/* fdomain.c -- Future Domain TMC-16x0 SCSI driver * Created: Sun May 3 18:53:19 1992 by faith@cs.unc.edu * Revised: Mon Dec 28 21:59:02 1998 by faith@acm.org * Author: Rickard E. Faith, faith@cs.unc.edu * Copyright 1992-1996, 1998 Rickard E. Faith (faith@acm.org) * Shared IRQ supported added 7/7/2001 Alan Cox * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2, or (at your option) any * later version. * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. ************************************************************************** SUMMARY: Future Domain BIOS versions supported for autodetect: 2.0, 3.0, 3.2, 3.4 (1.0), 3.5 (2.0), 3.6, 3.61 Chips are supported: TMC-1800, TMC-18C50, TMC-18C30, TMC-36C70 Boards supported: Future Domain TMC-1650, TMC-1660, TMC-1670, TMC-1680, TMC-1610M/MER/MEX Future Domain TMC-3260 (PCI) Quantum ISA-200S, ISA-250MG Adaptec AHA-2920A (PCI) [BUT *NOT* AHA-2920C -- use aic7xxx instead] IBM ? LILO/INSMOD command-line options: fdomain=,[,] NOTE: The Adaptec AHA-2920C has an Adaptec AIC-7850 chip on it. Use the aic7xxx driver for this board. The Adaptec AHA-2920A has a Future Domain chip on it, so this is the right driver for that card. Unfortunately, the boxes will probably just say "2920", so you'll have to look on the card for a Future Domain logo, or a letter after the 2920. THANKS: Thanks to Adaptec for providing PCI boards for testing. This finally enabled me to test the PCI detection and correct it for PCI boards that do not have a BIOS at a standard ISA location. For PCI boards, LILO/INSMOD command-line options should no longer be needed. --RF 18Nov98 DESCRIPTION: This is the Linux low-level SCSI driver for Future Domain TMC-1660/1680 TMC-1650/1670, and TMC-3260 SCSI host adapters. The 1650 and 1670 have a 25-pin external connector, whereas the 1660 and 1680 have a SCSI-2 50-pin high-density external connector. The 1670 and 1680 have floppy disk controllers built in. The TMC-3260 is a PCI bus card. Future Domain's older boards are based on the TMC-1800 chip, and this driver was originally written for a TMC-1680 board with the TMC-1800 chip. More recently, boards are being produced with the TMC-18C50 and TMC-18C30 chips. The latest and greatest board may not work with this driver. If you have to patch this driver so that it will recognize your board's BIOS signature, then the driver may fail to function after the board is detected. Please note that the drive ordering that Future Domain implemented in BIOS versions 3.4 and 3.5 is the opposite of the order (currently) used by the rest of the SCSI industry. If you have BIOS version 3.4 or 3.5, and have more than one drive, then the drive ordering will be the reverse of that which you see under DOS. For example, under DOS SCSI ID 0 will be D: and SCSI ID 1 will be C: (the boot device). Under Linux, SCSI ID 0 will be /dev/sda and SCSI ID 1 will be /dev/sdb. The Linux ordering is consistent with that provided by all the other SCSI drivers for Linux. If you want this changed, you will probably have to patch the higher level SCSI code. If you do so, please send me patches that are protected by #ifdefs. If you have a TMC-8xx or TMC-9xx board, then this is not the driver for your board. Please refer to the Seagate driver for more information and possible support. HISTORY: Linux Driver Driver Version Version Date Support/Notes 0.0 3 May 1992 V2.0 BIOS; 1800 chip 0.97 1.9 28 Jul 1992 0.98.6 3.1 27 Nov 1992 0.99 3.2 9 Dec 1992 0.99.3 3.3 10 Jan 1993 V3.0 BIOS 0.99.5 3.5 18 Feb 1993 0.99.10 3.6 15 May 1993 V3.2 BIOS; 18C50 chip 0.99.11 3.17 3 Jul 1993 (now under RCS) 0.99.12 3.18 13 Aug 1993 0.99.14 5.6 31 Oct 1993 (reselection code removed) 0.99.15 5.9 23 Jan 1994 V3.4 BIOS (preliminary) 1.0.8/1.1.1 5.15 1 Apr 1994 V3.4 BIOS; 18C30 chip (preliminary) 1.0.9/1.1.3 5.16 7 Apr 1994 V3.4 BIOS; 18C30 chip 1.1.38 5.18 30 Jul 1994 36C70 chip (PCI version of 18C30) 1.1.62 5.20 2 Nov 1994 V3.5 BIOS 1.1.73 5.22 7 Dec 