi_power_resource *resource = NULL; result = acpi_power_get_context(handle, &resource); if (result) return result; mutex_lock(&resource->resource_lock); if (!resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already off", resource->name)); goto unlock; } if (--resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] still in use\n", resource->name)); goto unlock; } status = acpi_evaluate_object(resource->device->handle, "_OFF", NULL, NULL); if (ACPI_FAILURE(status)) { result = -ENODEV; } else { /* Update the power resource's _device_ power state */ resource->device->power.state = ACPI_STATE_D3; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", resource->name)); } unlock: mutex_unlock(&resource->resource_lock); return result; } static void __acpi_power_off_list(struct acpi_handle_list *list, int num_res) { int i; for (i = num_res - 1; i >= 0 ; i--) acpi_power_off(list->handles[i]); } static void acpi_power_off_list(struct acpi_handle_list *list) { __acpi_power_off_list(list, list->count); } static int acpi_power_on_list(struct acpi_handle_list *list) { int result = 0; int i; for (i = 0; i < list->count; i++) { result = acpi_power_on(list->handles[i]); if (result) { __acpi_power_off_list(list, i); break; } } return result; } static void __acpi_power_resource_unregister_device(struct device *dev, acpi_handle res_handle) { struct acpi_power_resource *resource = NULL; struct acpi_power_resource_device *prev, *curr; if (acpi_power_get_context(res_handle, &resource)) return; mutex_lock(&resource->devices_lock); prev = NULL; curr = resource->devices; while (curr) { if (curr->device->dev == dev) { if (!prev) resource->devices = curr->next; else prev->next = curr->next; kfree(curr); break; } prev = curr; curr = curr->next; } mutex_unlock(&resource->devices_lock); } /* Unlink dev from all power resources in _PR0 */ void acpi_power_resource_unregister_device(struct device *dev, acpi_handle handle) { struct acpi_device *acpi_dev; struct acpi_handle_list *list; int i; if (!dev || !handle) return; if (acpi_bus_get_device(handle, &acpi_dev)) return; list = &acpi_dev->power.states[ACPI_STATE_D0].resources; for (i = 0; i < list->count; i++) __acpi_power_resource_unregister_device(dev, list->handles[i]); } EXPORT_SYMBOL_GPL(acpi_power_resource_unregister_device); static int __acpi_power_resource_register_device( struct acpi_power_managed_device *powered_device, acpi_handle handle) { struct acpi_power_resource *resource = NULL; struct acpi_power_resource_device *power_resource_device; int result; result = acpi_power_get_context(handle, &resource); if (result) return result; power_resource_device = kzalloc( sizeof(*power_resource_device), GFP_KERNEL); if (!power_resource_device) return -ENOMEM; power_resource_device->device = powered_device; mutex_lock(&resource->devices_lock); power_resource_device->next = resource->devices; resource->devices = power_resource_device; mutex_unlock(&resource->devices_lock); return 0; } /* Link dev to all power resources in _PR0 */ int acpi_power_resource_register_device(struct device *dev, acpi_handle handle) { struct acpi_device *acpi_dev; struct acpi_handle_list *list; struct acpi_power_managed_device *powered_device; int i, ret; if (!dev || !handle) return -ENODEV; ret = acpi_bus_get_device(handle, &acpi_dev); if (ret) goto no_power_resource; if (!acpi_dev->power.flags.power_resources) goto no_power_resource; powered_device = kzalloc(sizeof(*powered_device), GFP_KERNEL); if (!powered_device) return -ENOMEM; powered_device->dev = dev; powered_device->handle = handle; list = &acpi_dev->power.states[ACPI_STATE_D0].resources; for (i = 0; i < list->count; i++) { ret = __acpi_power_resource_register_device(powered_device, list->handles[i]); if (ret) { acpi_power_resource_unregister_device(dev, handle); break; } } return ret; no_power_resource: printk(KERN_DEBUG PREFIX "Invalid Power Resource to register!\n"); return -ENODEV; } EXPORT_SYMBOL_GPL(acpi_power_resource_register_device); /** * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in * ACPI 3.0) _PSW (Power State Wake) * @dev: Device to handle. * @enable: 0 - disable, 1 - enable the wake capabilities of the device. * @sleep_state: Target sleep state of the system. * @dev_state: Target power state of the device. * * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present. On failure reset the device's * wakeup.flags.valid flag. * * RETURN VALUE: * 0 if either _DSW or _PSW has been successfully executed * 0 if neither _DSW nor _PSW has been found * -ENODEV if the execution of either _DSW or _PSW has failed */ int acpi_device_sleep_wake(struct acpi_device *dev, int enable, int sleep_state, int dev_state) { union acpi_object in_arg[3]; struct acpi_object_list arg_list = { 3, in_arg }; acpi_status status = AE_OK; /* * Try to execute _DSW first. * * Three agruments are needed for the _DSW object: * Argument 0: enable/disable the wake capabilities * Argument 1: target system state * Argument 2: target device state * When _DSW object is called to disable the wake capabilities, maybe * the first argument is filled. The values of the other two agruments * are meaningless. */ in_arg[0].type = ACPI_TYPE_INTEGER; in_arg[0].integer.value = enable; in_arg[1].type = ACPI_TYPE_INTEGER; in_arg[1].integer.value = sleep_state; in_arg[2].type = ACPI_TYPE_INTEGER; in_arg[2].integer.value = dev_state; status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); if (ACPI_SUCCESS(status)) { return 0; } else if (status != AE_NOT_FOUND) { printk(KERN_ERR PREFIX "_DSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } /* Execute _PSW */ arg_list.count = 1; in_arg[0].integer.value = enable; status = acpi_evaluate_object(dev->handle, "_PSW", &arg_list, NULL); if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { printk(KERN_ERR PREFIX "_PSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } return 0; } /* * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): * 1. Power on the power resources required for the wakeup device * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present */ int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) { int i, err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (dev->wakeup.prepare_count++) goto out; /* Open power resource */ for (i = 0; i < dev->wakeup.resources.count; i++) { int ret = acpi_power_on(dev->wakeup.resources.handles[i]); if (ret) { printk(KERN_ERR PREFIX "Transition power state\n"); dev->wakeup.flags.valid = 0; err = -ENODEV; goto err_out; } } /* * Passing 3 as the third argument below means the device may be placed * in arbitrary power state afterwards. */ err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); err_out: if (err) dev->wakeup.prepare_count = 0; out: mutex_unlock(&acpi_device_lock); return err; } /* * Shutdown a wakeup device, counterpart of above method * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present * 2. Shutdown down the power resources */ int acpi_disable_wakeup_device_power(struct acpi_device *dev) { int i, err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (--dev->wakeup.prepare_count > 0) goto out; /* * Executing the code below even if prepare_count is already zero when * the function is called may be useful, for example for initialisation. */ if (dev->wakeup.prepare_count < 0) dev->wakeup.prepare_count = 0; err = acpi_device_sleep_wake(dev, 0, 0, 0); if (err) goto out; /* Close power resource */ for (i = 0; i < dev->wakeup.resources.count; i++) { int ret = acpi_power_off(dev->wakeup.resources.handles[i]); if (ret) { printk(KERN_ERR PREFIX "Transition power state\n"); dev->wakeup.flags.valid = 0; err = -ENODEV; goto out; } } out: mutex_unlock(&acpi_device_lock); return err; } /* -------------------------------------------------------------------------- Device Power Management -------------------------------------------------------------------------- */ int acpi_power_get_inferred_state(struct acpi_device *device, int *state) { int result = 0; struct acpi_handle_list *list = NULL; int list_state = 0; int i = 0; if (!device || !state) return -EINVAL; /* * We know a device's inferred power state when all the resources * required for a given D-state are 'on'. */ for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { list = &device->power.states[i].resources; if (list->count < 1) continue; result = acpi_power_get_list_state(list, &list_state); if (result) return result; if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { *state = i; return 0; } } *state = ACPI_STATE_D3; return 0; } int acpi_power_on_resources(struct acpi_device *device, int state) { if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3) return -EINVAL; return acpi_power_on_list(&device->power.states[state].resources); } int acpi_power_transition(struct acpi_device *device, int state) { int result = 0; if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) return -EINVAL; if (device->power.state == state) return 0; if ((device->power.state < ACPI_STATE_D0) || (device->power.state > ACPI_STATE_D3_COLD)) return -ENODEV; /* TBD: Resources must be ordered. */ /* * First we reference all power resources required in the target list * (e.g. so the device doesn't lose power while transitioning). Then, * we dereference all power resources used in the current list. */ if (state < ACPI_STATE_D3_COLD) result = acpi_power_on_list( &device->power.states[state].resources); if (!result && device->power.state < ACPI_STATE_D3_COLD) acpi_power_off_list( &device->power.states[device->power.state].resources); /* We shouldn't change the state unless the above operations succeed. */ device->power.state = result ? ACPI_STATE_UNKNOWN : state; return result; } /* -------------------------------------------------------------------------- Driver Interface -------------------------------------------------------------------------- */ static int acpi_power_add(struct acpi_device *device) { int result = 0, state; acpi_status status = AE_OK; struct acpi_power_resource *resource = NULL; union acpi_object acpi_object; struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; if (!device) return -EINVAL; resource = kzalloc(sizeof(struct acpi_power_resource), GFP_KERNEL); if (!resource) return -ENOMEM; resource->device = device; mutex_init(&resource->resource_lock); mutex_init(&resource->devices_lock); strcpy(resource->name, device->pnp.bus_id); strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_POWER_CLASS); device->driver_data = resource; /* Evalute the object to get the system level and resource order. */ status = acpi_evaluate_object(device->handle, NULL, NULL, &buffer); if (ACPI_FAILURE(status)) { result = -ENODEV; goto end; } resource->system_level = acpi_object.power_resource.system_level; resource->order = acpi_object.power_resource.resource_order; result = acpi_power_get_state(device->handle, &state); if (result) goto end; switch (state) { case ACPI_POWER_RESOURCE_STATE_ON: device->power.state = ACPI_STATE_D0; break; case ACPI_POWER_RESOURCE_STATE_OFF: device->power.state = ACPI_STATE_D3; break; default: device->power.state = ACPI_STATE_UNKNOWN; break; } printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), acpi_device_bid(device), state ? "on" : "off"); end: if (result) kfree(resource); return result; } static int acpi_power_remove(struct acpi_device *device, int type) { struct acpi_power_resource *resource; if (!device) return -EINVAL; resource = acpi_driver_data(device); if (!resource) return -EINVAL; kfree(resource); return 0; } #ifdef CONFIG_PM_SLEEP static int acpi_power_resume(struct device *dev) { int result = 0, state; struct acpi_device *device; struct acpi_power_resource *resource; if (!dev) return -EINVAL; device = to_acpi_device(dev); resource = acpi_driver_data(device); if (!resource) return -EINVAL; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(device->handle, &state); if (result) goto unlock; if (state == ACPI_POWER_RESOURCE_STATE_OFF && resource->ref_count) result = __acpi_power_on(resource); unlock: mutex_unlock(&resource->resource_lock); return result; } #endif int __init acpi_power_init(void) { INIT_LIST_HEAD(&acpi_power_resource_list); return acpi_bus_register_driver(&acpi_power_driver); }