aboutsummaryrefslogtreecommitdiffstats
path: root/include/asm-mips/hazards.h
blob: d6e88cf06ba913900b096b0d90b62f269fa4251c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 2003, 2004 Ralf Baechle
 */
#ifndef _ASM_HAZARDS_H
#define _ASM_HAZARDS_H

#include <linux/config.h>

#ifdef __ASSEMBLY__

	.macro	_ssnop
	sll	$0, $0, 1
	.endm

	.macro	_ehb
	sll	$0, $0, 3
	.endm

/*
 * RM9000 hazards.  When the JTLB is updated by tlbwi or tlbwr, a subsequent
 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
 * for data translations should not occur for 3 cpu cycles.
 */
#ifdef CONFIG_CPU_RM9000

	.macro	mtc0_tlbw_hazard
	.set	push
	.set	mips32
	_ssnop; _ssnop; _ssnop; _ssnop
	.set	pop
	.endm

	.macro	tlbw_eret_hazard
	.set	push
	.set	mips32
	_ssnop; _ssnop; _ssnop; _ssnop
	.set	pop
	.endm

#else

/*
 * The taken branch will result in a two cycle penalty for the two killed
 * instructions on R4000 / R4400.  Other processors only have a single cycle
 * hazard so this is nice trick to have an optimal code for a range of
 * processors.
 */
	.macro	mtc0_tlbw_hazard
	b	. + 8
	.endm

	.macro	tlbw_eret_hazard
	.endm
#endif

/*
 * mtc0->mfc0 hazard
 * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
 * It is a MIPS32R2 processor so ehb will clear the hazard.
 */

#ifdef CONFIG_CPU_MIPSR2
/*
 * Use a macro for ehb unless explicit support for MIPSR2 is enabled
 */

#define irq_enable_hazard
	_ehb

#define irq_disable_hazard
	_ehb

#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)

/*
 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
 */

#define irq_enable_hazard

#define irq_disable_hazard

#else

/*
 * Classic MIPS needs 1 - 3 nops or ssnops
 */
#define irq_enable_hazard
#define irq_disable_hazard						\
	_ssnop; _ssnop; _ssnop

#endif

#else /* __ASSEMBLY__ */

__asm__(
	"	.macro	_ssnop					\n\t"
	"	sll	$0, $2, 1				\n\t"
	"	.endm						\n\t"
	"							\n\t"
	"	.macro	_ehb					\n\t"
	"	sll	$0, $0, 3				\n\t"
	"	.endm						\n\t");

#ifdef CONFIG_CPU_RM9000
/*
 * RM9000 hazards.  When the JTLB is updated by tlbwi or tlbwr, a subsequent
 * use of the JTLB for instructions should not occur for 4 cpu cycles and use
 * for data translations should not occur for 3 cpu cycles.
 */

#define mtc0_tlbw_hazard()						\
	__asm__ __volatile__(						\
		".set\tmips32\n\t"					\
		"_ssnop; _ssnop; _ssnop; _ssnop\n\t"			\
		".set\tmips0")

#define tlbw_use_hazard()						\
	__asm__ __volatile__(						\
		".set\tmips32\n\t"					\
		"_ssnop; _ssnop; _ssnop; _ssnop\n\t"			\
		".set\tmips0")

#define back_to_back_c0_hazard()	do { } while (0)

#else

/*
 * Overkill warning ...
 */
#define mtc0_tlbw_hazard()						\
	__asm__ __volatile__(						\
		".set noreorder\n\t"					\
		"nop; nop; nop; nop; nop; nop;\n\t"			\
		".set reorder\n\t")

#define tlbw_use_hazard()						\
	__asm__ __volatile__(						\
		".set noreorder\n\t"					\
		"nop; nop; nop; nop; nop; nop;\n\t"			\
		".set reorder\n\t")

#define back_to_back_c0_hazard()					\
	__asm__ __volatile__(						\
	"	.set noreorder				\n"		\
	"	nop; nop; nop				\n"		\
	"	.set reorder				\n")

#endif

/*
 * mtc0->mfc0 hazard
 * The 24K has a 2 cycle mtc0/mfc0 execution hazard.
 * It is a MIPS32R2 processor so ehb will clear the hazard.
 */

#ifdef CONFIG_CPU_MIPSR2
/*
 * Use a macro for ehb unless explicit support for MIPSR2 is enabled
 */
__asm__(
	"	.macro\tirq_enable_hazard			\n\t"
	"	_ehb						\n\t"
	"	.endm						\n\t"
	"							\n\t"
	"	.macro\tirq_disable_hazard			\n\t"
	"	_ehb						\n\t"
	"	.endm");

#define irq_enable_hazard()						\
	__asm__ __volatile__(						\
	"_ehb\t\t\t\t# irq_enable_hazard")

#define irq_disable_hazard()						\
	__asm__ __volatile__(						\
	"_ehb\t\t\t\t# irq_disable_hazard")

#define back_to_back_c0_hazard()					\
	__asm__ __volatile__(						\
	"_ehb\t\t\t\t# back_to_back_c0_hazard")

#elif defined(CONFIG_CPU_R10000) || defined(CONFIG_CPU_RM9000)

/*
 * R10000 rocks - all hazards handled in hardware, so this becomes a nobrainer.
 */

__asm__(
	"	.macro\tirq_enable_hazard			\n\t"
	"	.endm						\n\t"
	"							\n\t"
	"	.macro\tirq_disable_hazard			\n\t"
	"	.endm");

#define irq_enable_hazard()	do { } while (0)
#define irq_disable_hazard()	do { } while (0)

#define back_to_back_c0_hazard()	do { } while (0)

#else

/*
 * Default for classic MIPS processors.  Assume worst case hazards but don't
 * care about the irq_enable_hazard - sooner or later the hardware will
 * enable it and we don't care when exactly.
 */

__asm__(
	"	#						\n\t"
	"	# There is a hazard but we do not care		\n\t"
	"	#						\n\t"
	"	.macro\tirq_enable_hazard			\n\t"
	"	.endm						\n\t"
	"							\n\t"
	"	.macro\tirq_disable_hazard			\n\t"
	"	_ssnop; _ssnop; _ssnop				\n\t"
	"	.endm");

#define irq_enable_hazard()	do { } while (0)
#define irq_disable_hazard()						\
	__asm__ __volatile__(						\
	"_ssnop; _ssnop; _ssnop;\t\t# irq_disable_hazard")

#define back_to_back_c0_hazard()					\
	__asm__ __volatile__(						\
	"	.set noreorder				\n"		\
	"	nop; nop; nop				\n"		\
	"	.set reorder				\n")

#endif

#endif /* __ASSEMBLY__ */

#endif /* _ASM_HAZARDS_H */