1994 Quantum ISA-200S board; V2.0 BIOS 1.1.82 5.26 14 Jan 1995 V3.5 BIOS; TMC-1610M/MER/MEX board 1.2.10 5.28 5 Jun 1995 Quantum ISA-250MG board; V2.0, V2.01 BIOS 1.3.4 5.31 23 Jun 1995 PCI BIOS-32 detection (preliminary) 1.3.7 5.33 4 Jul 1995 PCI BIOS-32 detection 1.3.28 5.36 17 Sep 1995 V3.61 BIOS; LILO command-line support 1.3.34 5.39 12 Oct 1995 V3.60 BIOS; /proc 1.3.72 5.39 8 Feb 1996 Adaptec AHA-2920 board 1.3.85 5.41 4 Apr 1996 2.0.12 5.44 8 Aug 1996 Use ID 7 for all PCI cards 2.1.1 5.45 2 Oct 1996 Update ROM accesses for 2.1.x 2.1.97 5.46 23 Apr 1998 Rewritten PCI detection routines [mj] 2.1.11x 5.47 9 Aug 1998 Touched for 8 SCSI disk majors support 5.48 18 Nov 1998 BIOS no longer needed for PCI detection 2.2.0 5.50 28 Dec 1998 Support insmod parameters REFERENCES USED: "TMC-1800 SCSI Chip Specification (FDC-1800T)", Future Domain Corporation, 1990. "Technical Reference Manual: 18C50 SCSI Host Adapter Chip", Future Domain Corporation, January 1992. "LXT SCSI Products: Specifications and OEM Technical Manual (Revision B/September 1991)", Maxtor Corporation, 1991. "7213S product Manual (Revision P3)", Maxtor Corporation, 1992. "Draft Proposed American National Standard: Small Computer System Interface - 2 (SCSI-2)", Global Engineering Documents. (X3T9.2/86-109, revision 10h, October 17, 1991) Private communications, Drew Eckhardt (drew@cs.colorado.edu) and Eric Youngdale (ericy@cais.com), 1992. Private communication, Tuong Le (Future Domain Engineering department), 1994. (Disk geometry computations for Future Domain BIOS version 3.4, and TMC-18C30 detection.) Hogan, Thom. The Programmer's PC Sourcebook. Microsoft Press, 1988. Page 60 (2.39: Disk Partition Table Layout). "18C30 Technical Reference Manual", Future Domain Corporation, 1993, page 6-1. NOTES ON REFERENCES: The Maxtor manuals were free. Maxtor telephone technical support is great! The Future Domain manuals were $25 and $35. They document the chip, not the TMC-16x0 boards, so some information I had to guess at. In 1992, Future Domain sold DOS BIOS source for $250 and the UN*X driver source was $750, but these required a non-disclosure agreement, so even if I could have afforded them, they would *not* have been useful for writing this publicly distributable driver. Future Domain technical support has provided some information on the phone and have sent a few useful FAXs. They have been much more helpful since they started to recognize that the word "Linux" refers to an operating system :-). ALPHA TESTERS: There are many other alpha testers that come and go as the driver develops. The people listed here were most helpful in times of greatest need (mostly early on -- I've probably left out a few worthy people in more recent times): Todd Carrico (todd@wutc.wustl.edu), Dan Poirier (poirier@cs.unc.edu ), Ken Corey (kenc@sol.acs.unt.edu), C. de Bruin (bruin@bruin@sterbbs.nl), Sakari Aaltonen (sakaria@vipunen.hit.fi), John Rice (rice@xanth.cs.odu.edu), Brad Yearwood (brad@optilink.com), and Ray Toy (toy@soho.crd.ge.com). Special thanks to Tien-Wan Yang (twyang@cs.uh.edu), who graciously lent me his 18C50-based card for debugging. He is the sole reason that this driver works with the 18C50 chip. Thanks to Dave Newman (dnewman@crl.com) for providing initial patches for the version 3.4 BIOS. Thanks to James T. McKinley (mckinley@msupa.pa.msu.edu) for providing patches that support the TMC-3260, a PCI bus card with the 36C70 chip. The 36C70 chip appears to be "completely compatible" with the 18C30 chip. Thanks to Eric Kasten (tigger@petroglyph.cl.msu.edu) for providing the patch for the version 3.5 BIOS. Thanks for Stephen Henson (shenson@nyx10.cs.du.edu) for providing the patch for the Quantum ISA-200S SCSI adapter. Thanks to Adam Bowen for the signature to the 1610M/MER/MEX scsi cards, to Martin Andrews (andrewm@ccfadm.eeg.ccf.org) for the signature to some random TMC-1680 repackaged by IBM; and to Mintak Ng (mintak@panix.com) for the version 3.61 BIOS signature. Thanks for Mark Singer (elf@netcom.com) and Richard Simpson (rsimpson@ewrcsdra.demon.co.uk) for more Quantum signatures and detective work on the Quantum RAM layout. Special thanks to James T. McKinley (mckinley@msupa.pa.msu.edu) for providing patches for proper PCI BIOS32-mediated detection of the TMC-3260 card (a PCI bus card with the 36C70 chip). Please send James PCI-related bug reports. Thanks to Tom Cavin (tec@usa1.com) for preliminary command-line option patches. New PCI detection code written by Martin Mares Insmod parameter code based on patches from Daniel Graham . All of the alpha testers deserve much thanks. NOTES ON USER DEFINABLE OPTIONS: DEBUG: This turns on the printing of various debug information. ENABLE_PARITY: This turns on SCSI parity checking. With the current driver, all attached devices must support SCSI parity. If none of your devices support parity, then you can probably get the driver to work by turning this option off. I have no way of testing this, however, and it would appear that no one ever uses this option. FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the 18C30 chip have a 2k cache). When this many 512 byte blocks are filled by the SCSI device, an interrupt will be raised. Therefore, this could be as low as 0, or as high as 16. Note, however, that values which are too high or too low seem to prevent any interrupts from occurring, and thereby lock up the machine. I have found that 2 is a good number, but throughput may be increased by changing this value to values which are close to 2. Please let me know if you try any different values. RESELECTION: This is no longer an option, since I gave up trying to implement it in version 4.x of this driver. It did not improve performance at all and made the driver unstable (because I never found one of the two race conditions which were introduced by the multiple outstanding command code). The instability seems a very high price to pay just so that you don't have to wait for the tape to rewind. If you want this feature implemented, send me patches. I'll be happy to send a copy of my (broken) driver to anyone who would like to see a copy. **************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "fdomain.h" #ifndef PCMCIA MODULE_AUTHOR("Rickard E. Faith"); MODULE_DESCRIPTION("Future domain SCSI driver"); MODULE_LICENSE("GPL"); #endif #define VERSION "$Revision: 5.51 $" /* START OF USER DEFINABLE OPTIONS */ #define DEBUG 0 /* Enable debugging output */ #define ENABLE_PARITY 1 /* Enable SCSI Parity */ #define FIFO_COUNT 2 /* Number of 512 byte blocks before INTR */ /* END OF USER DEFINABLE OPTIONS */ #if DEBUG #define EVERY_ACCESS 0 /* Write a line on every scsi access */ #define ERRORS_ONLY 1 /* Only write a line if there is an error */ #define DEBUG_DETECT 0 /* Debug fdomain_16x0_detect() */ #define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */ #define DEBUG_ABORT 1 /* Debug abort() routine */ #define DEBUG_RESET 1 /* Debug reset() routine */ #define DEBUG_RACE 1 /* Debug interrupt-driven race condition */ #else #define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */ #define ERRORS_ONLY 0 #define DEBUG_DETECT 0 #define DEBUG_MESSAGES 0 #define DEBUG_ABORT 0 #define DEBUG_RESET 0 #define DEBUG_RACE 0 #endif /* Errors are reported on the line, so we don't need to report them again */ #if EVERY_ACCESS #undef ERRORS_ONLY #define ERRORS_ONLY 0 #endif #if ENABLE_PARITY #define PARITY_MASK 0x08 #else #define PARITY_MASK 0x00 #endif enum chip_type { unknown = 0x00, tmc1800 = 0x01, tmc18c50 = 0x02, tmc18c30 = 0x03, }; enum { in_arbitration = 0x02, in_selection = 0x04, in_other = 0x08, disconnect = 0x10, aborted = 0x20, sent_ident = 0x40, }; enum in_port_type { Read_SCSI_Data = 0, SCSI_Status = 1, TMC_Status = 2, FIFO_Status = 3, /* tmc18c50/tmc18c30 only */ Interrupt_Cond = 4, /* tmc18c50/tmc18c30 only */ LSB_ID_Code = 5, MSB_ID_Code = 6, Read_Loopback = 7, SCSI_Data_NoACK = 8, Interrupt_Status = 9, Configuration1 = 10, Configuration2 = 11, /* tmc18c50/tmc18c30 only */ Read_FIFO = 12, FIFO_Data_Count = 14 }; enum out_port_type { Write_SCSI_Data = 0, SCSI_Cntl = 1, Interrupt_Cntl = 2, SCSI_Mode_Cntl = 3, TMC_Cntl = 4, Memory_Cntl = 5, /* tmc18c50/tmc18c30 only */ Write_Loopback = 7, IO_Control = 11, /* tmc18c30 only */ Write_FIFO = 12 }; /* .bss will zero all the static variables below */ static int port_base; static unsigned long bios_base; static void __iomem * bios_mem; static int bios_major; static int bios_minor; static int PCI_bus; #ifdef CONFIG_PCI static struct pci_dev *PCI_dev; #endif static int Quantum; /* Quantum board variant */ static int interrupt_level; static volatile int in_command; static struct scsi_cmnd *current_SC; static enum chip_type chip = unknown; static int adapter_mask; static int this_id; static int setup_called; #if DEBUG_RACE static volatile int in_interrupt_flag; #endif static int FIFO_Size = 0x2000; /* 8k FIFO for pre-tmc18c30 chips */ static irqreturn_t do_fdomain_16x0_intr( int irq, void *dev_id ); /* Allow insmod parameters to be like LILO parameters. For example: insmod fdomain fdomain=0x140,11 */ static char * fdomain = NULL; module_param(fdomain, charp, 0); #ifndef PCMCIA static unsigned long addresses[] = { 0xc8000, 0xca000, 0xce000, 0xde000, 0xcc000, /* Extra addresses for PCI boards */ 0xd0000, 0xe0000, }; #define ADDRESS_COUNT ARRAY_SIZE(addresses) static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 }; #define PORT_COUNT ARRAY_SIZE(ports) static unsigned short ints[] = { 3, 5, 10, 11, 12, 14, 15, 0 }; #endif /* !PCMCIA */ /* READ THIS BEFORE YOU ADD A SIGNATURE! READING THIS SHORT NOTE CAN SAVE YOU LOTS OF TIME! READ EVERY WORD, ESPECIALLY THE WORD *NOT* This driver works *ONLY* for Future Domain cards using the TMC-1800, TMC-18C50, or TMC-18C30 chip. This includes models TMC-1650, 1660, 1670, and 1680. These are all 16-bit cards. The following BIOS signature signatures are for boards which do *NOT* work with this driver (these TMC-8xx and TMC-9xx boards may work with the Seagate driver): FUTURE DOMAIN CORP. (C) 1986-1988 V4.0I 03/16/88 FUTURE DOMAIN CORP. (C) 1986-1989 V5.0C2/14/89 FUTURE DOMAIN CORP. (C) 1986-1989 V6.0A7/28/89 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0105/31/90 FUTURE DOMAIN CORP. (C) 1986-1990 V6.0209/18/90 FUTURE DOMAIN CORP. (C) 1986-1990 V7.009/18/90 FUTURE DOMAIN CORP. (C) 1992 V8.00.004/02/92 (The cards which do *NOT* work are all 8-bit cards -- although some of them have a 16-bit form-factor, the upper 8-bits are used only for IRQs and are *NOT* used for data. You can tell the difference by following the tracings on the circuit board -- if only the IRQ lines are involved, you have a "8-bit" card, and should *NOT* use this driver.) */ #ifndef PCMCIA static struct signature { const char *signature; int sig_offset; int sig_length; int major_bios_version; int minor_bios_version; int flag; /* 1 == PCI_bus, 2 == ISA_200S, 3 == ISA_250MG, 4 == ISA_200S */ } signatures[] = { /* 1 2 3 4 5 6 */ /* 123456789012345678901234567890123456789012345678901234567890 */ { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V1.07/28/89", 5, 50, 2, 0, 0 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.07/28/89", 72, 50, 2, 0, 2 }, { "FUTURE DOMAIN CORP. (C) 1986-1990 1800-V2.0", 73, 43, 2, 0, 3 }, { "FUTURE DOMAIN CORP. (C) 1991 1800-V2.0.", 72, 39, 2, 0, 4 }, { "FUTURE DOMAIN CORP. (C) 1992 V3.00.004/02/92", 5, 44, 3, 0, 0 }, { "FUTURE DOMAIN TMC-18XX (C) 1993 V3.203/12/93", 5, 44, 3, 2, 0 }, { "IBM F1 P2 BIOS v1.0104/29/93", 5, 28, 3, -1, 0 }, { "Future Domain Corp. V1.0008/18/93", 5, 33, 3, 4, 0 }, { "Future Domain Corp. V1.0008/18/93", 26, 33, 3, 4, 1 }, { "Adaptec AHA-2920 PCI-SCSI Card", 42, 31, 3, -1, 1 }, { "IBM F1 P264/32", 5, 14, 3, -1, 1 }, /* This next signature may not be a 3.5 bios */ { "Future Domain Corp. V2.0108/18/93", 5, 33, 3, 5, 0 }, { "FUTURE DOMAIN CORP. V3.5008/18/93", 5, 34, 3, 5, 0 }, { "FUTURE DOMAIN 18c30/18c50/1800 (C) 1994 V3.5", 5, 44, 3, 5, 0 }, { "FUTURE DOMAIN CORP. V3.6008/18/93", 5, 34, 3, 6, 0 }, { "FUTURE DOMAIN CORP. V3.6108/18/93", 5, 34, 3, 6, 0 }, { "FUTURE DOMAIN TMC-18XX", 5, 22, -1, -1, 0 }, /* READ NOTICE ABOVE *BEFORE* YOU WASTE YOUR TIME ADDING A SIGNATURE Also, fix the disk geometry code for your signature and send your changes for faith@cs.unc.edu. Above all, do *NOT* change any old signatures! Note that the last line will match a "generic" 18XX bios. Because Future Domain has changed the host SCSI ID and/or the location of the geometry information in the on-board RAM area for each of the first three BIOS's, it is still important to enter a fully qualified signature in the table for any new BIOS's (after the host SCSI ID and geometry location are verified). */ }; #define SIGNATURE_COUNT ARRAY_SIZE(signatures) #endif /* !PCMCIA */ static void print_banner( struct Scsi_Host *shpnt ) { if (!shpnt) return; /* This won't ever happen */ if (bios_major < 0 && bios_minor < 0) { printk(KERN_INFO "scsi%d: No BIOS; using scsi id %d\n", shpnt->host_no, shpnt->this_id); } else { printk(KERN_INFO "scsi%d: BIOS version ", shpnt->host_no); if (bios_major >= 0) printk("%d.", bios_major); else printk("?."); if (bios_minor >= 0) printk("%d", bios_minor); else printk("?."); printk( " at 0x%lx using scsi id %d\n", bios_base, shpnt->this_id ); } /* If this driver works for later FD PCI boards, we will have to modify banner for additional PCI cards, but for now if it's PCI it's a TMC-3260 - JTM */ printk(KERN_INFO "scsi%d: %s chip at 0x%x irq ", shpnt->host_no, chip == tmc1800 ? "TMC-1800" : (chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? (PCI_bus ? "TMC-36C70 (PCI bus)" : "TMC-18C30") : "Unknown")), port_base); if (interrupt_level) printk("%d", interrupt_level); else printk(""); printk( "\n" ); } int fdomain_setup(char *str) { int ints[4]; (void)get_options(str, ARRAY_SIZE(ints), ints); if (setup_called++ || ints[0] < 2 || ints[0] > 3) { printk(KERN_INFO "scsi: Usage: fdomain=,[,]\n"); printk(KERN_ERR "scsi: Bad LILO/INSMOD parameters?\n"); return 0; } port_base = ints[0] >= 1 ? ints[1] : 0; interrupt_level = ints[0] >= 2 ? ints[2] : 0; this_id = ints[0] >= 3 ? ints[3] : 0; bios_major = bios_minor = -1; /* Use geometry for BIOS version >= 3.4 */ ++setup_called; return 1; } __setup("fdomain=", fdomain_setup); static void do_pause(unsigned amount) /* Pause for amount*10 milliseconds */ { mdelay(10*amount); } static inline void fdomain_make_bus_idle( void ) { outb(0, port_base + SCSI_Cntl); outb(0, port_base + SCSI_Mode_Cntl); if (chip == tmc18c50 || chip == tmc18c30) outb(0x21 | PARITY_MASK, port_base + TMC_Cntl); /* Clear forced intr. */ else outb(0x01 | PARITY_MASK, port_base + TMC_Cntl); } static int fdomain_is_valid_port( int port ) { #if DEBUG_DETECT printk( " (%x%x),", inb( port + MSB_ID_Code ), inb( port + LSB_ID_Code ) ); #endif /* The MCA ID is a unique id for each MCA compatible board. We are using ISA boards, but Future Domain provides the MCA ID anyway. We can use this ID to ensure that this is a Future Domain TMC-1660/TMC-1680. */ if (inb( port + LSB_ID_Code ) != 0xe9) { /* test for 0x6127 id */ if (inb( port + LSB_ID_Code ) != 0x27) return 0; if (inb( port + MSB_ID_Code ) != 0x61) return 0; chip = tmc1800; } else { /* test for 0xe960 id */ if (inb( port + MSB_ID_Code ) != 0x60) return 0; chip = tmc18c50; /* Try to toggle 32-bit mode. This only works on an 18c30 chip. (User reports say this works, so we should switch to it in the near future.) */ outb( 0x80, port + IO_Control ); if ((inb( port + Configuration2 ) & 0x80) == 0x80) { outb( 0x00, port + IO_Control ); if ((inb( port + Configuration2 ) & 0x80) == 0x00) { chip = tmc18c30; FIFO_Size = 0x800; /* 2k FIFO */ } } /* If that failed, we are an 18c50. */ } return 1; } static int fdomain_test_loopback( void ) { int i; int result; for (i = 0; i < 255; i++) { outb( i, port_base + Write_Loopback ); result = inb( port_base + Read_Loopback ); if (i != result) return 1; } return 0; } #ifndef PCMCIA /* fdomain_get_irq assumes that we have a valid MCA ID for a TMC-1660/TMC-1680 Future Domain board. Now, check to be sure the bios_base matches these ports. If someone was unlucky enough to have purchased more than one Future Domain board, then they will have to modify this code, as we only detect one board here. [The one with the lowest bios_base.] Note that this routine is only used for systems without a PCI BIOS32 (e.g., ISA bus). For PCI bus systems, this routine will likely fail unless one of the IRQs listed in the ints array is used by the board. Sometimes it is possible to use the computer's BIOS setup screen to configure a PCI system so that one of these IRQs will be used by the Future Domain card. */ static int fdomain_get_irq( int base ) { int options = inb(base + Configuration1); #if DEBUG_DETECT printk("scsi: Options = %x\n", options); #endif /* Check for board with lowest bios_base -- this isn't valid for the 18c30 or for boards on the PCI bus, so just assume we have the right board. */ if (chip != tmc18c30 && !PCI_bus && addresses[(options & 0xc0) >> 6 ] != bios_base) return 0; return ints[(options & 0x0e) >> 1]; } static int fdomain_isa_detect( int *irq, int *iobase ) { int i, j; int base = 0xdeadbeef; int flag = 0; #if DEBUG_DETECT printk( "scsi: fdomain_isa_detect:" ); #endif for (i = 0; i < ADDRESS_COUNT; i++) { void __iomem *p = ioremap(addresses[i], 0x2000); if (!p) continue; #if DEBUG_DETECT printk( " %lx(%lx),", addresses[i], bios_base ); #endif for (j = 0; j < SIGNATURE_COUNT; j++) { if (check_signature(p + signatures[j].sig_offset, signatures[j].signature, signatures[j].sig_length )) { bios_major = signatures[j].major_bios_version; bios_minor = signatures[j].minor_bios_version; PCI_bus = (signatures[j].flag == 1); Quantum = (signatures[j].flag > 1) ? signatures[j].flag : 0; bios_base = addresses[i]; bios_mem = p; goto found; } } iounmap(p); } found: if (bios_major == 2) { /* The TMC-1660/TMC-1680 has a RAM area just after the BIOS ROM. Assuming the ROM is enabled (otherwise we wouldn't have been able to read the ROM signature :-), then the ROM sets up the RAM area with some magic numbers, such as a list of port base addresses and a list of the disk "geometry" reported to DOS (this geometry has nothing to do with physical geometry). */ switch (Quantum) { case 2: /* ISA_200S */ case 3: /* ISA_250MG */ base = readb(bios_mem + 0x1fa2) + (readb(bios_mem + 0x1fa3) << 8); break; case 4: /* ISA_200S (another one) */ base = readb(bios_mem + 0x1fa3) + (readb(bios_mem + 0x1fa4) << 8); break; default: base = readb(bios_mem + 0x1fcc) + (readb(bios_mem + 0x1fcd) << 8); break; } #if DEBUG_DETECT printk( " %x,", base ); #endif for (i = 0; i < PORT_COUNT; i++) { if (base == ports[i]) { if (!request_region(base, 0x10, "fdomain")) break; if (!fdomain_is_valid_port(base)) { release_region(base, 0x10); break; } *irq = fdomain_get_irq( base ); *iobase = base; return 1; } } /* This is a bad sign. It usually means that someone patched the BIOS signature list (the signatures variable) to contain a BIOS signature for a board *OTHER THAN* the TMC-1660/TMC-1680. */ #if DEBUG_DETECT printk( " RAM FAILED, " ); #endif } /* Anyway, the alternative to finding the address in the RAM is to just search through every possible port address for one that is attached to the Future Domain card. Don't panic, though, about reading all these random port addresses -- there are rumors that the Future Domain BIOS does something very similar. Do not, however, check ports which the kernel knows are being used by another driver. */ for (i = 0; i < PORT_COUNT; i++) { base = ports[i]; if (!request_region(base, 0x10, "fdomain")) { #if DEBUG_DETECT printk( " (%x inuse),", base ); #endif continue; } #if DEBUG_DETECT printk( " %x,", base ); #endif flag = fdomain_is_valid_port(base); if (flag) break; release_region(base, 0x10); } #if DEBUG_DETECT if (flag) printk( " SUCCESS\n" ); else printk( " FAILURE\n" ); #endif if (!flag) return 0; /* iobase not found */ *irq = fdomain_get_irq( base ); *iobase = base; return 1; /* success */ } #else /* PCMCIA */ static int fdomain_isa_detect( int *irq, int *iobase ) { if (irq) *irq = 0; if (iobase) *iobase = 0; return 0; } #endif /* !PCMCIA */ /* PCI detection function: int fdomain_pci_bios_detect(int* irq, int* iobase) This function gets the Interrupt Level and I/O base address from the PCI configuration registers. */ #ifdef CONFIG_PCI static int fdomain_pci_bios_detect( int *irq, int *iobase, struct pci_dev **ret_pdev ) { unsigned int pci_irq; /* PCI interrupt line */ unsigned long pci_base; /* PCI I/O base address */ struct pci_dev *pdev = NULL; #if DEBUG_DETECT /* Tell how to print a list of the known PCI devices from bios32 and list vendor and device IDs being used if in debug mode. */ printk( "scsi: INFO: use lspci -v to see list of PCI devices\n" ); printk( "scsi: TMC-3260 detect:" " Using Vendor ID: 0x%x and Device ID: 0x%x\n", PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70 ); #endif if ((pdev = pci_get_device(PCI_VENDOR_ID_FD, PCI_DEVICE_ID_FD_36C70, pdev)) == NULL) return 0; if (pci_enable_device(pdev)) goto fail; #if DEBUG_DETECT printk( "scsi: TMC-3260 detect:" " PCI bus %u, device %u, function %u\n", pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); #endif /* We now have the appropriate device function for the FD board so we just read the PCI config info from the registers. */ pci_base = pci_resource_start(pdev, 0); pci_irq = pdev->irq; if (!request_region( pci_base, 0x10, "fdomain" )) goto fail; /* Now we have the I/O base address and interrupt from the PCI configuration registers. */ *irq = pci_irq; *iobase = pci_base; *ret_pdev = pdev; #if DEBUG_DETECT printk( "scsi: TMC-3260 detect:" " IRQ = %d, I/O base = 0x%x [0x%lx]\n", *irq, *iobase, pci_base ); #endif if (!fdomain_is_valid_port(pci_base)) { printk(KERN_ERR "scsi: PCI card detected, but driver not loaded (invalid port)\n" ); release_region(pci_base, 0x10); goto fail; } /* Fill in a few global variables. Ugh. */ bios_major = bios_minor = -1; PCI_bus = 1; PCI_dev = pdev; Quantum = 0; bios_base = 0; return 1; fail: pci_dev_put(pdev); return 0; } #endif struct Scsi_Host *__fdomain_16x0_detect(struct scsi_host_template *tpnt ) { int retcode; struct Scsi_Host *shpnt; struct pci_dev *pdev = NULL; if (setup_called) { #if DEBUG_DETECT printk( "scsi: No BIOS, using port_base = 0x%x, irq = %d\n", port_base, interrupt_level ); #endif if (!request_region(port_base, 0x10, "fdomain")) { printk( "scsi: port 0x%x is busy\n", port_base ); printk( "scsi: Bad LILO/INSMOD parameters?\n" ); return NULL; } if (!fdomain_is_valid_port( port_base )) { printk( "scsi: Cannot locate chip at port base 0x%x\n", port_base ); printk( "scsi: Bad LILO/INSMOD parameters?\n" ); release_region(port_base, 0x10); return NULL; } } else { int flag = 0; #ifdef CONFIG_PCI /* Try PCI detection first */ flag = fdomain_pci_bios_detect( &interrupt_level, &port_base, &pdev ); #endif if (!flag) { /* Then try ISA bus detection */ flag = fdomain_isa_detect( &interrupt_level, &port_base ); extern int __bitmap_weight(const unsigned long *bitmap, int bits); extern void bitmap_set(unsigned long *map, int i, int len); extern void bitmap_clear(unsigned long *map, int start, int nr); extern unsigned long bitmap_find_next_zero_area(unsigned long *map, unsigned long size, unsigned long start, unsigned int nr, unsigned long align_mask); extern int bitmap_scnprintf(char *buf, unsigned int len, const unsigned long *src, int nbits); extern int __bitmap_parse(const char *buf, unsigned int buflen, int is_user, unsigned long *dst, int nbits); extern int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, unsigned long *dst, int nbits); extern int bitmap_scnlistprintf(char *buf, unsigned int len, const unsigned long *src, int nbits); extern int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits); extern void bitmap_remap(unsigned long *dst, const unsigned long *src, const unsigned long *old, const unsigned long *new, int bits); extern int bitmap_bitremap(int oldbit, const unsigned long *old, const unsigned long *new, int bits); extern void bitmap_onto(unsigned long *dst, const unsigned long *orig, const unsigned long *relmap, int bits); extern void bitmap_fold(unsigned long *dst, const unsigned long *orig, int sz, int bits); extern int bitmap_find_free_region(unsigned long *bitmap, int bits, int order); extern void bitmap_release_region(unsigned long *bitmap, int pos, int order); extern int bitmap_allocate_region(unsigned long *bitmap, int pos, int order); extern void bitmap_copy_le(void *dst, const unsigned long *src, int nbits); #define BITMAP_LAST_WORD_MASK(nbits) \ ( \ ((nbits) % BITS_PER_LONG) ? \ (1UL<<((nbits) % BITS_PER_LONG))-1 : ~0UL \ ) #define small_const_nbits(nbits) \ (__builtin_constant_p(nbits) && (nbits) <= BITS_PER_LONG) static inline void bitmap_zero(unsigned long *dst, int nbits) { if (small_const_nbits(nbits)) *dst = 0UL; else { int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memset(dst, 0, len); } } static inline void bitmap_fill(unsigned long *dst, int nbits) { size_t nlongs = BITS_TO_LONGS(nbits); if (!small_const_nbits(nbits)) { int len = (nlongs - 1) * sizeof(unsigned long); memset(dst, 0xff, len); } dst[nlongs - 1] = BITMAP_LAST_WORD_MASK(nbits); } static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, int nbits) { if (small_const_nbits(nbits)) *dst = *src; else { int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); memcpy(dst, src, len); } } static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & *src2) != 0; return __bitmap_and(dst, src1, src2, nbits); } static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, int nbits) { if (small_const_nbits(nbits)) *dst = *src1 | *src2; else __bitmap_or(dst, src1, src2, nbits); } static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, int nbits) { if (small_const_nbits(nbits)) *dst = *src1 ^ *src2; else __bitmap_xor(dst, src1, src2, nbits); } static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, const unsigned long *src2, int nbits) { if (small_const_nbits(nbits)) return (*dst = *src1 & ~(*src2)) != 0; return __bitmap_andnot(dst, src1, src2, nbits); } static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, int nbits) { if (small_const_nbits(nbits)) *dst = ~(*src) & BITMAP_LAST_WORD_MASK(nbits); else __bitmap_complement(dst, src, nbits); } static inline int bitmap_equal(const unsigned long *src1, const unsigned long *src2, int nbits) { if (small_const_nbits(nbits)) return ! ((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_equal(src1, src2, nbits); } static inline int bitmap_intersects(const unsigned long *src1, const unsigned long *src2, int nbits) { if (small_const_nbits(nbits)) return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; else return __bitmap_intersects(src1, src2, nbits); } static inline int bitmap_subset(const unsigned long *src1, const unsigned long *src2, int nbits) { if (small_const_nbits(nbits)) return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_subset(src1, src2, nbits); } static inline int bitmap_empty(const unsigned long *src, int nbits) { if (small_const_nbits(nbits)) return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_empty(src, nbits); } static inline int bitmap_full(const unsigned long *src, int nbits) { if (small_const_nbits(nbits)) return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); else return __bitmap_full(src, nbits); } static inline int bitmap_weight(const unsigned long *src, int nbits) { if (small_const_nbits(nbits)) return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); return __bitmap_weight(src, nbits); } static inline void bitmap_shift_right(